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A mixed literature implicates atypical connectivity involving attentional, reward and
task inhibition networks in ADHD. The neural mechanisms underlying the utility of
behavioral tasks in ADHD diagnosis are likewise underexplored. We hypothesized that
a machine-learning classifier may use task-based functional connectivity to compute a
joint probability function that identifies connectivity signatures that accurately predict
ADHD diagnosis and performance on a clinically-relevant behavioral task, providing
an explicit neural mechanism linking behavioral phenotype to diagnosis. We analyzed
archival MRI and behavioral data of 80 participants (64 male) who had completed the
go/no-go task from the longitudinal follow-up of the Multimodal Treatment Study of
ADHD (MTA 168) (mean age= 24 years). Cross-mutual information within a functionally-
defined mask measured functional connectivity for each task run. Multilayer feedforward
classifier models identified the subset of functional connections that predicted clinical
diagnosis (ADHD vs. Control) and split-half performance on the Iowa Gambling Task
(IGT). A sample of random models trained on functional connectivity profiles predicted
validation set clinical diagnosis and IGT performance with 0.91 accuracy and d′ > 2.9,
indicating very high sensitivity and specificity. We identified the most diagnostic
functional connections between visual and ventral attentional networks and the anterior
default mode network. Our results show that task-based functional connectivity is
a biomarker of ADHD. Our analytic framework provides a template approach that
explicitly ties behavioral assessment measures to both clinical diagnosis, and functional
connectivity. This may differentiate otherwise similar diagnoses, and promote more
efficacious intervention strategies.

Keywords: ADHD, functional networks, fMRI—functional magnetic resonance imaging, machine learning, Iowa
Gambling Task

INTRODUCTION

Attention-deficit hyperactivity disorder (ADHD) is the most commonly diagnosed psychological
disorder among school-aged children and across the lifespan (Bell, 2010). Moreover, a study of
children aged 8–16 years found that 70% of children with a clinical ADHD diagnosis also had
some form of learning disability, highlighting the cognitive developmental challenges that often
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accompany attention disorders (Mayes et al., 2000). A clinical
definition of ADHD is complicated by the prevailing view that
it spans a continuum (Graham and Madigan, 2016) and exists as
multiple subtypes (Garon et al., 2006). As of the fourth edition
of the Diagnostic and Statistical Manual of Mental Disorders
(DSM-IV), functional impairment became mandatory, however,
even though the impact of ADHD has been well-studied, its
fluid diagnostic criteria remain a challenge in research and
clinical settings (Fortes et al., 2020). Moreover, though ADHD
is diagnosable cognitive disorder in adults, the developmental
stability of the diagnosis is quite poor (Todd et al., 2008).

The present study addresses these challenges with an
exploration of brain-network and behavioral differences between
a group of young adults with a childhood diagnosis of
ADHD and an age-matched group of control participants.
We apply a machine learning approach to analyzing these
differences with the joint complementary goals of identifying
a clinically diagnostic neural connectivity signature of ADHD
and relating the underlying neural processing dynamics to
performance on a commonly used behavioral diagnostic task.
Furthermore, though connectivity is most commonly measured
using linear correlations among time series, our use of cross-
mutual information based measures of functional connectivity
highlights the important role that alternative indices of functional
connectivity can play in exploring brain-behavior correlations.
By identifying task-related functional connections that are both
diagnostic and predictive of clinically relevant task performance,
we identify neural pathways that may be implicated in different
ADHD subpopulations, and provide a means by which different
populations may be behaviorally identified. Together, these
results inform how multiple diagnostic tools may be integrated
to better distinguish diagnostic subtypes, and evaluate potential
interventions.

The Iowa Gambling Task as a Behavioral
Indicator of ADHD
The Iowa Gambling Task (IGT) is a computerized assessment that
presents individuals with realistic gambling decisions, and is used
experimentally to investigate normal and disordered decision
making and adapted for clinical use (Lin et al., 2019), including
for clinical diagnosis of ADHD (Toplak et al., 2010). The task
assigns the participant an initial imaginary monetary account,
and asks them to select cards from one of four decks, causing
a gain or loss from this account. Two of the decks are high-
variance, and two are low-variance, with respect to potential gains
or losses, introducing an element of risk (Bechara et al., 2005).

Evidence for behavioral ADHD-related differences in the
IGT among adults and children is mixed; some studies show
worse performance for ADHD participants, and others show
no difference from controls (Groen et al., 2013). The task
implicitness may be an important factor in its diagnostic accuracy
for children. The IGT is theoretically motivated by the Somatic
Marker Hypothesis (SMH) (Damasio, 1996), which maintains
that physiological changes in the body (somatic markers; e.g.,
sweating palms) are correlated with and interpreted as emotional
states. Somatic markers and their evoked emotions are associated

with events and decision outcomes, and shape behavior
(Damasio, 1994). The utility of the IGT in evaluating ADHD
rests on the observation that abnormal emotion processing is
associated with impaired decision-making (Bechara et al., 2005).
Roshani et al. (2020) found that both significant differences
in IGT score and in IGT decision making times discriminates
ADHD from controls, with adult ADHD participants less likely to
favor advantageous decks and making faster deck selections. This
pattern suggests that the task taps ADHD participants’ proneness
to making riskier and more impulsive choices related to abnormal
emotion processing in ventromedial prefrontal cortex (vmPFC)
(Bechara et al., 1994).

Neural Processing Dynamics as an
Indicator of ADHD
In contrast to behavioral results, ADHD and control populations
appear to show more reliable neural processing differences in
the IGT. Conventional general linear model analyses (GLMA)
test group or condition differences in regional blood oxygen
level dependent (BOLD) functional magnetic resonance imaging
(fMRI) signals, which are indicators of neural activity. Within
healthy controls, GLMA studies show the network of brain
regions that are recruited by the task appears to dynamically
change as the task progresses, and the task history changes
participant’s expectations (Lin et al., 2008). When comparing
ADHD to healthy controls, GLMA studies typically show
that ADHD participants significantly under-activate the left
and right precuneus, putamen and caudate when choosing
higher-reward decks as compared to controls (Norman et al.,
2018). These regions are implicated in the dopaminergic
reward system, suggesting that irregular processing within this
network may be a factor in the behavioral markers of ADHD.
A recent GLMA study by Yang et al. (2019) examined group
differences during the IGT in orbitofrontal cortex, a region
that is sometimes grouped with the larger vmPFC, and is
part of the putative reward network. This study found that
adults with ADHD exhibited both lower orbitofrontal cortex
activation and poorer performance on the IGT than healthy
controls. Thus, though the behavioral literature supporting
the clinical utility of the IGT in detecting ADHD is mixed,
the neuroimaging literature suggests that the task’s sensitivity
hinges on the recruitment of different networks in controls and
ADHD populations.

