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Abstract 

Background:  Despite continuing technological advances, the cost for large-scale 
genotyping of a high number of samples can be prohibitive. The purpose of this study 
is to design a cost-saving strategy for SNP genotyping. We suggest making use of pool-
ing, a group testing technique, to drop the amount of SNP arrays needed. We believe 
that this will be of the greatest importance for non-model organisms with more 
limited resources in terms of cost-efficient large-scale chips and high-quality reference 
genomes, such as application in wildlife monitoring, plant and animal breeding, but it 
is in essence species-agnostic. The proposed approach consists in grouping and mix-
ing individual DNA samples into pools before testing these pools on bead-chips, such 
that the number of pools is less than the number of individual samples. We present a 
statistical estimation algorithm, based on the pooling outcomes, for inferring marker-
wise the most likely genotype of every sample in each pool. Finally, we input these 
estimated genotypes into existing imputation algorithms. We compare the imputation 
performance from pooled data with the Beagle algorithm, and a local likelihood-aware 
phasing algorithm closely modeled on MaCH that we implemented.

Results:  We conduct simulations based on human data from the 1000 Genomes Pro-
ject, to aid comparison with other imputation studies. Based on the simulated data, we 
find that pooling impacts the genotype frequencies of the directly identifiable markers, 
without imputation. We also demonstrate how a combinatorial estimation of the geno-
type probabilities from the pooling design can improve the prediction performance of 
imputation models. Our algorithm achieves 93% concordance in predicting unassayed 
markers from pooled data, thus it outperforms the Beagle imputation model which 
reaches 80% concordance. We observe that the pooling design gives higher concord-
ance for the rare variants than traditional low-density to high-density imputation com-
monly used for cost-effective genotyping of large cohorts.

Conclusions:  We present promising results for combining a pooling scheme for SNP 
genotyping with computational genotype imputation on human data. These results 
could find potential applications in any context where the genotyping costs form a 
limiting factor on the study size, such as in marker-assisted selection in plant breeding.
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Background
Genotyping DNA markers at high density

Biological and medical research e.g. association studies or traits mapping have been 
interested in Single Nucleotide Polymorphisms (SNPs) genotypes because of their 
numerous advantages as genetic markers [1]. Among the various tools performing 
SNP genotyping, the genotyping chips technology (bead-chips) is well-suited for pro-
cessing many variants at a time.

In association studies, SNPs are used to differentiate subpopulations or individuals 
from one another when they can be clustered into informative patterns of genetic var-
iation within a sample. Tens or hundreds of thousands of SNPs are often required for 
achieving relevant, informative, and significant associations or mapping [2]. Despite 
their abundance, many of the SNPs carrying variation patterns of relevance can be 
categorized as (extremely) rare variants, e.g. variants with a population frequency less 
than 1%. Consequently, a large cohort of individuals should be processed to detect 
these variations and their effects. Computational approaches based on appropriate 
algorithms offer solutions for increasing both the amount of genotyped markers and 
the study population size at a reasonable cost. The computational solutions represent 
a midway to the dilemma of choosing between genotyping a large population at low-
density only, or obtaining high-density genotypes sets but for a restricted number of 
individuals.

A common method to reduce the genotyping cost is to genotype a low-density (LD) 
set of markers in a study population and to infer a high-density (HD) one. The infer-
ence process, which we refer to as classical imputation, is based on a reference popu-
lation that is assumed to be similar to the study one, and where the genotypes of all 
markers are known. Imputation methods have demonstrated high accuracy for infer-
ring unassayed genotypes in a population. Nonetheless, several studies found impu-
tation usually performs less well for the rare variants relatively to the common ones 
[3–7].

Saving genotyping costs with combinatorial group testing techniques

Pooling is a group testing technique that aims to identify defective samples in a pop-
ulation with the fewest tests possible. Its usage for genetic screening or compressed 
genotyping was suggested in the 1990s [8]. Numerous studies have proposed the 
use of pooling for tackling the cost issue for DNA processing [9–11], for instance 
when conducting DNA variant detection tasks on 96-well PCR-plates. Pooling turns 
out to be particularly efficient when dealing with the detection of rare variants, as 
other applications in association studies also show with human [9], animal, and crop 
data [12, 13]. In this context, the carriers of rare variants are seen as the “defec-
tive” items. The applications of DNA pooling in association studies has been mostly 
used for estimating allelic or haplotype frequencies that are derived from the pooled 
genotype frequencies. Several papers proposed statistical models that incorporate 
error-correction mechanisms for taking into account the noisy genotype data from 
pools. In some cases, the statistic used for testing the allelic association is corrected 
with the variance of the estimates in the case and the control populations [14–17]. In 
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other cases, the models relies on linear regression models for handling the genotyp-
ing errors when estimating the allelic or haplotypic frequencies [18]. More recently, 
genotype pooling in cattle has been suggested as an avenue for more efficient breed-
ing value estimates in large populations [19].

We propose to implement a similar pooling strategy in order to reduce the cost 
of SNP genotyping, without sacrificing the power to detect carriers of low-MAF 
(minor allele frequency) variants or shrinking the study population size. In prac-
tice, this is accomplished by pooling samples before them being tested on the SNP 
chips, with each sample being included in multiple pools. The individual genotypes 
are then reconstructed based on the test results from the pools. Our study does not 
target to estimate the overall allelic frequencies at markers, it rather aims to find a 
large-scale and moderate-cost genotyping method that focuses on the accuracy of 
every individual genotype estimated.

Various combinatorial group testing schemes have been explored in the literature. 
These schemes, also called pooling designs or algorithms, can be split into two fami-
lies, the sequential and the non-adaptive. In the first case, groups (or pools) are con-
secutively built from the data and tested in several steps whereas in the latter, all 
groups are constructed and tested at once simultaneously. Since we test all markers 
on the SNP chip simultaneously in our pooling design, only non-adaptive group test-
ing (NGT) algorithms are suitable for our study [2, 20].

For uniquely identifying and keeping track of every individual contribution to the 
pool, the designs with overlapping pools were found to be effective and accurate 
[2, 21–23]. Among the strategies that have been studied for assigning the individu-
als into overlapping pools, we found mentioned in the literature the DNA Sudoku 
approach [9] and the Shifted Transversal Design (STD) [24, 25]. Both present a 
deterministic algorithm for recovering the individual test results from the pools. We 
have also noted other approaches as compressed sensing [2, 24, 26] which are par-
ticularly suitable for processing the rare variants and incorporate probabilities in the 
decoding step. Our design is a simple case of STD which partitions the samples to be 
pooled into repeated blocks, where each block corresponds to a pair of layers [20]. 
Given the characteristics of the pooling design we implement in this study, we desig-
nate it by Nonadaptive Overlapping Repeated Block (NORB) design.

