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Abstract

Pantoea agglomerans is a Gram-negative facultative anaerobic bacillus causing a wide

range of opportunistic infections in humans including septicemia, pneumonia, septic arthri-

tis, wound infections and meningitis. To date, the determinants of virulence, antibiotic resis-

tance, metabolic features conferring survival and host-associated pathogenic potential of

this bacterium remain largely underexplored. In this study, we sequenced and assembled

the whole-genome of P. agglomerans KM1 isolated from kimchi in South Korea. The

genome contained one circular chromosome of 4,039,945 bp, 3 mega plasmids, and 2 pro-

phages. The phage-derived genes encoded integrase, lysozyme and terminase. Six

CRISPR loci were identified within the bacterial chromosome. Further in-depth analysis

showed that the genome contained 13 antibiotic resistance genes conferring resistance to

clinically important antibiotics such as penicillin G, bacitracin, rifampicin, vancomycin, and

fosfomycin. Genes involved in adaptations to environmental stress were also identified

which included factors providing resistance to osmotic lysis, oxidative stress, as well as heat

and cold shock. The genomic analysis of virulence factors led to identification of a type VI

secretion system, hemolysin, filamentous hemagglutinin, and genes involved in iron uptake

and sequestration. Finally, the data provided here show that, the KM1 isolate exerted strong

immunostimulatory properties on RAW 264.7 macrophages in vitro. Stimulated cells pro-

duced Nitric Oxide (NO) and pro-inflammatory cytokines TNF-α, IL-6 and the anti-inflamma-

tory cytokine IL-10. The upstream signaling for production of TNF-α, IL-6, IL-10, and NO

depended on TLR4 and TLR1/2. While production of TNF-α, IL-6 and NO involved solely

activation of the NF-κB, IL-10 secretion was largely dependent on NF-κB and to a lesser

extent on MAPK Kinases. Taken together, the analysis of the whole-genome and immunos-

timulatory properties provided in-depth characterization of the P. agglomerans KM1 isolate
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shedding a new light on determinants of virulence that drive its interactions with the environ-

ment, other microorganisms and eukaryotic hosts

Introduction

Kimchi is a well-known Korean vegetable side dish prepared based on a fermentation process

conducted by lactic acid bacteria (LAB) [1, 2]. Often homemade, kimchi is traditionally con-

sidered as a functional food with potential health benefits including anti-cancer, anti-obesity,

anti-oxidant and anti-aging properties [1]. The fermentation process of a Korean Baechu cab-

bage leads to a steadily decreasing pH, reaching 4.5 after approximately one month of fermen-

tation. This process is followed by the subsequent growth of the LAB and elimination of

potentially pathogenic bacterial species that are sensitive to low pH [3]. Recently, the interest

in consumption of kimchi has increased, leading to a global distribution of this traditional

Korean side dish. However, the time needed for a complete fermentation to take place is often

reduced in favor of a ‘better’ taste, resulting in frequent consumption of a ‘short-term‘fermen-

ted kimchi. This, in turn, poses potential health risks documented by previous publications

that reported several outbreaks associated with a foodborne pathogen-contaminated kimchi

[4, 5]. It was shown that pathogenic Escherichia coli and Salmonella can survive in kimchi dur-

ing fermentation, suggesting that the risk for contamination of kimchi with pathogens, in both

commercial and homemade preparations, should not be underestimated [6].

Pantoea agglomerans (formerly Enterobacter agglomerans and Erwinia herbicola) is a

Gram-negative member of the Enterobacteriaceae family that is ubiquitous in nature and is

found in a wide variety of environments. P. agglomerans grows as an epiphyte on plants [7],

exists in soil [8], insects [9] various food sources [10] and has been found in clinical samples

including pus, sputum, urine, bloodstream, tracheal and joint aspirate, and it has also been

identified as a significant plant pathogen [11–14]. Different strains of P. agglomerans exert

beneficial antibacterial activity against phytopathogens [15], which make them an attractive

biocontrol agent [16] as well as a plant growth promoter [17]. While P. agglomerans strains

E325 and P10c biocontrol agents are allowed for agricultural use in several countries, including

the USA and New Zealand, it remains to be approved for commercial purposes by the Euro-

pean countries [18]. The lipopolysaccharide (LPS) extracted from P. agglomerans is a potent

adjuvant in mucosal vaccinations, triggering production of IgGs and IgAs, and inducting

TNF-α and IL-6 secretion through activation of a Toll-like receptor 4 (TLR4) [19]. P. agglom-
erans derived LPS has anti-cancer properties in B16 melanoma model in mice [20], and an

oral administration of this molecule contributed to prevention of atherosclerosis and hyper-

tension [21].