Neural Circuitry Implicated in Attention
Disorders
All networks are described in terms of nodes and the connections
between them, but they differ in composition across domains.
As appropriate graph-theoretic methods have been developed,
cognitive neuroscientists have increasingly employed fMRI to
undertake in vivo explorations of brain networks. In the
neuroscientific domain, nodes in brain-based models of cognitive
processes correspond to brain regions, and their connections
refer to functional, effective, or anatomical connectivity among
the brain regions, though we will primarily focus on functional
connectivity—defined as a temporal coherence between activity
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in two regions (Honey et al., 2009). The literature implicating
a role for networks in ADHD assumes that connectivity
(of any sort) among brain regions critically determines
how regional processing and interactions unfold in ADHD.
Consequently, connectivity among and within several identifiable
networks has been explored as a potential factor in ADHD
(Castellanos and Proal, 2012).

Because it is often characterized as a self-regulation disorder,
early investigations of ADHD focused on a dysfunctional frontal-
subcortical circuit (Voeller, 2004), which is widely regarded to
play a critical role in the regulation of attention and impulsivity
(Chow and Cummings, 1999; Bonelli and Cummings, 2007).
Additionally, activation in another frontal subnetwork implicated
in reward processing correlates with ADHD symptom severity
(Stark et al., 2011). This suggests that underactivity within
the dopaminergic reward system may also play a role in
ADHD symptomology.

Increasingly, ADHD has been viewed as a disorder of the
default mode network (DMN), as inhibition of the default
brain network is associated with poorer performance on many
attention-dependent tasks (Buckner et al., 2008). The DMN
is a task-negative (i.e., deactivated during task) network of
regions believed to comprise distinct but connected subsystems
(Buckner et al., 2008; Andrews-Hanna et al., 2010) that develop
into adulthood, becoming increasingly integrated with age (Fair
et al., 2008). Because the DMN can be explored using resting-
state MRI, a clinical advantage of this paradigm is that it
does not require patients to perform cognitively demanding
tasks (Bullmore, 2012), which may be especially challenging for
children with attentional deficits. That said, a review of studies
of functional connectivity as a biomarker of ADHD between
2008 and 2017 found widely variable diagnostic accuracies,
ranging from 0.55 to 0.95 (Du et al., 2018). Most of the
reviewed studies employed black box classifiers that were
applied with the goal of optimizing diagnostic accuracy, rather
than uncovering theoretical mechanisms underlying specific
functional connections.

Though the DMN is a task-negative network, task-positive
activity is associated with increased functional connectivity
relating the dorsolateral prefrontal cortex to the DMN (Buckner
et al., 2008). Effortful attention during tasks requires a switch
from the brain’s default mode to an active mode, and fMRI BOLD
analyses indicate a pattern of alternating low-frequency activity
between task-positive and task-negative activities (Fransson,
2005). Mind wandering is one of the prototypical characteristics
of ADHD, and is argued to be negatively associated with
activation of the ventral anterior cingulate cortex (ACC), the
precuneus, and the temporoparietal junction—all regions within
the DMN (Mason et al., 2007; Christoff et al., 2009). Because
DMN activity normally decreases during tasks, Konrad and
Eickhoff (2010) suggest that failure to inhibit DMN activity
may be a neural signature of ADHD. The authors, however,
note that the literature is inconsistent with respect to the
causal role of functional connectivity, with different models
characterizing ADHD as either hyperconnectivity (Tian et al.,
2006) or, conversely as hypoconnectivity (Castellanos and
Tannock, 2002) of the DMN.

Much of the work on functional connectivity focuses on
resting state MRI (rs-MRI), and therefore on connectivity within
the task-negative DMN. As observed by Castellanos and Aoki
(2016), one of the challenges of rs-MRI studies is that, in the
absence of a model task signal, statistical artifacts related to
head motion introduce a confounding source of variability in the
signal that is difficult to disentangle from signals of interest; the
problem is compounded by the increased proneness of ADHD
populations to excessive head movement. The authors argue
that these obstacles necessitate development of novel analytic
procedures on large open datasets. Moreover, Gonzalez-Castillo
and Bandettini (2018) argue that important differences exist
between resting-state and task-based functional connectivity, and
that the reconfiguration that brain networks undergo during
tasks inform the neural bases of cognitive processes. This point
is especially relevant to the study of ADHD, given the studies
cited earlier showing that the network recruitment under the
IGT is dynamically dependent on the progression of the task,
suggesting that network dynamics when inhibiting and exhibiting
behaviors are important for understanding how those with
ADHD perform the task.

The go/no-go task has been widely used in neuroimaging
studies of ADHD, because it is assumed to rely heavily
on the interaction between attention and response inhibition
(Simmonds et al., 2008; Hwang et al., 2019). It has been argued
more recently (Michelini et al., 2019) that atypical task-based
functional connectivity in individuals with childhood ADHD
may persist into adulthood. Taken together, these findings suggest
that a neural signature of ADHD may be found within task-
based functional connectivity from the go/no-go task, even from
young adults, advancing this approach as a potential detector
of biomarkers that may address the poor stability of ADHD
diagnosis (Guo et al., 2020).

The Present Study: Identification of a
Persistent Task-Based FC Signature of
ADHD
The present builds upon previous neuroimaging studies
exploring task-dependent connectivity from the go/no-go task
to investigate the persistent connectomic signature of childhood
ADHD in young adults. We use a series of multilayer feedforward
classifier models to predict clinical diagnosis and performance on
the IGT and the architecture of these models permit classification
of embedded groups, and consequently accommodate otherwise
inconsistent relationships. For example functional connection
X might be diagnostic of ADHD if Y and Z are also strong,
but not diagnostic otherwise. We will show that task-based
functional connectivity reliably predicts ADHD diagnosis and
IGT performance, and that a small number of the most diagnostic
connections permitted nearly equivalent accuracy. Moreover, we
will show that the machine learning classifiers can be constrained
to take advantage of joint probability distributions to identify
the functional connections that predict both ADHD diagnosis
and IGT performance, establishing the neural bases for the
diagnosticity of the IGT and a potential means of identifying
ADHD subtypes on the basis of behavioral test performance.
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MATERIALS AND METHODS

Archival Data Set and Participants
We analyzed archival MRI and behavioral data from the
longitudinal follow-up of the NIMH-sponsored Multimodal
Treatment Study of ADHD (MTA 168). The MTA was a multisite
study designed to evaluate ADHD treatment strategies, and
included nearly 600 children, ages 7–9, who were randomly
assigned to one of four treatment modes: medication, behavioral,
combination medication and behavioral, or routine community
care. Parents heard about the study through health care providers,
teachers or advertisements, and contacted the investigators who
interviewed the children and parents to determine eligibility.
Our dataset included the 80 adult participants (64 male)
from the MTA 168 study who had completed the go/no-go
fMRI task. Of these, 55 had received an ADHD diagnosis
during childhood, and the remainder were age-matched controls.
The mean age of the participant subset at scan time was
23.97 years (SD = 1.29). The MTA 168 study procedures for
diagnosis, treatment specifics, and sample demographics have
been described elsewhere (MTA Cooperative Group, 1999), and
we used the diagnostic and behavioral metadata provided with
the data set for model training.