When attempting to decode individual genotypes from the pools, some ambigu-
ity may arise, resulting in missing genotype data for some individuals and markers 
[2, 9]. This drawback is particularly strong when the defective and the non-defec-
tive items are in comparable proportions in the population. In our setting where 
defectives correspond to minor allele carriers at SNPs, this situation is likely to be 
encountered with the common variants. As suggested by He et al. [23], a likelihood 
framework can be used for formulating the pooling problem as an extension to the 
combinatorial methods. The authors found that the likelihood framework and its 
flexibility is especially suitable for applications that target the accurate genotyping 
of a population. In this study, we propose to first estimate the likely distribution for 
each incomplete pooling outcome, and then do a full imputation of all missing geno-
types in the data set using more traditional genotype imputation methods.
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Improving pooled genotyping results with imputation methods

Genotype imputation refers to computational approaches for inferring genotypes based 
on incomplete or uncertain observational data in a population. Many well-performing 
algorithms for imputation use Hidden Markov Models (HMM) [3, 27] that exploit hap-
lotype-frequency variations and linkage disequilibrium. Other statistical methods such 
as SNP-tagging based approaches can be found but are not as accurate.

Imputation has been widely used on human genetic data [27–29], but also on plant or 
animal DNA more recently [30, 31]. To consider pooling and imputation together has 
been suggested for improving the decoding process performance when genotyping rare 
variants [10].

On a general level, the imputation problem can be formulated as resolving ambiguous 
or unknown genotypes with predictions by aggregating population-wide genetic infor-
mation [3]. Besides the reference population, some imputation methods can incorporate 
the relatedness between the study individuals, if such data are provided.

We focused on population-based imputation methods, designed for dealing with unre-
lated individuals. An extensive investigation of the performance-critical parameters that 
drive imputation is out of the scope of this study, as well as the family-based methods 
which include pedigree information in the computations. Due to the very common case 
of very large populations with significant cost constraints in important applications such 
as animal and plant breeding, we believe that pedigree-aware imputation methods could 
form an excellent fit with pooling in that context.

Within the population-based methods, two main approaches have been dominating 
for a long time, namely the tree-based haplotypes clusters and the coalescent models 
[3, 32]. More recent approaches tend to build on these, but they locally subsample the 
references based on index searches. We have not included those in this study, since the 
decoding of pools renders complex patterns of genotype probabilities.

Both population-based models are statistical methods that yield probabilistic predic-
tions for the missing genotypes. They implement HMM based on template haplotypes, 
but with some differences. In coalescent models, the probabilistic estimation of the 
genotypes at unassayed markers is computed from a stochastic expectation-maximi-
zation (EM) method. Tree-based clustering, implemented in the Beagle software, is an 
empirical model determined by the counts of similar segments found across the tem-
plate haplotypes. For both the coalescent and the tree-based models, the hidden states 
underlying the Markov chain of the HMM are defined by single or aggregated template 
haplotypes. The way this set of template haplotypes is constituted varies with the impu-
tation method used. The transition from one haplotypic state to another between two 
consecutive markers mimics a historical recombination event, while the emitted sym-
bols of the HMM are the genotypes, which are modeled as possibly erroneous copies 
of the hidden pair of haplotypes and hence express mutation events. Depending on the 
approach, recombination and mutation phenomena are either explicitly parametrized, 
or captured implicitly.

Among the coalescent models, MACH and IMPUTE2 have been found to perform the 
best in different studies [27, 29, 33, 34]. We implemented a similar method based on [35] 
and we refer to this algorithm as Prophaser [36] in this paper. To the difference of the 
common practice in MACH and IMPUTE2, Prophaser uses all the available template 



Page 5 of 25Clouard et al. BMC Bioinformatics          (2022) 23:421 	

haplotypes as hidden states in the HMM. All aforementioned methods and software 
run one HMM for each study individual, and yield probabilistic estimates of the missing 
genotypes.

IMPUTE2 and MACH form the HMM hidden states by selecting h template haplo-
types in both the reference and the study population, such there is a constant number h2 
hidden states at each of the j diploid markers. Hence, these methods have a complexity 
O(jh2) in time for each study individual [37], and the time complexity grows linearly as 
the size of the study population. Despite the use of a memory-saving technique recom-
puting parts of the forward-backward table on the fly, turning the memory complexity 
to O( jh2) , several papers point out computational efficiency issues with MACH [3, 
27, 32] when compared to the other methods mentioned. By contrast, Beagle operates a 
dimension reduction of the hidden states space thanks to its clustering approach, which 
has been shown to be particularly efficient when imputing large data sets. The successive 
releases have improved the software performance in this direction [32, 38–41]. In this 
study, we use Beagle as a comparison baseline for imputation.

Scope of the study

In this paper, we present a new cost-effective genotyping approach based on the joint 
use of a pooling strategy followed by imputation processing. We analyze how a pooling 
procedure, applied on a large data set, impacts what we can conclude about the underly-
ing distribution of genotype frequencies in the study population.

We also evaluate how conventional imputation methods perform when given such a 
pooled data set which has an unusual and characteristic genotype distribution. Specifi-
cally, we investigate if refining the specification of ambiguous genotypes based on the 
combinatorial outcomes can improve imputation performance. The proposed specific 
pooling scheme is not unique, however it proves to be a reasonable starting point for 
evaluating the promise of such designs. Furthermore, we focus solely on the computa-
tional aspects of determining genotypes. In practice, proper schemes for performing 
pooling and SNP genotype quality control would be needed. The resilience of imputa-
tion methods to patterns of fully missing markers or fully random genotyping noise is 
well-known and therefore also not a focus of this study.

Methods
Genotyping scenarios

In order to first evaluate how bead-chip genotype data respond to pooling treatment 
and second, how imputations methods perform on pooled data, we designed the follow-
ing simulation experiment. We build two marker sets with genotype data from a human 
population at low respectively high density (LD resp. HD data sets) by extracting only 
those markers from the 1000 Genomes Project (1KGP) data set that are present in one 
lower-density and one higher-density Illumina bead-chip in common use. We then com-
pare the performance of two approaches for genotyping markers at high-density. The 
first approach serves as a baseline and simulates a usual study case where part of the 
markers are genotyped at low density in a target population, and the rest of the mark-
ers are imputed based on a high-density reference panel. The second approach evaluates 
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genotyping markers at a high density from pools of individuals and then using imputa-
tion for those individual genotypes that are not fully decodable from the pooling.

Data sets and data preparation

We use data from the well-studied reference resource made available by the 1KGP, more 
specifically phase 3 v5 [21, 29, 42–44], providing genotype data over 2504 unrelated 
human individuals across 26 subpopulations analyzed worldwide [45].

We select markers from chromosome 20 that has been studied in several previous 
papers [5, 41, 46]. This chromosome spans approximately 63 million DNA base pairs 
[42]. Within the 1KGP in the phase 3 version released 2015, 1,739,315 variants are geno-
typed as biallelic SNPs, out of which 1,589,038 (91.4%) have a minor allele frequency 
(MAF) less than 5%. These are called rare or low-frequency variants [37, 47].

After selecting the biallelic SNPs, we retain markers that are common to both the 
1KGP chromosome 20 data set and analyzed on the Illumina bead-chip products Infin-
ium OmniExpress-24 Kit and Infinium Omni2.5—8 Kit. Intersecting the markers from 
the Illumina arrays and the markers genotyped in the 1KGP for the chromosome 20 
yields two overlapping experimental maps. The map derived from the OmniExpress 
bead-chip consists of 17,791 biallelic markers, out of which 17,015 markers are shared 
with the map derived from the Omni2.5 bead-chip which lists in total 52,697 markers 
(see Fig. 2a). With respective densities of 1 SNP per 3.5 kb and 1 SNP per 1.19 kb, we 
hence obtain low-density (LD) and high-density (HD) marker sets [38].