While P. agglomerans may exert some beneficial roles, it can cause life-threatening infec-

tions in immunosuppressed individuals, elderly, newborns and infants [12, 22, 23]. For exam-

ple, clinical isolates containing P. agglomerans can cause a wide range of infections such as

neonatal sepsis [24], joint infection [11], pneumonia and meningitis [25]. P. agglomerans fur-

thermore poses health risks for adults, being responsible for occupational respiratory diseases

of workers exposed to dust in factories processing cotton, herbs, grain, wood, and tobacco [22,

26, 27]. Affected individuals suffered from inflammation of the respiratory system and allergic

pulmonary disorders [23]. In animal studies, inhaled nanoparticles carrying P. agglomerans
LPS induced airway inflammation with alveolar macrophages secreting pro-inflammatory

cytokines and superoxide anion [28]. Other studies conducted using experimental mouse

models showed that ingested P. agglomerans was able to colonize the gut, cross the gut barrier
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to the bloodstream, and cause systemic dissemination to various organs [29]. Taken together,

a number of reports demonstrate the ambiguous nature of P. agglomerans in relation to possi-

ble beneficial or detrimental effects on health. In this context, there is scarce information

about possible determinants of virulence leading to pathology of P. agglomerans associated

diseases.

Advances in genome sequencing allowed for identification of virulence factors, and plant

growth promoting determinants in genomes of various species belonging to genus Pantoea [7,

17, 30]. In plants, some of the isolated pathogenic stains of P. agglomerans are known to cause

gall-formation, which contained type III secretion system (T3SS) and its effectors through

acquisition of pathogenicity plasmid (pPATH). P. agglomerans biopesticide properties are

related to the presence of genes encoding antibiotics such as pantocins, herbicolins, microcins,

and phenazines, which target for example amino acid biosynthesis genes in Erwinia amylo-
vora, the causative agent of fire blight [14].

While most P. agglomerans genome studies focused on plant isolates, the determinants of

virulence present in clinical isolates remain largely undiscovered. Our current study aimed at

helping to close this knowledge gap, based on the analysis of the sequenced genome and tested

immuno-properties of the isolated foodborne P. agglomerans KM1 strain. We identified genes

involved in virulence, antibiotic resistance, adaptations to stress and interactions with other

microorganisms and eukaryotic hosts. The study also demonstrated immuno-modulatory

properties of P. agglomerans KM1 and mechanisms involved in secretion of pro-inflammatory

and anti-inflammatory cytokines by macrophages.

Materials and methods

Isolation and growth conditions

P. agglomerans KM1 was isolated from short-term fermented homemade kimchi pH 4.5. All

isolation procedures were conducted in sterile conditions. Blended kimchi leaves and juice

samples were filtered through sterile gauze and spun down for 15 seconds to recover liquid

fractions. These were plated out onto Luria Bertani (LB) agar plate and incubated overnight at

37˚C. From the kimchi juice and leaves, eight and nineteen glistening yellow-pigmented colo-

nies were counted on the 10−4 diluted sample, respectively.

Genomic DNA extraction and 16S rRNA based identification

A single colony of P. agglomerans KM1 was grown in LB broth (Conda, Spain) overnight at

37˚C. The genomic DNA was isolated using the LaboPass™ Tissue Genomic DNA mini kit

(Cosmo Genetech, Seoul, South Korea) according to the manufacturer’s protocol. The identity

of the isolate was verified through 16S rRNA gene sequencing. The 16S rRNA gene was ampli-

fied from the extracted genomic DNA using 16S universal primers 27F (5’-AGA GTTTG
ATCMTGGCTCAG-3’) and 1492R (5’-GGTTACCTTGTTACGACTTC-3’) and sequenced

using an automated ABI3730XL capillary DNA sequencer (Applied Biosystems, USA) for tax-

onomic identification at Cosmo Genetech (Seoul, South Korea). The 16S rRNA sequences

were confirmed through BLASTn search against the NCBI microbial 16S database.