MTA Design and Procedure
The archival Go/No-Go fMRI task data were generated from the
study described in Rasmussen et al. (2016), and the reader should
refer to the original study for further details. Briefly, the Go/No-
Go task used a randomized jittered event-related design, and
required participants to respond via button press when presented
with a target image, but withhold response when presented with
a non-target image. Echo planar functional images were acquired
over 154 volumes using the following acquisition parameters:
TR (repetition time; the period required for 1 complete volume
acquisition) = 2,000 ms; TE (echo time; the period between
an RF pulse and its gradient echo) = 30 ms; 32 axial slices;
voxel size = 3.4 × 3.4 × 4.0 mm, Slice Gap = 1 mm. T1-
weighted images were acquired using the following parameters:
TR = 2170 ms; TE = 5.56 ms; 160 sagittal slices; voxel
size = 1 × 1 × 1.2 mm. The MTA 168 study used the IGT
procedure described in Bechara et al. (1994). For the MTA 168
study, IGT score was calculated by subtracting disadvantageous
card choices from the advantageous card choices.

Functional Data Processing
We applied here the data processing pipeline used in a
recent application of a multilayer machine learning classifier to
functional connectivity and coarse-scale cortical pattern analysis
(McNorgan et al., 2020). Functional images were co-registered
with the 3D anatomical surface generated by FreeSurfer (Version
6.0) for each participant and mapped onto a common structural
template for group analysis using isomorphic 2 mm voxels.
Functional data were preprocessed using FS-FAST interoperating
with FSL (Version 5.0) to apply motion-correction, slice-time
correction and spatial smoothing using a 4 mm Gaussian
kernel. Temporal signal filtering of functional data was applied

only through regression of linear trends, white matter and
CSF signal, and motion parameters, however, frequency-based
filtering was not applied. Functional data were mapped to
FreeSurfer’s template surface space for cortical regions, and then
to the MNI305 3D template space for subcortical regions.

General Linear Model Analysis and
Functional Region of Interest Generation
A general linear model analysis (GLMA) was performed in
FreeSurfer’s template surface space and the MNI305 3D space
at the participant level using an event-related design with
the go and no-go trials included as conditions of interest
(“task”) and participant motion parameters as regressors of
non-interest, modeled using the SPM canonical hemodynamic
response function to generate a contrast map for all task
activity vs. an implicit rest baseline. This produced a functionally
defined mask of cortical and subcortical regions with high
signal-to-noise ratio, and we note that it included regions
that were activated and deactivated relative to rest. Group-
level contrasts were thresholded with a voxel-wise significance
level of p = 0.001 and a Monte Carlo permutation simulation
applied a cluster-size corrected significance level of p = 0.05.
These whole-brain significance thresholds are commonly applied
to GLMA contrasts for identifying regions showing group- or
condition-differences, including previous studies of ADHD using
the IGT and the go/no-go task (e.g., Suskauer et al., 2008;
Yang et al., 2019).

Large cortical patches are unlikely to be homogenously
organized, and so significant group-level clusters were mapped
to surface space, which the FreeSurfer mris_divide_parcellation
utility algorithmically subdivided into 302 (115 left, 144 right,
42 subcortical) regions of interest (ROI) of comparable size to
the Lausanne parcellation ROIs. The algorithm subdivides the
vertices within each ROI perpendicular to its longest axis so
that all subdivisions have roughly equal number of vertices and
cover up to a designated surface area (400 mm2 in our study).
This approach has been used in previous studies of functional
connectivity in surface space (Hagmann et al., 2008; Honey
et al., 2009; Hagmann et al., 2010; McNorgan and Joanisse, 2014;
McNorgan et al., 2020; Figure 1A).

Functional Connectivity and Pattern
Generation
Correlation-Based Initial Feature Selection
As indicated earlier, functional connectivity corresponds to
the temporal coherence between two brain regions, and is
typically computed using the Pearson correlation between
activation time series. Among n brain regions, we may compute
n(n−1)/2 pairwise correlations, and this exponential relationship
complicates the analysis and interpretation of functional
connectivity: Superfluous predictors among a large number of
functional connections may lead to models that overfit the
training data and fail to generalize (Hawkins, 2004; Castellanos
and Aoki, 2016), and it is challenging to summarize and construct
a theoretical synthesis of thousands of functional connections.
For these reasons, neuroimaging studies often restrict analyses
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FIGURE 1 | Functional data processing pipeline. Clusters showing significant task-related activation or deactivation relative to rest are sub-parcellated (A), and mean
BOLD time series for voxels in each region is computed (B). Extracted time series are detrended, normalized and outlier values are clipped (C). Pearson correlations
are computed between all-time series pairs for each functional run for each participant, and region pairs with significantly correlated time series in at least 30% of all
correlation matrices were identified as connections of interest (D). Cross-mutual information (XMI) was calculated between the time series for each pair of regions in
a connection of interest, to create a vector of XMI-based connectivity values for each functional run for each participant (E). These vectors were subsequently
tagged with clinical diagnosis and IGT performance classifications for the associated participants.

to a subset of ROIs, or as appropriate for a connectivity study,
a set of connections of interest (COIs). A common method
of identifying meaningful functional connections within an
adjacency matrix is to apply a statistical significance threshold
(e.g., Tomasi and Volkow, 2011; Zeng et al., 2014). As will
be explained shortly, cross-mutual information measures of
dependency have several features that recommend them for use
in exploration of functional connectivity. Unfortunately, in the
absence of a parametric significance test for these values, they do
not readily lend themselves to significance-based thresholding.
For this reason, we used conventional linear correlations as an
initial first pass filter in our feature selection.

Mean BOLD time series were computed across all voxels
in each ROI (Figure 1B). Pairwise Pearson correlations
between detrended and normalized regional time series vectors
(Figure 1C) were calculated between all ROIs for each of the 4
runs, eliminating the redundant bottom triangle of the symmetric
correlation matrix. The top 5% of the correlation values in at
least 30% of all correlation matrices was used as a selection
filter to ensure that the analyses included functional connections
between brain regions that were strongly correlated in some—
but not necessarily all—functional runs (Figure 1D). This
selection criterion did not guarantee that the selected functional
connections were strong across all individuals, or indeed, even

Frontiers in Physiology | www.frontiersin.org 5 December 2020 | Volume 11 | Article 583005

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-583005 December 11, 2020 Time: 21:1 # 6

McNorgan et al. Diagnosing ADHD Through Task-Based FC

among all functional runs for any single individual. This was
by design, because a selection including only uniformly strong
functional connections precludes group-related differences.
Rather, this approach ensured that functional connectivity
patterns varied from one another without introducing any
statistical bias into the patterns associated with any classification.
Moreover, because each selected functional connection was free
to vary among runs within each participant, this approach
prevented the classifiers from relying on idiosyncratic patterns
associated with specific individuals, promoting generalizability.