For simulating imputation, the 2504 unrelated human samples are randomly split into 
two populations, regardless of their subpopulation. The first one is the reference panel 
(PNL) with 2264 individuals, the latter is the study population (STU) with 240 indi-
viduals, thus observing proportion PNL:STU-sizes of ca. 10:1 as in [3]. For the classi-
cal imputation scenario simulation, we delete in the STU population genotype data for 
the markers only present in the HD data set and keep fully genotyped at LD the 17,015 
markers common to both maps. In the pooling scenario, we keep all the 52,697 HD in 
STU and simulate pooled genotypes as described hereafter. In PNL, we keep the geno-
type data for all LD and HD markers for both scenarios. Figure 1 gives an overview of 
the experimental steps carried out in both scenarios.

Figure 2 illustrates the composition of the different data sets composition before impu-
tation. In both scenarios, after imputation, the study population is eventually fully geno-
typed at HD markers.

Group testing design for simulating pooled genotyping from microarrays data

The study population is further processed with pooling simulation, which yields missing 
genotypes spread in the data.

Based on the DNA Sudoku study [9], we define critical parameters for optimizing the 
design which are the number of individuals per block, the number of intersecting pools 
per block holding each pair of samples, and the number of pools that hold any given 
sample. These parameters and the pooling algorithm can be mathematically formulated 
as a binary k ×m matrix M with k rows representing pools and m columns representing 
samples. M is called the design matrix of the scheme.
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NORB parameters and design matrix We choose nB = 16 samples for the block size 
with pools of degree 4, a samples’ weight equal to 2, and a pool intersection value equal 
to 1. Hence, we get a number of pools per block equal to 8. The reduction factor ρ is 2, or 
equivalently the number of individuals is twice the number of pools within a block.

Square representation of a block We introduce a graphical representation of a pooling 
block with genotypes at a given SNP, according to the chosen parameters. As described 
by Ngo and Du in their taxonomy of nonadaptive pooling designs [25], a simple transver-
sal design can be represented as a grid. The rows and columns {Pt}1≤t≤T are the pools, 
and {Gi}1≤i≤nB ∈ {−1, 0, 1, 2} the individuals’ genotypes which is, in order, interpreted as 
’missing genotype’, ’homozygous for the reference allele’, ’heterozygous’, ’homozygous for 
the alternate allele’.

P5 P6 P7 P8

P1 G1 G2 G3 G4

P2 G5 G6 G7 G8

Fig. 1  Experimental steps for creating the data sets in the pooling and classical imputation scenarios.The 
original data set “Chr20 x OmniExpress” consists of the genotype data of 2504 samples at 52,697 SNPs. The set 
of markers is created by intersecting the variants present on both bead-chips from the Illumina manufacturer 
and the data for the chromosome 20 in the 1KGP. The original data set is randomly split into a reference 
panel and a study population. In the LDHD scenario, all markers in the HD data set that are not present in 
the LD data set are filtered out in the study population. In the pooled HD scenario, the study samples are 
first assigned to blocks and pools, second the pools are genotyped at all markers in the HD data set, and 
last the genotype of each sample is decoded from the pools at every marker. See Fig. 3 for an example of 
the simulation steps in 1 block at 1 marker. The imputation step is performed in both scenarios from the 
reference panel, with Beagle on the one hand and Prophaser on the other hand. The genotyping accuracy in 
each scenario is computed by comparing the imputed genotypes with the true ones in the original data set 
for the study population
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P5 P6 P7 P8

P3 G9 G10 G11 G12

P4 G13 G14 G15 G16

Pooling is simulated on the genotypes in the study population (STU data set) for 
the imputation scenario 2 (pooled HD data). STU was created in view of having a size 
which is a multiple of the block size chosen, i.e. STU has a size Bstu ∗ nB = 15 ∗ 16 , 
where Bstu is the number of pooling blocks formed from the study population. At 
every SNP, we implemented the pooling simulation as described hereafter.

Encoding and decoding rules With the design we have selected for our experiment, 
simulating pooling on items involves an encoding step followed by a decoding step. 
Two examples of genotype pooling simulation are shown in Fig. 3a, b.

First, the encoding step simulates the genotype outcome for a pool from the com-
bination of the individual genotypes in it. SNP chip genotyping detects which alleles 
are present in the sample at each SNP (0 for the reference allele or 1 for the alternate 
allele) on the chip. That means, in the simulation of the pooling encoding step, a pool 
has genotype 0 (respectively 2) if and only if all samples forming the pool are homo-
geneous and have homozygous genotype 0 (resp. 2). Any other intermediate combi-
nation of a pool from samples having heterogeneous genotypes 0, 1, or 2 results in a 
heterozygous pool with genotype 1.

Fig. 2  Markers data sets used for the study population in the pooling and classical imputation scenarios. 
a LD and HD markers data sets from intersecting Illumina bead-chips x 1KGP chromosome 20. b Missing 
genotypes repartition and values in a classical imputation scenario (1.), and in an imputation scenario from 
pooled data (2.) where the genotypes probabilities θG are estimated from the configurations of the pooling 
blocks
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In the second step, decoding the individual genotypes from their intersecting pools is 
done while assuming there was no genotyping error. In our design, every sample is at the 
intersection of two pools. If both pools have genotype 0 (or 2), the sample has genotype 
0 (or 2). Also, since a pool has a homozygous genotype if and only if all contributing 
samples have the homozygous genotype, this implies that any individual at the intersec-
tion of a homozygous pool and a heterozygous one must be homozygous. In the case of a 
pooling block with exactly one carrier of the alternate allele (Fig. 3a), if exactly two pools 
have a heterozygous genotype 1 (pools P3 and P5 in Fig. 3a), we deduce the individual at 

(a) (b)

(c) (d)