Genome sequencing and assembly

The genome of P. agglomerans KM1 was sequenced using the Illumina HiSeq 4000 and

2 × 150 bp with an insert size of 350 bp at Macrogen, Inc. (Seoul, South Korea). Libraries were

generated from1 μg of genomic DNA using the TruSeq1DNA PCR-free Library Prep Kit

(Illumina) according to the manufacturer’s protocol. The quality control of the raw reads was
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performed using FASTQC v.0.11.9, and quality trimming was done based on FASTQC report

using Trimmomatic v.0.39. Obtained quality trimmed reads were used for de novo assembly

using SPAdes v3.14.1 [31] with default parameters. The final genome assembly was polished

with the Illumina reads using Pilon v.1.23 [32]. Bandage software (v.0.8.1) was used to detect

and extract the sequences of circular plasmid assemblies [33]. The sequences of these assem-

blies were screened for the presence of potential plasmids by aligning the sequences against the

NCBI nucleotide database using BLASTn. The quality of the genome assembly was evaluated

using QUAST v5.0.2 [34], and the assessment of the genome completeness was performed

using BUSCO v4.0.5 [35]. The resulting contigs were reordered using the Mauve Contig

Mover algorithm in Mauve v2.4.0 against the closest complete genome of Pantoea agglomerans
C410P1 as a reference (GenBank accession number CP016889). The whole-genome shotgun

project of P. agglomerans KM1 was deposited at NCBI GenBank under accession number

NZ_JAAVXI000000000.

Genome annotation

Functional genome annotation of P. agglomerans KM1 was conducted using NCBI Prokary-

otic Genome Annotation Pipeline (PGAP) [36]. The tRNA genes were identified by tRNAs-

can-SE v.2.0 [37] and rRNA genes with RNAmmer v.1.2 [38]. The Cluster of Orthologous

Groups (COG) functional annotation was performed using RPS-BLAST program against the

COG database within the WebMGA server [39]. For Subsystem functional categorization,

SEED annotation was used with the SEED viewer within the Rapid Annotations and applying

Subsystems Technology (RAST) server v2.0 [40]. The circular genome maps were generated

using the GView v1.7 [41].

Phylogenetic analysis

Phylogenetic trees were constructed based on the average nucleotide identity (ANI) values,

and using multilocus sequence analysis (MLSA). The overall similarity between the whole-

genome sequences was calculated using the Orthologous Average Nucleotide Identity Tool

(OAT) v0.93.1 [42]. Phylogenetic tree was constructed based on the concatenated sequences of

the six protein-coding genes fusA, gyrB, leuS, pyrG, rplB, and rpoB [43] using the Molecular

Evolutionary Genetic Analysis X (MEGA X) software using the neighbor-joining method with

1,000 randomly selected bootstrap replicates [44]. The NCBI GenBank assembly accession

numbers of the Pantoea genomes used for phylogenetic analysis are the following: P. agglomer-
ans KM1 (GCA_012241415.1), P. agglomerans C410P1 (GCA_001709315.1), P. agglomerans
UAEU18 (GCA_010523255.1), P. agglomerans Tx10 (GCA_000475055.1), P. agglomerans IG1

(GCA_000241285.2), P. agglomerans JM1 (GCA_002222515.1), P. agglomerans TH81 (GCA_0

10523255.1), P. agglomerans L15 (GCA_003860325.1), P. vagansMP7 (GCA_000757435.1),

P. vagans C9-1 (GCA_000148935.1), P. stewartii subsp. stewartiiDC283 (GCA_002082215.1),

P. ananatis LMG 20103 (GCA_000025405.2), P. ananatis LMG 2665T (GCA_000661975.1)

and Escherichia coli strain K12 substr. MG1655 (GCA_000005845.2).