Pattern Generation From Cross-Mutual Information
Functional Connectivity
Though we used the selection filter to identify an initial set of
COIs, connection strength was estimated as the cross-mutual
information (XMI) (Abarbanel and Gollub, 1996) between ROI
time series vectors because mutual information is more sensitive
to the general dependency between two variables, which may or
may not be linear (Li, 1990), is more robust to non-stationary
processes commonly found in neural time series (Wollstadt
et al., 2014), and may be more sensitive to synchronization in
noisy systems (Paluš, 1997). Finally, mutual information values
are always positive, which prevents anticorrelated regions from
complicating the construction of input patterns.

The average cross mutual-information statistic is defined as

M =
Nc∑
k=1

Nr∑
l=1

P
(
k, l
)

log

[
P(k, l)

P
(
k
)
P(l)

]
(1)

Where P refers to probabilities greater than 0 on a 2-dimensional
probability density: P(k) depicts the probability of the first
variable, and P(l) the second variable. P(k, l) is the joint
probability within a particular bin or range of values on the
X and Y axes. Nc is the number of columns, representing
separate bins or values across which the histogram or density
function was computed for the X variable. Nr is the number
of rows, representing the separate bins or values over which
the histogram or density was computed for the Y variable. It
is typically normalized by log(Total Bins), its maximum value
for a given number of bins (i.e., Nc × Nr). While the mutual
information statistic is able to capture a linear dependence
between to variables, it also captures any general dependence
between them. For this project, M was computed from the output
of a two-dimensional Fast-Fourier Transform Gaussian-kernel
density function. Previous work (McNorgan and Joanisse, 2014)
found functional connectivity values to be normally distributed,
and so the number of bins used in the XMI calculation was
determined by Scott’s formula (Scott, 1979):

Total Bins =
maxX −minX
3.5 · sX · n−1/3 (2)

where sX is the standard deviation of X and n is the
number of values.

The XMI values were written to a connectivity vector
(Figure 1E) and tagged with the clinical diagnosis (ADHD
or Control) and median-split IGT score (high or low) for
that participant. The classifier training data thus contained 80

participants × 4 runs = 320 tagged connectivity vectors. This
dataset was augmented during training through application of
feature dropout (Shorten and Khoshgoftaar, 2019), in which
input features from each input pattern were set to zero with a
probability of 0.4. Dropout thus simultaneously minimizes the
influence of unreliably predictive features and introduces random
distortions to the training patterns so that unique input patterns
are presented over a large number of training events.

Classifier Training
Multilayer feedforward classifiers were trained using stratified
k-folds cross-validation, a commonly used validation approach
that ensured generalizability of model results (Figure 2A).
The technique partitions the data set into training and test
partitions once for each k-fold. Within each fold, the proportion
of examples of each classifier category were matched in the
training and test partitions. Across folds, the test folds are
non-overlapping, such that all samples appear in exactly one
validation set across all folds. This technique ensured that the
classification accuracy reported across the entire simulation
reflects the model’s ability to correctly classify all of the available
data while simultaneously preventing the model from being
exposed to the validation set data during training. We used
fivefold cross-validation, with each fold generating one trained
model and this procedure was repeated six times to produce 6
batches of 5 models (30 models total) to generate distributional
statistics of model performance.

Because there were more ADHD than Control participants,
we avoided biasing classification decisions by equating the group
sizes through under-sampling, including the four connectivity
vectors for all 25 control participants and an equal number
(100 total) of randomly selected connectivity vectors for ADHD
participants, fixing chance classifier accuracy to 0.5. Each batch of
models used a different random subset of the ADHD patterns.

Within multilayer models, there are multiple paths through
successive hidden layers between each predictor variable and
classification node. A variable’s influence on the classification
is thus computed by summing weights over all possible paths
through multiplication of the weight matrices (Figure 2C).
Classifier units imply an activation function that transforms the
summed input. We used the logistic sigmoid activation function
(Eq. 3):

f
(
input

)
=

1
1+ e−x

(3)

This function scales input to the unit interval {0,1}, so that as the
summed input approaches ± ∞, the output value approaches 0
or 1. Understanding this property is critical for interpreting the
network weight structure, because strong negative weights are
associated with the output class of 0, and strong positive weights
are associated with the output class of 1. The classifier models
can be thus seen as an extension of a conventional binomial
logistic regression classifier to include a series of hidden layers,
described below.

Classifier models were implemented in TensorFlow (Version
1.10)1. Input values fed forward through a sequence of

1https://www.tensorflow.org
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FIGURE 2 | Classifier training procedure. Six batches of stratified 5-fold cross-validated models were trained from the full input feature set (A), and validation-set
performance was obtained for each of the resulting models (B). The weights between each of the layers were extracted and matrix multiplication was used to
compute the summed path weight from each feature to the classifier units (C). Mean path weights were normalized (D), and those features in the 5% tails were
identified (E) and used as features in the reduced feature set model (F).

four densely connected hidden layers, each containing 12
rectified linear units (Figure 3). Batch normalization was
applied at each hidden layer (Ioffe and Szegedy, 2015). These
activations fed forward to a two-unit classifier layer which
simultaneously classified patterns with respect to both Clinical
Diagnosis and IGT performance. This model architecture was
informed by previously published applications of multilayer
feedforward classifiers to neuroimaging data (Liu et al., 2018;
McNorgan et al., 2020). The training set was balanced with
respect to both classifications and the categories were orthogonal
(i.e., knowing one classification was uninformative for the other).
These models therefore identify functional connections that
are predictive of both Diagnosis and IGT performance. Real-
numbered output values are assigned to the category codes
closest in value (e.g., an output less than 0.5 was treated as a
categorization of “0”).

Reduced Models
Overfitting is a measurable empirical phenomenon closely related
to generalizability. Prediction or classification error in a statistical
or machine learning model is quantifiable by a difference metric,
such as the summed squared error (e.g., in regression models)
or cross-entropy (e.g., in classifier models) (Kline and Berardi,
2005). A statistical or machine learning model is said to have
overfit if the error metric is small when the model is applied
to the training data but large when it is applied to a novel
cross-validation data set. Such a model would therefore not
accurately predict outcomes for a random sample drawn from
the population, limiting its utility for informing generalizable
theories. It is not uncommon for machine learning models to
achieve perfect performance for the training data, and thus some
discrepancy between training and validation set performance is
expected. However, overfitting is continuous and measurable,
and so one approach is to measure validation set accuracy
over a series of replications using randomized models to obtain
distributional statistics for validation set accuracy.

The feature selection step described above generated input
feature vectors containing 2265 features. For simple models

such as standard two-layer support vector machines (SVMs) or
logistic regression models, in which each input feature directly
influences classification, high-dimensional input patterns might
raise concerns of the potential for overfitting the training data
in two related senses (Hawkins, 2004): First, superfluous input
features provide additional opportunities for idiosyncratically
predictive features to inflate model performance. Second,
superfluous predictors lead to unparsimonious models that do
little to advance theory. An advantage of our multilayer model
architecture is that hidden layers introduce a bottleneck into
the transmission of the input pattern to the classifier units.
In addition to the feature selection step prior to training
pattern generation, this architectural feature implements a
feature reduction step by requiring the network to create a
12-dimensional non-linear independent components analysis
(ICA) recoding of the input pattern (DeMers and Cottrell,
1993; Lotlikar and Kothari, 2000; Hyvärinen and Bingham,
2003). By implementing the feature reduction step within the
model architecture, rather than as a preprocessing step, the
contributions of individual features from the intact dataset may
be evaluated. Moreover, because the ICA is trained by the
same error signals that drive the classification boundaries, the
discovered components should be optimized with respect to the
classification decision. Though regularization techniques during
training and ICA reduction improve generalizability to novel
data, it remains challenging to meaningfully discuss more than
a handful of individual functional connections. We thus further
reduced the feature set, appealing to the logic of backward step-
wise regression.