Fig. 3  Examples of genotype pooling simulation at the block level. a Configuration with 1 sample 
carrying the minor allele. This carrier is identified after pooling, but not if it has a heterozygous (1) or a 
minor homozygous (2) genotype. b Configuration with 2 samples carrying the minor allele. At least 2 
of the 4 samples highlighted in grey are minor allele carriers, but the genotypes of these 4 samples are 
indeterminate. The first step is encoding and pooling. Encoding assigns every sample to a pool and defines 
its pool coordinates. For instance in a, the sample at the top-left corner of the matrix has coordinates (1, 5). 
Pooling computes the genotype of a pool as if its would tested on a SNP-chip. Pool 5 (P5, most left) has 
genotype 1: both alleles 0 and 1 are detected among the samples. Pool 1 has genotype 0 because only the 
allele 0 is detected. The decoding step infers the pooled genotype of each sample from the genotypes of 
its coordinates. The genotype can be −1 i.e. indeterminate when both coordinates have genotype 1, or fully 
determined else. In subfigure 3a, the sample with coordinates (3, 5) carries the alternate allele, but there can 
be 1 or 2 copies of it. ψ is the observed pooling pattern that results from grouped genotyping, given as the 
number of row- and column-pools having the genotypes (0, 1, 2). In the example 3a, there are 3 row-pools 
having genotype 0, 1 row-pool having genotype 1 and 0 having genotype 2, likewise for the column-pools. 
c and d Simulation example of genotype pooling and imputation outcomes for markers from the 1KGP data 
(chromosome 20). The genotypes are represented as unphased GT. From top to bottom: true genotype data, 
pooled genotypes, imputed genotypes. c SNP 20:264365, MAF = 0.4625 . d SNP 20:62915126, MAF = 0.00625
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their intersection has the alternate (or reference) allele, but we cannot state if two copies 
of this allele are carried (genotype 2, or 0 in the symmetrical case where the reference 
allele is the minor one) or only one (genotype 1). In this case, ambiguity arises at decod-
ing, in other words, genotype data is reported as missing. To fully assess the probable 
state of the genotypes of each sample in a pooling block, not only the pools where a sam-
ple is included have to be considered but also the full block. We propose to make use of 
the constraints imposed by the outcome for each pool to estimate the genotype distribu-
tion for any undecoded sample. This includes the distribution between heterozygote and 
homozygote for decoded carriers.

Figure 3c, d show some results we obtain after simulating pooling and imputation at 
two markers for 4 × 16 = 64 samples in the study population: Fig. 3c is an example for a 
common variant and Fig. 3d illustrates the case of a rarer variant. In practice, genotyping 
pools of samples on microarrays requires computational processing of the decoding step 
only.

Estimation of the genotype probabilities from combinatorial information

At the block level, the pooling scheme implies possible and impossible latent genotypes 
for a given sample. For example, a decoded block comprising twelve REF-homozygous 
and four missing genotypes as in Fig. 3b imposes the constraint at least two out of the 
four samples are minor allele carriers (i.e. genotype in {1, 2} ), whereas the other miss-
ing samples can have any genotype in {0, 1, 2} . Consequently, within these four unknown 
sample states, the probability of encountering actual homozygous-REF is lower than in a 
case where the missingness pattern of genotypes is independent of the actual genotype 
value, as is typically the case in imputation from low to higher density. By proceeding 
in a similar way for any observable pooling block, we propose to explicitly model the 
expected distribution of each incompletely decoded genotype.

Genotype representations

In this paper, beyond the G representation introduced previously, we use the genotype 
probabilities (GP) format, which expresses any genotype as a probability simplex over 
the three zygosity categories. G and GP are equivalent representations, for example if 
all genotype states are uniformly equally likely to be observed, this results in a genotype 
probability GP = (0.33, 0.33, 0.33) (i.e. G = −1 ). A determined genotype has one of the 
following probabilities: GP = (0, 0, 1) , (0, 1, 0), or (1, 0, 0) (i.e. G = 2 , G = 1 , or G = 0).

Statistical formulation of the genotype decoding problem

We introduce hereafter the notations and definitions which frame the pooling procedure 
as a statistical inference problem in missing data. In this framework, we later present an 
algorithm for estimating the most likely genotype at any missing entry conditioned on 
the configuration of the pooling block. Our strategy proceeds by enumerating genotype 
combinations for the missing data that are consistent with the data observed from the 
pooling blocks, and uses that enumeration to compute an estimate of the latent geno-
type frequencies.

Model distribution for the genotypes Let the genotype G be a random variable with 
three outcomes 0, 1, and 2. The genotype probabilities π are expressed as
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where (p0, p1, p2) are the probabilities for the genotype 0, 1, and 2 at a given variant for 
a given sample. Therefore, we model the complete (not pooled) genotype data within a 
pooling block as an array x of size 16× 3 ( nB = 16 ) where each data point xi is a prob-
ability simplex [p0i, p1i, p2i] . Each probability simplex is an indicator vector, since the 
genotype is fully known.

Since the samples are randomly assigned to pooling blocks, the genotype probabilities xi 
are independent from each other.

Furthermore, we denote z the prior probabilities for genotypes that follow pooling and 
pool decoding. z is another list of probabilities, where some genotypes are fully decoded, 
some are fully unrecoverable, and some indicate carrier status, without being able to 
distinguish between a heterozygous genotype or a homozygous one as on Fig. 3a. The 
pooled genotypes are represented by

The data zi for each cell of a pooling block is modelled with the simplex of genotype 
probabilities (p̃0i, p̃1i, p̃2i).

Mapping of the data space We denote layout the data for the full genotypes x , which is 
represented as a list of genotype probabilities for each individual in the block. We denote 
t the function transforming x into z . Since there are several complete layouts x that could 
give the same result z after pooling, t is a many-to-one mapping

where X  is the space of complete observations, and Z is the space of decoded pooling 
blocks.

Given the priors zi for any sample, the problem to solve is to estimate a posterior prob-
ability distribution π̂i = (p̂0i, p̂1i, p̂2i) for the three genotypes {0, 1, 2} in any individual, 
i.e. recovering a probability distribution from which the true genotype xi can be said to 
be sampled, as a probabilistic inversion of t.

Inherently to the NORB design chosen, the assortment of observable z is finite and 
constrained. Moreover, any individual genotype zi depends on the genotypes of the 

(1)π = (p0, p1, p2)

(2)x = (x1, x2, . . . , x16)

(3)∀i ∈ [1, 16] xi =





p0i
p1i
p2i





(4)z = (z1, z2, . . . , z16),

(5)∀i ∈ [1, 16] zi =





p̃0i
p̃1i
p̃2i





(6)
t : X −→ Z

(7)
x  −→ z
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pools intersecting it, but also on all other pools in the block. Therefore, any sample zi in 
the full set of probabilities z representing the pooling block can be parametrized by the 
pool configuration and the possible intersections.

Valid layouts in block patterns Let ψ be the pooling block pattern described as 
ψ = (nGrows , nGcolumns

) , where nGrows (resp. nGcolumns
 ) are the counts of row-pools (resp. col-

umn-pools) with encoded genotypes (0, 1, 2). For example, on Fig. 3a, the 8 pools can 
be described with the block pattern ψ = ((3, 1, 0), (3, 1, 0)) since there are 3 row-pools 
having genotype 0, 1 having genotype 1, none having genotype 2, and the same for the 
column-pools. On Fig. 3b, the pooling pattern is ψ = ((2, 2, 0), (2, 2, 0)).

We denote Zψ the space of decoded pooling blocks showing the pattern ψ , and corre-
spondingly Xψ the space of the set of valid layouts for ψ . A layout is said to be valid with 
respect to the pattern ψ if applying pooling simulation to x lets us observe ψ from z . In 
other words, the valid layouts are

The Additional file 1 shows examples of valid and invalid layouts for the same observed 
pooling pattern.

Parametrizing the data mapping Let (r, c) ∈ {0, 1, 2}2 be the genotype pair of two inter-
secting pools, such that any zi is conditioned on (r, c) . We note that if (r, c) = (1, 1) , the 
decoding of the intersected individual genotype zi is indeterminate. In other cases, the 
intersected genotype is fully recoverable as with (0, 1) (resulting in zi = [1, 0, 0]⊤ ). The 
pair (r, c) = (0, 2) is not consistent with any genotype, therefore it is never observed.

Based on these notations, we seek to approximate the most likely genotype probabili-
ties {π̂i} in missing data that are consistent with xi by using inversion sampling of the 
priors zi with respect to tψ . That is to say,

Computing the estimate of the posterior for the missing outcomes as π̂ := π̂i in a pool-
ing block with pattern ψ by inverse transform sampling is a numerical problem that can 
be solved as a maximum likelihood estimation (MLE) based on the enumeration of all 
valid layouts.

Maximum likelihood type II estimates

We propose to partition Z into {Zψ }ψ∈� . This enables to marginalize the likelihood over 
ψ , r, c and lets the problem be solved as a series of separate probability simplex MLE 
problems in each sample subspace Zψ . The marginal likelihood is sometimes found as 
type II-likelihood (ML-II) and its maximization (MMLE) as empirical Bayes method. 
We present as supplementary information a method for computing π̂ by maximiz-
ing the marginal likelihood of any observed pattern ψ and deriving genotype posterior 
probabilities estimates (see Additional file 1). The MMLE example is also well-suited for 
introducing how we conduct a systematic and comprehensive enumeration of the valid 
layouts for a given pattern ψ.

(8)Xψ =
{

tψ(x) ∈ Zψ : x
}

.

(9)Pr(xi|ψ; r, c) = t−1
ψ

(

Pr(zi|ψ; r, c)
)

.



Page 13 of 25Clouard et al. BMC Bioinformatics          (2022) 23:421 	

Self‑consistent estimations

Motivation and general mechanism As a natural extension to the MMLE in presence of 
incomplete data [48], we implemented a method for estimating the unknown genotypes 
probabilities inspired by the EM algorithm. The following procedure is applied for each 
set of parameters ψ , r, c.

We initiate the prior estimate of any entry in the block to zi = [0.25, 0.5, 0.25]⊤ . This 
choice is based on the assumption that, without information about their frequencies, 
both alleles at a marker are expected to be equally likely carried.

The algorithm iteratively updates π̃ := z̃i by alternating between computing the likeli-
hood of the valid layouts using the prior estimate (E step) and deriving the posterior esti-
mate from the frequencies of the genotypes aggregated across the data completions (M 
step). The M step can incorporate a rescaling operation of the proportions of genotypes 
that we designate as heterozygotes degeneracy resampling. Eventually, the E and M steps 
produce a self-consistent estimate π̂ [49] (see Additional file 1 for a calculation example).

Heterozygote degeneracy arises from the internal representation we use for the gen-
otypes under the pooling process. Indeed, the two heterozygous states carrying the 
phased alleles pairs (0,  1) or (1,  0) are collapsed into a single heterozygous genotype 
GP = (0, 1, 0) (or equivalently G = 1 ). In a way analogous to for example the particles 
paths in particles filter models, we define this collapsing as heterozygous degeneracy. 
For instance, a layout involving 4 heterozygous genotypes should be subdivided into 24 
micro layouts combining alleles pairs (0, 1) and (1, 0). More generally, the heterozygous 
degeneracy has order 2n1 , where n1 is the number of items having genotype 1 in the lay-
out. In practice, enumerating these micro layouts would increase the computation time a 
lot. Instead, we include the higher probability for heterozygotes internally in the model, 
taking the degeneracy into account when normalizing, and again when producing the 
final likelihoods to be used in the imputation process, where a uniform distribution is 
the expected structure for data without any informative prior.

Equations of the optimization problem We proceed in a way identical to MMLE for 
enumerating all possible completions for the nm unknown genotypes. At each itera-
tion m, The E step calculates first the marginal likelihood of every layout by sampling its 
genotypes from π̃ (m−1)|ψ . The mixing proportion E[x|z, π̃ ,ψ](m) of each layout is com-
puted from all aggregated likelihoods and for any z ∈ Zψ . A breakdown of the formula 
for E[x|z, π̃ ,ψ](m) is provided in the Additional file 1.

The M step recomputes the genotype frequencies (p̃0, p̃1, p̃2) by applying MLE to the 
likelihoods calculated at the E step.

where nk is the counts of genotype k observed in the layout x.
Since we do not compute the distribution of the genotype frequencies from the allelic 

dosage, we suggest a resampling step after the M step that artificially accounts for the het-
erozygous degeneracy. Hence, we introduce arbitrary weights w = (w0,w1,w2) = (1, 2, 1) 

(10)p̃k
(m) =

∑

x⊂X

nk E[x|z, π̃ ,ψ](m)

∑

k

∑

x⊂X

nk E[x|z; π̃ ,ψ](m)
,

(11)k ∈ {0, 1, 2}
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for rescaling (p̃0, p̃1, p̃2) . If we do not account for the heterozygote degeneracy, we pick 
these weights as w = (1, 1, 1).

At the last iteration, when the algorithm has converged, the final estimate of π̃ is com-
puted from a modified version of rescaling, where we compensate for the artificial 
upscaling used in the previous steps

Such self-consistent iterative methods provide local distribution estimates for the unde-
coded genotypes at the pooling block level, based on information from the pooling 
design. They are independent of the overall MAF in the population because of the choice 
we made for the prior, and do not take into account the genetic variations specific to the 
population and its structural traits.

Imputation for retrieving missing genotypes

For each sample in the study population, we use the aforementioned estimated genotype 
probabilities π̃ |ψ , r, c as prior beliefs θG in imputation. Figure 2 summarizes the experi-
mental settings for both this scenario and the classical one. We compare the imputation 
performance on pooled SNP genotype data of two population-based algorithms, repre-
senting each the haplotype clustering approach and the coalescence principle.

A haplotype clustering method: Beagle

In this work, Beagle is used in its 4.0 version and with the recommended default param-
eters. This software version is the best performing release having the features needed for 
this study. Beagle 5.0 is available but this version does not support logged-GP (GL) data 
type as input.

We use the HapMap GRCh37 genetic map suggested by Beagle developers and con-
sistent with the genome assembly underlying the version of the 1KGP data used [38]. In 
practice though, we have not noticed clear deterioration when conducting imputation 
on pooled data without providing any genetic map.

(12)p̃
(m)′
k =

wk p̃
(m)

k

p̃
(m−1)

k

, k ∈ {0, 1, 2}

(13)p̃
(m)′′
k =

p̃
(m)′
k

∑

k

p̃
(m)′
k

(14)π̃ (m) = (p̃
(m)′′
0

, p̃
(m)′′
1

, p̃
(m)′′
2

).

(15)p̂k
(m)

|ψ =
(1/wk) p̃

(m)

k
∑

k

(1/wk) p̃
(m)

k

, k ∈ {0, 1, 2}

(16)π̂ |ψ = (p̂0
(m)

, p̂1
(m)

, p̂2
(m)

)
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For the classical imputation scenario, we beforehand verify equivalent results and 
performance are obtained both if Beagle is run on genotypes in a GT format or GL 
format. In the first case, unassayed HD markers were set to ./. and in the latter, to 
(−0.481,−0.481,−0.481) . As advised in the documentation, we imputed the entire STU 
population in the same batch.