The feature selection procedure leaks information about the
most informative features between models using the full set
of features and those using a reduced feature set, however,
this is not problematic for two reasons: First, feature selection
was intended to facilitate interpretation, rather than improve
accuracy; the survival and subsequent inclusion of predictor xi
in the reduced model generation is analogous to the survival of
predictor xi into the n+ 1th step in a backward stepwise multiple
regression. Second, each of the 6 model batches are independent,
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FIGURE 3 | Model Architecture for networks performing mutually constrained classification. Selected functional connections within task-defined network regions
were input patterns from which Clinical diagnosis (ADHD vs. Control) and IGT performance (high vs. low) was predicted. Model training iteratively adjusts the weights
between the Input layer features the three Hidden layers, and the Classifier output units to minimize squared error between the target output values (0 or 1) and the
classifier output values predicted for each functional connectivity pattern. Models performing only Clinical or IGT classification had only one output unit but were
otherwise architecturally identical.

precluding information leakage between batches. The analyses
that follow aggregate results across all model batches, permitting
measures of predictive reliability for each functional connection,
and more importantly, the evaluation of a model comprising
the most informative features independently identified by each
batch of models.

We first evaluated the performance of 30 trained models on
the full input vectors (Figure 2B). Next, after normalizing the
summed path weights (Figure 2D), we identified the functional
connections with path weights to the ADHD classification unit
in the ± 0.025 tails of the distribution of weights in all models
(Figure 2E). This selection further reduced our input patterns
to include only those XMI functional connectivity values that
were most diagnostic of ADHD classification across all random
models. Finally, we repeated the above fivefold cross-validation
procedure, training on the reduced input space to generate six

fivefold batches (30 models total) of Reduced-Feature Models
(Figure 2F). We report the classification performance of the
Reduced Models below.

Model Evaluation
Validation set accuracy was used to evaluate the efficacy of
functional connectivity in the classification decisions on which
the models were trained. The relative influences of individual
functional connections on classification decisions were evaluated
by computing the summed path weights from each input unit
(each encoding the functional connectivity between a pair of
brain regions) to each of the classifier units. In addition to
parametric assessments of predictive functional connections
under a normal distribution, a non-parametric assessment was
performed by comparing classification performance for networks
with weights from influential units selectively removed against
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performance of networks with an equivalent number of randomly
selected weights removed. Classification performance should be
more impacted by the selective removal of the input features we
identified as highly diagnostic.

RESULTS

We report several measures of model performance, computed
across all fivefold for each of the 6 batches (n = 30) of models.
These measures include mean classification accuracy (M), hit
rate, false alarm rates, and d-prime recorded for both clinical
diagnosis and IGT classifications. Because ADHD was mapped
to zero, a true positive was a correct classification of Control
to category 1, and a true negative was a correct classification of
ADHD to category 0. Signal detection theory measures of model
performance were thus defined by formulas 4, 5, and 6 for hit rate
(HIT), false alarm rate (FAR), and d-prime (d′):

HIT =
true positive

true positive+ false negative
(4)

FAR =
false negative

false negative+ true negative
(5)

d′ = z (FAR)− z(HIT) (6)

Where z(X) is the Z score corresponding to the right-tail
p-values associated with proportion X. Single-sample right-tailed
t-tests against chance (0.5) were Bonferroni-Holm corrected
for multiple comparisons, which was chosen because it is the
most conservative correction. Both full and reduced feature
set models demonstrated very high classification performance
on clinical diagnosis and IGT performance classifications,
explicitly linking IGT performance with ADHD through a shared
connectomic fingerprint.

Because model weights are shared between output categories,
classifier training for both categories constrains the solution space
to the set of functional connections that are optimally diagnostic
for both types of classification (McNorgan et al., 2020). Both
classifications were at well over chance accuracy (MClinical = 0.91,
SD = 0.07, t(29) = 32.78, p < 0.00001; MIGT = 0.91, SD = 0.06,
t(29) = 34.10, p < 0.00001). The HIT, FAR and d-prime
scores indicate the models achieved high accuracy through
both high sensitivity and high specificity (HITClinical = 0.86,
FARClinical= 0.04, d′Clinical= 2.90;HITIGT = 0.83, FARIGT = 0.02,
d′IGT = 3.03). Finally, we observe that these values represent
per-run performance (i.e., for connectivity obtained from just
one of four runs). Thus, if classification used the modal
classification of all four connectivity matrices, participant-level
accuracy rises to 0.991, or 99%. The high accuracy suggests a
relatively robust consistency in the functional connections that
distinguish the two groups.

We may compare our multilayer feedforward classifier
architecture with classification performance for a more
conventional linear SVM classifier, to appreciate the
benefit of the embedded ICA enabled by the hidden layer
transformations on the input pattern. With only a single

classification hyperplane, series of SVM classifiers on random
balanced subsets of the training data demonstrated worse
validation set classification accuracy for both clinical diagnosis
(MClinical = 0.58, SD= 0.05) and IGT performance (MIGT = 0.86,
SD = 0.07). The classification performance is attributable to
poor sensitivity for clinical diagnosis (HITClinical = 0.16,
FARClinical = 0.00). We will clarify that the FAR is reported in
the context of a “hit” mapped to the Control category: though
the classes were balanced, the SVM models classified 93% of
all patterns as ADHD, showing clearly biased classification
decisions across all randomized simulations. The SVM FAR
is thus indicative of a reluctance to assign any pattern to the
Control diagnosis, rather than of very high specificity. This
difference reinforces the importance of feature reduction for
mitigating overfitting, and of non-linear relationships in the
classification decisions—particularly for clinical diagnosis.
We also observe that the linear SVM classifier cannot make
simultaneous classification decisions of two orthogonal
categories. These classifiers were trained to make clinical
and IGT classifications independently, precluding the possibility
of identifying interactions among predictive features for the two
classifications.

Diagnostic Functional Connectivity
The ADHD classification was mapped to a Clinical output value
of zero, and thus strong negative weights to the Clinical classifier
unit was predictive of an ADHD diagnosis (by implication,
weak positive connectivity was therefore predictive of an ADHD
diagnosis). Low IGT performance was mapped to an IGT output
value of zero. To facilitate interpretation, we normalized the
summed path weights between each functional connection and
classification output. Functional connections that are predictive
of both Clinical and IGT classification would have high absolute
value weights to both outputs. Thus, we identified functional
connections with an absolute value of either normalized weight
greater than | Z| = 1.65 (95th percentile), and highlight those for
which the product of weights was greater than 1.652, indicating
weights in the extreme tails for both classifications. These highly
predictive functional connections for which strong connectivity is
most diagnostic of an ADHD diagnosis are reported in Table 1,
and those for which strong connectivity predicts a Control
diagnosis—and therefore weak connectivity is diagnostic of an
ADHD diagnosis—are reported in Table 2. In these tables,
we report the normalized mean model path weights between
each predictive functional connection and the classifier units for
Clinical and IGT classifications. These weights are sorted by the
product of their absolute values. Highly predictive functional
connections are denoted with an asterisk.