In the pooling scenario, we used the same reference panel, but we deliberately chose 
to run Beagle sample-wise for avoiding the very specific genetic structure of pooled data 
being used as template haplotypes. Preliminary testing showed a clear deterioration in 
results if this was not done.

A coalescence‑based method for haplotype phasing and imputation: prophaser

The original version of MACH did not support GL as input study data, in contrast to 
IMPUTE2. The main motivation for writing the Prophaser [36] code was to implement 
this feature with full control of e.g. cutoff thresholds for close-to-zero probabilities. The 
reference panel is read from GT data.

Prophaser phases and imputes unassayed markers sample-wise and independently 
from the rest of STU. Whereas MACH and IMPUTE2 include strategies for selecting a 
subset of reference samples for computational efficiency reasons, we decided to consist-
ently use the full reference panel as templates in a single iteration estimation. Hence, 
Prophaser uses all reference haplotypes as templates.

Evaluation of the experimental design

We quantified the performance of the two genotyping scenarios with the concordance 
rate and cross-entropy. In both cases, the original data from 1KGP in the study popula-
tion were used as the ground truth, and the predicted data were the imputed genotypes 
in the same study population.

Concordance The most widely used imputation quality metric is the genotype concord-
ance measure which counts the number of matches between the true and the best-guess 
imputed genotypes. A homozygous genotype imputed as heterozygote (or conversely) is 
counted as a half mismatch, and a homozygote imputed to its opposite homozygote as a 
full mismatch. Concordance sometimes appears as its complementary formulation with 
the discordance rate [3]. Several publications refer to the concordance rate directly as 
the genotype accuracy rate [39] or as imputation accuracy [32], whilst the discordance 
rate is designated as the imputation error rate [33, 38].

Cross-entropy In the studies presenting the successive Beagle software versions, the 
accuracy in the sense of the concordance does not quantify how similar the imputed 
genotypes are to the true ones. This has already been pointed out by e.g. Nothnagel et al. 
[27]. As an example, we can consider the two following cases: (a) a true genotype G = 1 
being imputed with GP = (0.56, 0.42, 0.02) , and (b) a genotype G = 1 being imputed 
with GP = (0.7, 0.28, 0.02) . Using the best-guess genotype definition, both genotypes 
will be imputed as G = 0 and hence a discordance of one point, but the prediction (a) 
is “weaker” since it has a lower best-guess likelihood ( 0.56 < 0.7 ). In that sense, the 
prediction (a) should be considered as less significant than the (b) one even if both are 
wrong. Therefore, we introduce the cross-entropy metrics χ as a divergence measure of 
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the predicted genotype distribution. The cross-entropy we propose is defined as in equa-
tion 17 at the j-th marker for N individuals imputed.

where Lijg is the genotype likelihood (or posterior imputed genotype probability) for the 
genotype state g at the j-th marker for the i-th individual. For low-probability genotypes, 
we used a cut-off of log(10−5) if the genotype probability was less than 10−5.

Computational tools

Due to their computational costs, imputation algorithms were run on compute servers. 
The computing resources were provided by SNIC through Uppsala Multidisciplinary 
Center for Advanced Computational Science. This infrastructure provides nodes (com-
pute servers) of two 10-core Xeon E5-2630 V4 or two 8-core Xeon E5-2660 processors 
running at 2.2 GHz, with 128 to 512 GB memory.

Results
Genotype distribution before imputation

The LD and HD marker sets built for the experiment both contain SNPs in the whole 
allelic frequency range but the markers are unevenly distributed over this range. Table 1 
provides further details about the uneven distribution. We aim to analyze the uncom-
mon variants at a finer scale and visualize their joint response to pooling and imputation. 
Therefore, the bins chosen are tighter towards the least MAF values and the boundaries 
set to [0.0, 0.02, 0.04, 0.06, 0.1, 0.2, 0.4, 0.5] for the intervals.

The most rare variants (MAF < 2%) represent a substantial share of the studied SNPs 
with 520 markers in the LD dataset and 12,775 in the HD dataset. One should note that 
even denser chips, or the full marker set of called SNPs in the 1KGP dataset, are even 
more extreme in this regard.

Table 2 shows the proportion of assayed and determined genotypes before imputation 
in the LDHD scenario and in the pooled HD scenario.

Already at the preimputation stage, the pooling mechanism proves to be particu-
larly efficient for capturing the most rare variants ( MAF < 2% ) with 98.1% deter-
mined genotypes before imputation. In the LDHD scenario, only 0.41% of the 

(17)
χj =

N
∑

i=1

(

−
2
∑

g=0

Pr(Gij = g) log(Lijg )

)

N

Table 1  Markers counts and proportions on the LD and the HD maps per MAF bin

The counts are given in the two first rows of the table, the proportions in the two last ones. The proportions are given 
relatively to the total number of SNPs on the HD map. The HD map is on the whole 3 times denser than the LD map but 
the density is not uniformly increased over the MAF bins. Almost 25% of the markers on the HD map are very rare variants 
( MAF < 0.02 ), that is 25 times denser than on the LD map where they represent less than 1% of the markers

MAF 0.00–0.02 0.02–0.04 0.04–0.06 0.06–0.10 0.10–0.20 0.20–0.40 0.40–0.50 Total

LD map (counts) 520 779 673 1537 3969 6561 2976 17015

HD map 
(counts)

12775 5235 2823 4766 9009 12613 5476 52697

LD map (%) 0.987 1.478 1.277 2.917 7.532 12.450 5.647 32.288

HD map (%) 24.242 9.934 5.357 9.044 17.096 23.935 10.392 100
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genotypes are assayed in the most rare variants before imputation. In total, there are 
67.7% unassayed genotypes before imputation in the LDHD scenario and 44% in the 
pooled HD scenario. The proportions of known genotypes however varies depending 
on the MAF.

Whilst the proportion of known genotypes seems to augment as the MAF increases 
in the LDHD scenario, a negative correlation between the known data rate and the 
MAF is noticed in the pooling case. Indeed, the proportion of fully decoded geno-
types is less than 10% for MAF exceeding 30%. Such markers are common variants. 
Since both alleles have roughly the same frequency in the population, heterozygotes 
and mixed genotypes within pools will be far more common as on Fig.  3b, or with 
even more carriers of the minor allele in the block. To summarize, there is a signifi-
cant correlation between true genotypes and the probability of the genotype being 
decoded, and that correlation is further dependent on the MAF of the marker. The 
proportions of known genotypes before imputation per MAF-bin in the LDHD sce-
nario is actually fixed by the choice made for the LD map. In other words, chang-
ing the LD map will modify the distribution of known markers. In the pooled HD 

Table 2  Exact genotypes in markers per data MAF bin

The number of markers is given as the average over all samples in the study population per bin. The proportion of markers 
is given relatively to the number of markers per bin. To the difference of concordance, only full matches with the true 
genotype are counted, not half-matches. For the LD + HD scenario, the number of exact genotypes before imputation 
is equal to the number of variants on the LD map. For the pooled HD scenario, the number of exact genotypes before 
imputation is equal to the average number of genotypes that are fully determined after pooling simulation. Simulating 
pooling followed by imputation with Prophaser yields a gain in accuracy for the very rare variants ( MAF < 0.02 ) which are 
almost all exactly genotyped. This gain is not negligible given the low occurence of these variations

The best accuracy scores achieved by Prophaser are marked in bold

MAF 0.00–0.02 0.02–0.04 0.04–0.06 0.06–0.10 0.10–0.20 0.20–0.40 0.40–0.50

Scenario: LD + HD

Number before imputa-
tion

520.000 779.000 673.000 1537.000 3969.000 6561.000 2976.000

Number after imputation

Beagle 12699.362 5167.613 2776.687 4673.658 8804.892 12301.371 5337.921

Prophaser 12727.142 5193.438 2793.221 4705.346 8870.104 12396.258 5379.408

Proportion before impu-
tation

0.041 0.149 0.238 0.322 0.441 0.520 0.543

Proportion after imputation

Beagle 0.994 0.987 0.984 0.981 0.977 0.975 0.975

Prophaser 0.996 0.992 0.989 0.987 0.985 0.983 0.982

Scenario: pooled HD

Number before imputa-
tion

12534.608 4826.542 2396.671 3481.896 4249.592 1853.529 159.575

Number after imputation

Beagle 12565.650 4892.246 2478.292 3778.296 5637.525 5407.479 1941.162

Prophaser 12755.854 5184.621 2758.079 4532.467 7964.742 9858.467 4012.725

Proportion before impu-
tation

0.981 0.922 0.849 0.731 0.472 0.147 0.029

Proportion after imputation

Beagle 0.984 0.935 0.878 0.793 0.626 0.429 0.354

Prophaser 0.999 0.990 0.977 0.951 0.884 0.782 0.733
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scenario, the proportions mostly depend on the MAF of every marker and the HD 
map chosen has a limited impact on the distributions of known markers per MAF-bin.

The distribution of heterozygous and homozygous genotypes obtained in each MAF-
bin from both data deletion (LDHD scenario) and pooling simulation (pooled HD sce-
nario) are presented on Fig. 4. To the difference of the LDHD data set, the pooled HD 
one let some markers being half-genotyped in that sense one out of the two alleles can 
be determined before imputation. For example in the markers having a MAF less than 
2%, in addition to the large share of exactly determined genotypes ( GT = M/M ), most 
of the indeterminate genotypes are yet half-known ( GT = ./m ). The pooling process 
never fully decodes the true heterozygous genotypes, hence the proportion of unassayed 
genotypes will be large in common markers. Only the homozygous genotypes can be 
determined from pooling with our design. For the LDHD scenario, the heterozygous 
genotypes that are naturally present in the study population at the markers on the LD 

(a) Decoded and missing genotypes in LDHD data

(b) Decoded and missing genotypes in pooled HD data

Fig. 4  Decoded and missing genotypes in data for both imputation scenarios.The minor and major alleles 
are denoted m and M. For simplicity, the simulated decoded genotypes from pooling are represented in 
GT format. We remind adaptive GL are provided later in the experiment for running imputation on data 
informed with the pooling outcomes. Half-decoded (GT = M/. or ./m) and not decoded (GT = ./.) genotypes 
are considered as missing data. The relative genotypes proportions are scaled in [0, 1] within each bin. a The 
markers only in the LD data set are fully assayed, all other markers have been deleted. b True heterozygous 
genotypes (dark blue) are never fully decoded, whereas the rare variants are almost all fully decoded or at 
least one of the two alleles is determined
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map are observed in the preimputation data set. These observations highlight the very 
different compositions of the LDHD and the pooled HD data sets before imputation. On 
the whole, the distribution of the observed and assayed genotypes in the population is 
unevenly affected by pooling and depends on the MAF.

Table 3  Proportion of exact genotypes after imputation for indeterminate data in the pooled HD 
scenario per data MAF bin

This table focuses on the genotypes that are indeterminate after the pooling simulation. The proportion is calculated 
for these markers only and relatively to the number of markers in the bin. For the very rare variants ( MAF < 0.02 ), the 
indeterminate genotypes are the rare allele carriers. Phaser succeeds in imputing exactly most of them from the provided 
prior genotype probabilities estimates

The best accuracy scores achieved by Prophaser are marked in bold

MAF 0.00–0.02 0.02–0.04 0.04–0.06 0.06–0.10 0.10–0.20 0.20–0.40 0.40–0.50

Pro-
phaser

0.932700 0.886214 0.849634 0.820339 0.783430 0.745528 0.724745

Beagle 0.124773 0.156686 0.187206 0.227121 0.287044 0.329487 0.334919

(a) Concordance: LDHD data (b) Concordance: pooled HD data

(c) Cross-entropy: LDHD data (d) Cross-entropy: pooled HD data

Fig. 5  Genotypes imputation accuracy in a classical and a pooled scenario. a and b concordance (based on 
best-guess genotype) c and d cross-entropy (based on posterior genotypes probability) metrics. All markers 
from the HD map have been used for computing the metrics (52,697 markers). Beagle (labeled as “beagle”) 
performance is in blue, and Prophaser (labeled as “phaser”) in orange. The central line is the median and the 
shadowed areas delimit the percentiles 0.0, 0.01, 0.25, 0.75, 0.99, 1.0. The x-axis was built from 0.05-long MAF 
bins within which each marker concordance score was computed as the mean score of the 500 previous and 
500 next markers sorted per ascending MAF
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Genotyping accuracy after imputation

Table 2 also shows the proportion of genotypes that are imputed exactly to the true one. 
Table  3 provides a closer insight into the imputation performance of Beagle and Pro-
phaser in terms of exact matches for the genotypes at undecoded markers only in the 
pooled HD scenario.

Figure 5 presents the genotyping accuracy for imputed markers in both the LDHD and 
the pooled HD scenarios. The concordance and cross-entropy metrics are presented for 
comparison. Preliminary experiments (unpublished results) showed that the strategy 
of using pooling patterns-adapted GL values instead of uninformed ones improves the 
imputation accuracy.

In the LDHD scenario, Beagle shows as expected very good performance with an aver-
age concordance of 98.5% and low entropy (0.05). The performance is stable across the 
MAF range on average, though there is a larger variation in accuracy for more com-
mon variants. In the pooled HD scenario, while the overall proportion of missing data 
is lower, Beagle’s performance drops substantially (79.6% concordance on average and 
a cross-entropy score of 3.43). The wide envelope for the cross-entropy also indicates 
that the amplitude of prediction errors on the marker level varies widely in the pooled 
HD scenario. The haplotype-clustering model seems to struggle with the unusual genetic 
structure of pooled data.

Prophaser achieves higher accuracy than Beagle in the LDHD scenario, showing nearly 
99% average concordance and 0.04 cross-entropy score. As for Beagle, the concordance 
is stable but more spread for higher MAF (less accurate). In the pooled HD scenario, 
Prophaser clearly outperforms Beagle for imputing the undecoded genotypes by main-
taining an average concordance of 92.6% and a cross-entropy score of 0.31. The quan-
tile envelopes for both metrics demonstrate that Prophaser gives stable performance for 
most markers, while the results for Beagle show a much greater variation. It is naturally 
important not only that the average concordance or entropy is good, but that any single 
imputed marker of possible importance is trustworthy. Despite the weaker performance 
on the pooled HD data compared to the LDHD scenario, Prophaser proves the ability to 
use the uncertain decoded genotypes from pooling for successful imputation.