Though our highly predictive connections were identified
using conventional parametric thresholds for determining
significance, the assumptions underlying conventional
parametric analyses may not be justified for direct parametric
analyses of model weights (Luengo et al., 2009). Consequently,
it does not necessarily follow that the highly predictive
connections are significantly better for prediction than other
functional connections within the task-defined network.
A permutation test contrasted the predictive accuracy for a
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TABLE 1 | Normalized mutual constraint model weights for strong functional connections predictive of ADHD diagnosis.

IGT class Clinical IGT Label X Y Z Label X Y Z Product

High IGT −5.32 1.57 Occipital Mid. L −39 −74 32 Occipital Mid. L −39 −70 38 −8.33*

−2.61 2.66 Temporal. Mid R 48 −55 17 Temporal Mid. R 49 −56 11 −6.94*

−1.98 2.85 Cingulum Post. L −6 −30 29 Cingulum Mid. L −6 −27 30 −5.64*

−2.63 1.47 Rolandic Oper. R 54 −18 19 Insula R 34 −16 16 −3.88*

−1.82 1.54 Precentral R 31 −25 56 Postcentral R 27 −42 59 −2.80*

−1.04 2.57 Fusiform R 29 −83 −3 Calcarine R 22 −86 1 −2.67

−1.73 1.45 Occipital Mid. L −17 −93 6 Occipital Mid. L −24 −87 6 −2.50

−2.50 0.94 Temporal Sup. R 51 −35 15 Temporal Sup. R 40 −27 10 −2.35

−2.40 0.98 Temporal Mid. R 54 −42 −1 Temporal Mid. R 49 −56 11 −2.34

−0.51 4.28 Calcarine L −7 −85 13 Calcarine R 9 −72 14 −2.20

−2.22 0.97 Insula L −41 15 7 Insula L −35 18 0 −2.15

−2.69 0.76 Angular R 36 −55 42 SupraMarginal R 49 −40 41 −2.06

−0.94 2.16 Calcarine L −7 −85 13 Calcarine L −8 −79 12 −2.03

−5.02 0.37 Occipital Mid. R 29 −65 26 Temporal Mid. R 49 −56 11 −1.83

−0.57 2.97 Temporal Sup. R 51 −35 15 SupraMarginal R 43 −28 34 −1.69

−0.49 3.27 Putamen R 36 6 0 Insula R 35 15 −3 −1.61

−0.48 2.85 Calcarine R 9 −83 13 Fusiform R 30 −69 −2 −1.38

−2.84 0.30 Temporal Inf. R 47 −51 −14 Occipital Inf. R 39 −66 −14 −0.85

−3.77 0.15 SupraMarginal R 58 −41 30 Angular R 53 −49 32 −0.56

−0.16 3.24 Postcentral R 55 −10 33 Precentral R 42 −10 45 −0.53

Low IGT −3.73 −2.27 Fusiform L −36 −66 −10 Occipital Inf. R 44 −75 −11 8.49*

−2.72 −1.39 Fusiform L −42 −58 −13 Occipital Inf. L −30 −82 −8 3.78*

−3.51 −1.03 Lingual R 16 −53 −3 Lingual R 18 −43 −5 3.62*

−3.17 −1.00 Occipital Sup. L −10 −97 7 Calcarine L −19 −78 6 3.17*

−2.23 −1.37 Paracentral Lobule L −14 −34 66 Postcentral L −24 −36 57 3.06*

−2.31 −1.12 Caudate L −13 19 8 Caudate R 13 19 8 2.60

−2.81 −0.92 Fusiform L −33 −73 −15 Lingual L −11 −77 −5 2.58

−1.09 −2.15 Precuneus R 11 −49 56 Postcentral R 13 −36 64 2.35

−2.23 −1.05 Lingual L −14 −54 −4 Lingual R 16 −53 −3 2.33

−0.81 −2.34 Calcarine L −8 −79 12 Calcarine R 9 −83 13 1.89

−0.34 −2.76 Paracentral Lobule L −14 −26 66 Insula L −28 28 3 0.94

−0.28 −2.92 Fusiform R 30 −69 −2 Calcarine R 25 −55 11 0.82

−0.23 −3.44 Lingual L −11 −77 −5 Lingual R 17 −62 −6 0.79

−0.22 −2.97 Occipital Mid. L −24 −87 6 Lingual L −22 −76 −8 0.66

series of random networks trained using only the subset of
highly predictive connections as inputs and an equal number
of networks trained using an equal number of randomly
selected functional connections. Mean test-set classification
accuracy was computed for 10-fold of 10 sets of (highly
predictive and random-feature) models trained using stratified
cross-validation. Independent-samples t-tests found that the
highly predictive functional connections predicted Clinical
diagnosis with higher accuracy (M = 0.76, SD = 0.01) than did
random feature networks (M = 0.70, SD = 0.02), t(18) = 8.10,
p < 10−6. The highly predictive functional connections also
predicted IGT performance with higher accuracy (M = 0.72,
SD = 0.02) than did random feature networks (M = 0.69,
SD = 0.01), t(18) = 4.13, p = 0.0003. Thus, the highly
predictive functional connections were significantly better
predictors for both classifications than were a comparable set
of randomly selected functional connections from the reduced
feature set.

If we interpret the functional connections listed in Table 2
as those for which low connectivity values are predictive of
an ADHD diagnosis, we may instead group these weights
with respect to IGT performance and compare functional
connectivity profiles in terms of the hyper- and hypoconnectivity
predicting an ADHD diagnosis. Figure 4A plots the functional
connections predicting diagnosis and a high IGT score: ADHD
hypoconnectivity appears in blue and ADHD hyperconnectivity
appears in red. Network descriptions are derived from the
Yeo et al. (2011) 7-network parcellation. For those with
high IGT performance, models predict an ADHD diagnosis
from interhemispheric hypoconnectivity between the visual
and ventral attention network involving inferior occipital
and fusiform cortex in posterior regions; interhemispheric
hypoconnectivity within the anterior DMN, involving medial
orbitofrontal cortex; and hypoconnectivity between the right
motor network and the ventral attentional network involving
the right supramarginal and precentral gyri. Additionally,
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TABLE 2 | Normalized mutual constraint model weights for strong functional connections predictive of Control diagnosis.

IGT Class Clinical IGT Label X Y Z Label X Y Z Product

High IGT 4.28 2.77 Cingulum Ant. L −12 44 2 Frontal Med. Orb R 11 51 −3 11.82*

2.96 2.67 Fusiform L −33 −73 −15 Occipital Inf. L −16 −92 −9 7.90*

3.29 2.35 Occipital Inf. R 39 −66 −14 Fusiform R 38 −53 −18 7.73*

2.54 1.95 Calcarine L −7 −85 13 Lingual R 8 −69 2 4.94*

1.53 3.10 Precentral R 26 −25 52 Rolandic Oper. R 39 −30 20 4.75*

3.92 1.19 Occipital Inf. L −16 −92 −9 Lingual R 26 −84 −9 4.66*

1.50 3.06 Postcentral L −26 −34 64 Postcentral L −24 −36 57 4.60*

1.96 2.06 Temporal Inf. R 47 −51 −14 Fusiform R 38 −53 −18 4.03*

2.50 1.48 Postcentral L −43 −17 36 Postcentral L −59 −12 30 3.71*

1.61 2.29 Calcarine L −17 −73 6 Calcarine R 21 −67 9 3.69*

2.31 1.50 Angular L −36 −58 40 Angular R 41 −59 29 3.47*

2.32 1.31 Insula R 34 17 10 Insula R 35 15 −3 3.03*

1.19 2.42 Fusiform L −26 −76 −6 Lingual R 10 −91 −7 2.88*

1.60 1.77 Precentral L −38 −8 50 Precentral L −40 −2 46 2.83*

4.12 0.67 Frontal Inf. Oper. R 49 13 15 Frontal Inf. Oper. R 52 13 9 2.76*

2.40 1.14 Occipital Sup. L −20 −80 38 Parietal Sup. L −17 −70 44 2.75*

1.29 2.11 Frontal Sup. Medial L −19 39 17 Frontal Med. Orb R 11 51 −3 2.74*

1.64 1.61 Lingual L −21 −67 4 Calcarine R 9 −72 14 2.65

1.70 1.51 Calcarine R 9 −72 14 Lingual R 8 −69 2 2.58

2.05 1.15 Cuneus L −7 −63 24 Precuneus L −11 −57 13 2.37

2.14 1.09 Cingulum Mid. L −10 15 44 Supp Motor Area L −11 7 49 2.34

2.77 0.79 Cingulum Ant. L −12 44 2 Frontal Sup. Medial L −19 39 17 2.19

0.59 3.11 Calcarine L −7 −85 13 Calcarine R 15 −71 6 1.83

0.59 2.79 Precuneus L −12 −47 60 Paracentral Lobule R 14 −41 53 1.65

2.59 0.57 Postcentral R 38 −21 47 Postcentral R 38 −17 37 1.49

3.01 0.24 Temporal Sup. L −47 −28 4 Temporal Sup. L −50 −18 3 0.71

0.05 3.65 Amygdala L −32 −1 −16 Amygdala R 32 −1 −16 0.17

3.35 0.03 Temporal Mid. R 56 −46 1 Temporal Mid. R 56 −34 −8 0.10

Low IGT 3.86 −1.45 Frontal Inf. Oper. R 43 10 20 Frontal Inf. Oper. R 46 17 19 −5.61*

1.81 −2.85 Cingulum Post. L −14 −93 −16 Cingulum Post. R 14 −93 −16 −5.16*

3.52 −1.28 Frontal Med. Orb R 11 51 −3 Frontal Med. Orb R 10 49 −3 −4.49*

2.03 −1.66 Lingual L −18 −82 −8 Lingual R 17 −62 −6 −3.36*

1.67 −1.72 Occipital Mid. R 29 −65 26 Caudate R 13 19 2 −2.88*

1.39 −2.03 Rolandic Oper. R 39 −30 20 Rolandic Oper. R 45 −13 18 −2.82*

1.63 −1.71 Non-Task 0 0 0 L Posterior Cingulate −14 −93 −16 −2.78*

2.03 −1.19 Calcarine R 9 −83 13 Lingual R 8 −69 2 −2.41

2.10 −1.03 Precuneus R 11 −49 56 Precentral R 26 −25 52 −2.16

3.47 −0.61 Angular R 30 −60 44 Occipital Sup. R 31 −64 42 −2.13

0.60 −3.41 Occipital Inf. R 44 −75 −11 Occipital Inf. R 36 −68 −9 −2.06

0.20 −3.22 Fusiform L −36 −66 −10 Calcarine L −7 −85 13 −0.66

3.31 −0.18 Occipital Inf. R 39 −66 −14 Occipital Inf. R 33 −78 −6 −0.59

0.16 −3.57 Lingual R 26 −84 −9 Fusiform R 29 −83 −3 −0.55

0.02 −3.63 Temporal Mid. R 48 −55 4 Fusiform R 29 −83 −3 −0.07

0.01 −3.21 Non-Task 0 0 0 Amygdala R 32 −1 −16 −0.04

hyperconnectivity within left ventral attention network predicts
ADHD concurrent with high IGT performance. Figure 4B
illustrates a different connectivity profile associated with
low IGT performance concurrent with an ADHD diagnosis.
This classification was associated with hyperconnectivity
between the visual network and ventral attention network,
involving left fusiform and bilateral inferior occipital cortex, and
hypoconnectivity within the posterior DMN between lingual

gyrus and posterior cingulate gyrus, and between lingual gyrus to
regions outside the task-defined network.

DISCUSSION

This study made several novel contributions to the understanding
of ADHD. First, we applied machine learning classifiers to
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FIGURE 4 | Task-related functional connections most predictive of Clinical Diagnosis and high IGT scores (A) and most predictive of Clinical Diagnosis and low IGT
scores (B). ADHD hypoconnectivity appears in blue; ADHD hyperconnectivity appears in red. Regions involved in multiple predictive connections are labeled.

task-related functional connectivity from the go/no-go task.
The high accuracy achieved by these models further suggests
XMI-based measures as useful metrics of functional connectivity.
Second, ours was the first study to make multiple orthogonal
classifications from whole-brain neural activations, allowing us to
establish the mutual relevance of functional connectivity for IGT
performance and ADHD diagnosis. Because the classifications
were based on shared model parameters, our results show not
only that IGT performance is relevant to ADHD diagnosis, but
by identifying the shared informative connections, also show why

this task is behaviorally relevant. Finally, where IGT performance
is one of several diagnostic tools, it may discriminate between
ADHD subtypes and inform treatment.

Parametric Decisions
Our model architecture and training parameters were informed
by previous work (Liu et al., 2018; McNorgan et al., 2020) and
by iterative tuning of model hyper-parameters. Cross-validation
explicitly guards against the primary concern with parametric
tuning of mathematical models; namely, that model optimization
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comes the expense of external validity and generalizability to new
data. Our modeling approach is not specific to our dataset, and
may be applied to other measures or domains. Such applications
may find our parametric choices to be a useful starting point,
and automated tools for parametric space optimization, such
as GPflowOpt (Knudde et al., 2017), which algorithmically
explore the hyperparametric space, can facilitate development of
optimized models without sacrificing generalizability.