Table  2 gives a detailed view of the number and proportions per MAF bin of exact 
genotypes, both in the LDHD and in the pooled HD data sets, before and after imputa-
tion. It reveals the benefit that is obtained from gneotyping pooled samples for the vari-
ants having a MAF less than 2%. Prophaser indeed succeeds in raising the proportion of 
exactly matched genotypes after imputation by 0.3%. This gain is not negligible given the 
very low frequency of the variations in such markers.

Computational performance

For Beagle, the compute server (node) was two 10-core processors running at 2.2 GHz 
with 128 GB memory. For Prophaser the node resources were two 8-core processors run-
ning at 2.2 GHz, with 128 GB memory. Computation times per study sample were about 
7 min for Beagle respectively 6 h 40 min for Prophaser, and the memory requirements 
for each sample consumed about 2.2 GiB (resp. 35 GiB) of memory. In the classical sce-
nario, it is even possible to run Beagle on all study samples together in about 20 min 
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using ca. 12 GiB memory and to get the same accuracy results. Hence, accordingly to 
the results found in other studies, Beagle demonstrates an excellent computational effi-
ciency in imputing large data sets. Prophaser is on the contrary computationally very 
expensive, as mentioned to be a drawback in the literature with similar algorithms. How-
ever, we have not yet optimized the performance of our implementation.

Discussion
As we could expect, pooling enables efficient identification of carriers of rare vari-
ants within the population, but yields high missing data rates for more common vari-
ants. Several studies have indeed shown that the distribution of the undecoded items is 
hypergeometrical and correlated to the minor allele frequency [2, 11]. In the case of low-
MAF SNPs, the pools are mostly homogeneous and homozygous, or contain at most 
one rare variant carrier as on Fig. 3a. Blocks as on Fig. 3b are unlikely to be observed 
for these SNPs. Indeed, with respect to HWE in a random mating population, rare vari-
ant carriers would almost exclusively be heterozygotes. The pooling design used in this 
study guarantees a theoretical perfect decodability of the samples genotype if at most 
one sample in the block is carrying the minor allele ( d0 = 1 , calculated as in the DNA 
Sudoku [9]). The results presented in Table 2 comply with the theoretical limiting decod-
ing power. The upper bound for MAF with high certainty of decodability is calculated 
as δMAF = d0×G1

2×nB
= 1×1

2×16
≈ 3.1% . Our results for the pooled HD scenario show that 

the number of known markers before imputation drops when the MAF is larger than 
2%, and decreases even more when the MAF is greater then 4%. SNPs having a MAF 
below this boundary of 3.1% are expected to be nearly fully assayed in the study popu-
lation or decoded as rare variant carriers, such that pooling provides a useful comple-
mentary process to imputation for achieving accurate genotyping of rare variants that 
are usually more difficult to impute. Other pooling designs can be explored for increas-
ing the decoding power. With a given pooling design, hybrid procedures consisting of 
imputation from a fully a assayed LD set and a pooled HD set are further alternatives 
to consider. Similarly to the representation [22] suggested for evaluating the pooling 
design performance for clone-based haplotyping, we think that quantifying the geno-
typing effort in relation to the decoding rate and to the MAF as a performance ratio of 
pooled genotyping could be a future criterion for choosing a pooling design depend-
ing on the markers data set and its characteristics. Considering the very good perfor-
mance of imputation in a LDHD scenario and the complementary nature of a pooled 
scenario that excel at capturing the rare variants, one could also imagine a more sparse 
pooling scheme, such as a 5× 5 design, with a dense chip, augmented by full LD test-
ing of some or all individuals. This would give the imputation process a clear scaffold to 
start out from, together with very accurate information for carriers of rare variants. It 
also opens perspectives for genotyping on even denser chips targeting very rare variants 
( MAF < 0.02 ) without large increase in laboratory costs.

We have presented algorithms that locally adapt the genotype frequencies to every 
pooling block, but we believe further research could be conducted for improving the GL 
estimates. In our context, the resulting probabilities after decoding should be evaluated 
in terms of to what extent they improve the imputation results.
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Imputation on pooled data yielded notably different performance depending on the 
imputation method family used. The clustering model as implemented in Beagle seems 
to suffer from the pooled structure in the data. We think the clusters built collapse 
together haplotypes that are substantially different, but can have superficial similari-
ties after the decoding of pooled data. This fact also results in the decoded population 
looking systematically different from the reference population. We showed with the Pro-
phaser algorithm that the coalescence assumption supports an imputation model that 
delivers high accuracy in pooled genotype reconstruction, at a computational cost. This 
is consistent with other studies [29, 50] that have found the coalescent methods to be 
robust towards unknown genetic population structures. From the perspective of the 
method, the systematic bias introduced by the decoding is similar to unknown popu-
lation structure. By using all the reference haplotypes from the panel during imputa-
tion, Prophaser might overcome the pitfall of sensitivity to deviant genetic structure as 
mentioned in [3]. As a result, allele frequencies assessed in the study population are no 
longer consistent with the effective frequencies differences expressing genetic variation 
found in the reference panel. While the reason presented in that paper is chip quality, we 
face similar biased structural heterogeneity issues with pooled data.

This initial investigation of the performance of pooling and imputation as a combined 
way to recover genotypes is purely based on simulations, in the absence of genotyping 
errors. In quality control data from chip manufacturers, detection power for alleles can 
be found on a per-SNP level. Actual detection performance could be influenced by the 
amount of DNA contributed from various samples within a pool. Our intention is to 
continue to explore our approach on actual assays, in partnerships where cost-effective 
genotyping on a massive scale is a real concern.

It should be noted that our probabilistic decoding method could be modified to 
account for genotyping errors, and that it will be crucial to consider the overall effect 
of errors in decoding individual SNPs and how those errors in turn affect the ability of 
the imputation methods to properly reconstruct the haplotype mosaic, since it is the 
accuracy of that mosaic of reference haplotypes that in turn will influence imputation 
performance.

Conclusions
The findings of this study suggest that pooling can be jointly used with imputation meth-
ods for achieving accurate SNPs at high density while reducing the actual number of 
genotyping procedures done on microarrays. However, the atypical structure introduced 
by pooling in the genotype data requires specific attention and processing for ensuring 
the best imputation performance possible.

Overall, pooling impacts the allelic and genotypic distributions, and introduces a 
specific structure in the genetic data which does not reflect their natural distribution. 
We have described a statistical framework that formalizes pooling as a mathemati-
cal transformation of the genotype data, and we have proposed in this framework an 
algorithm for estimating the latent values of undecoded genotypes. Lastly, thanks to a 
simulation on real human data, we have shown that a coalescence-based imputation 
method performs well on pooled data, and that informing imputation with estimates of 
the latent missing genotypes improves the prediction accuracy. We also presented an 
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implementation (Prophaser) of this imputation method for pooled genotype data. Over-
all, this study provides a first prototype for the computational aspect of a SNP genotyp-
ing strategy at a reduced cost by halving the number of microarrays needed compared to 
a full sample-wise genotyping.
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