Though we used conventional correlation-based measures of
connectivity during feature selection, we chose to use XMI-based
measures in our training patterns precisely because this measure
is infrequently used in functional connectivity studies (and thus
begs exploration) but also likely to be sensitive to the sorts of non-
linear relationships we anticipated in a categorization problem
built around non-linearly separable classes among time series
that may be non-stationary (Wollstadt et al., 2014). Our results
should not be construed to imply that XMI-based measures are
necessarily superior to other univariate or multivariate measures,
e.g., as described in Nieto-Castanon (2020). An exposition of the
relative merits of alternative measures of functional connectivity
is beyond the scope of this study and would require ground-truth
knowledge of the connectivity in our data, but our results
suggest that XMI may be worth consideration in the analysis of
functional connectivity.

Relation to Previous Work
Aligning our results with a literature that has largely focused on
rs-fMRI using seed-based approaches is a challenge compounded
by our identification of predictive connectivity using a joint
probability distribution function over clinical diagnosis and
IGT performance. Nonetheless, several functional connections
from the resting state literature were also predictive in our
task data. High IGT performance concurrent with ADHD was
predicted by hypoconnectivity between anterior cingulate and
orbitofrontal cortex, regions implicated in reward-motivation
and salience attribution, respectively. Hyperconnectivity between
these regions was found by Tomasi and Volkow (2012) using
rs-fMRI. This apparent contradiction can be reconciled by the
fact that rs-fMRI is task-negative, suggesting that an inability
to appropriately engage and disengage these two systems is a
defining feature of some individuals with ADHD. Predictive
hypoconnectivity between visual and ventral attention network
we observed has also been found using rs-fMRI (Ergül et al.,
2019) in adults with social anxiety disorder with comorbid
ADHD, but not others.

Few studies have combined fMRI and machine learning to
the exploration ADHD. SVM classification of DMN connectivity
among children, adults with ADHD and age-matched controls
found that ADHD is associated with delayed maturation of
this brain circuit (Sato et al., 2012). The ADHD-200 Global
Competition saw several groups (Cheng et al., 2012; Colby et al.,
2012; Dey et al., 2012) apply SVM linear classifiers to functional
connectivity measures derived from a multi-site rs-fMRI dataset2

to identify characteristic ADHD rs-fMRI connectivity profiles.
Cheng and colleagues (Cheng et al., 2012) were able to classify

2http://neurobureau.projects.nitrc.org

ADHD participants with 76% accuracy, finding altered frontal
and parietal connections were most diagnostic. Colby and
colleagues (Colby et al., 2012) classified ADHD participants with
55% accuracy using only graph-theoretic metrics, precluding
identification of diagnostic connections. Dey et al. (2012)
achieved roughly 70% classification accuracy using predictive
graph theoretic metrics, finding that voxel selection using a
functional mask, as applied in the present study, greatly improved
classification accuracy by eliminating potential sources of noise.
The difference in classification performance between our study
and these earlier studies suggests that, though summary metrics
quantifying connectivity motifs in core functional networks are
predictive of ADHD, information about specific connections
provides a great deal of additional diagnostic information. Guo
et al. (2020) demonstrated that SVM classifiers were able to
identify ADHD male adults from rs-fMRI connectivity measured
among ADHD children with 76% accuracy, after first selecting
the top 2% of diagnostic features from alternative models—
similar to the feature reduction step employed in the present
study. The authors argue that, though the predictive features
may vary somewhat across cohort, the reasonable cross-cohort
performance suggests that resting state functional connectivity
may be a developmentally stable biomarker of ADHD. Though
no cross-cohort classification was performed in the present study,
accurate discrimination of childhood ADHD diagnosis from
task-dependent functional connectivity in young adults further
supports functional connectivity as a developmentally stable
biomarker for ADHD.

Our study design is most similar to recent studies by Wang
et al. (2018) and Jung et al. (2019) that applied machine learning
classifiers to whole-brain rs-fMRI functional connectivity. These
studies achieved ADHD classification accuracy of 75 and
84%, respectively, and both identified bilateral visual to DMN
hypoconnectivity associated with ADHD. The present study
also found hypoconnectivity from the right visual network to
a region within the anterior DMN was strongly predictive of
ADHD, but only for those who did relatively poorly on the
IGT; for those who did well on the IGT, interhemispheric
hypoconnectivity within the visual network was predictive of
ADHD, contrary to the pattern reported by Wang and colleagues.
This is easily reconciled by observing that ADHD is typically
associated with poor IGT performance, and thus that the parallel
classifications enabled our model to categorically partition typical
and atypical ADHD profiles. Both Wang and colleagues and
Jung and colleagues additionally identified hyperconnectivity
between several regions over several functional networks,
whereas hyperconnectivity was seldom highly predictive in
our fMRI-based connectivity data, found primarily within
the visual network for individuals showing the characteristic
poor IGT performance profile. Combined with our results,
this pattern suggests that resting state hyperconnectivity but
task-related hypoconnectivity may be characteristic of ADHD,
indicating a general difficulty in task-appropriate engagement
and disengagement of multiple functional networks, but that
individuals with ADHD that perform atypically well on the IGT
demonstrate a different connectivity profile within the visual
processing network. Whether these individuals might constitute a
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distinct subgroup is a matter for further clinical investigation, but
these results suggest that some behavioral profiles among those
diagnosed with ADHD may respond differently to treatments
that target different attentional systems.

We achieved superior classification accuracy compared to
these earlier studies, and ascribe this improvement to several
factors: First, as demonstrated by Dey et al. (2012), the restriction
of our analyses to task-relevant voxels using a functional mask
reduced noise among the classifier features, and likely optimized
model performance. Second, and relatedly, there is a strong
theoretical connection between the inhibitory processes implied
by the go/no-go fMRI task and both the IGT and ADHD. By
focusing on the neural substrates supporting these processes,
our analyses may have been more likely to identify mutually
predictive connectivity patterns. Third, our XMI measure may
be more sensitive to non-linear coactivation relationships.
Finally, multilayer feedforward models have the computational
flexibility to encode conditional relationships that linear SVM
classifiers cannot, by internally constructing a lower-dimensional
representation of the input data that is optimized with respect
to the classification decision. With multiple subtypes, it is widely
accepted that ADHD is not a monolithic disorder, and different
network dynamics may underlie different subtypes. We have
demonstrated here the benefits of the increased flexibility and
sensitivity afforded by multilayer networks over their simpler
counterparts, and recommend their application for answering
questions that cannot be addressed by more conventional
approaches, such as SVMs and logistic regression.

CONCLUSION

The high classification accuracy, diagnosticity and specificity
of our multilayer classifier models show ADHD is reliably
predicted by task-based functional connectivity. Simultaneous
prediction of IGT performance suggests that diagnosticity of the
IGT is attributable to its shared reliance on clinically diagnostic
functional connections. Our improved accuracy over earlier
studies highlights the importance of connections involving task-
positive regions and of non-linear relationships in understanding
neural processing dynamics. Our multiple constraint network
analysis is generalizable to other behavioral assessments and
domains, and may guide development of more efficacious
intervention strategies.
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