Comparative genomics

The genome synteny analysis was performed using the progressive Mauve algorithm in Mauve

v2.3.0 [45] to visualize the genome alignments of the P. agglomerans KM1 draft genome with

P. agglomerans C410P1 as a reference (GenBank accession number CP016889). The Mauve

software was used to predict chromosomal rearrangement such as insertion, inversion and

translocation. The pan-genome analysis was conducted using the retrieved published

P. agglomerans complete genomes in the NCBI database including those of C410P1
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(GCA_001709315.1), UAEU18 (GCA_010523255.1), TH81 (GCA_003704305.1), and L15

(GCA_003860325.1). Prior to pan-genome analysis, Rapid Prokaryotic Genome Annotation

(PROKKA) [46] pipeline was used to annotate the genome sequences with Roary software [47]

to create the pan-genome and using the Gview Server for visualization [41].

Prediction of genomic islands, prophages and CRISPRs

Identification and visualization of putative genomic islands were conducted using IslandPick,

IslandPath-DIMOB, and SIGI-HMM prediction methods in IslandViewer4 [48]. Prophages

were identified using PHAge Search Tool Enhanced Release (PHASTER) [49]. CRISPRFinder

software was used to identify clustered regularly interspaced short palindromic repeats

(CRISPRs) [50].

Biochemical characterization

The isolate was tested for presence of a cytochrome oxidase using the 70439 Oxidase assay

(Sigma-Aldrich, MO, USA) according to instruction provided by the manufacturer. The pres-

ence of a catalase activity was assessed by exposure of a bacterial colony to 3% hydrogen perox-

ide (Daeyung, Gyeonggi-do, South Korea). Further biochemical characterization was

performed using the Analytical Profile Index (API) 20E test (BioMérieux, France) according

to manufacturer’s protocol. The index profile was determined with the online API 20E v5.0

identification software (apiweb.biomerieux.com).

Antibiotic resistance gene identification and susceptibility testing

Antibiotic resistance genes (ARGs) were predicted using the BLASTn method against the

Comprehensive Antibiotic Resistance Database (CARD) [51] using an identity cut-off of 70%

and an E-value < 1.0 E-6. Antibiotic susceptibility test was done using the Kirby-Bauer disk

diffusion method on Mueller Hinton agar according to the Clinical and Laboratory Standards

Institute (CLSI). Commercially prepared antibiotic disks used in this study were kanamycin

(30 μg), streptomycin (10 μg), imipenem (10 μg), vancomycin (10 μg), ofloxacin (5 μg), ampi-

cillin (30 μg), penicillin G (10 iu), rifampicin (5 μg), bacitracin (10 μg), fosfomycin (50 μg),

and chloramphenicol (30 μg) (Thermo Fisher Scientific, MA, USA).

Identification of virulence factors

The virulence factors encoding genes of P. agglomerans KM1 were investigated using the

BLASTn method against the virulence factor database (VFDB) [52] with an identity cut-off of

80%. For virulence gene identification against the VFDB, an E-value <1.0 E-6 was set for

BLAST searches. The identified hallmarks of type VI secretion system effectors, the Hcp and

VgrG genes, were validated using polymerase chain reaction with the following primers: Hcp-

F: TGTAAACCAGCGCCATCAGT; Hcp-R: ACCGGTAATGCACAGCTGAA; VgrG-F:

TGAATCCGCTTGCTTCCTGT; VgrG-R: ATATCGCCCATGCGTTCCAT. The primers used in

the study were designed using NCBI Primer-BLAST. The thermal cycling conditions consisted

of an initial denaturation at 95˚C for 5 min, followed by 25 cycles of denaturation at 95˚C for

30 sec, annealing at 55˚C for 30 sec, and elongation at 72˚C for 2 min, with a final extension at

72˚C for 10 min. The PCR products were gel purified and sequenced using an ABI3730XL

machine (Applied Biosystems, USA) at Cosmo Genetech (Seoul, South Korea). The sequences

were identified using BLASTx program.
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Immuno-stimulations and inhibition studies

A heat-inactivated stock of P. agglomerans KM1 was prepared by first growing a bacterial cul-

ture in LB medium to an optical density of 0.9, measured at 600 nm. Bacterial cells subse-

quently were spun down for 5 min and re-suspended in 1 ml of a sterile and endotoxin free

Dulbecco‘s PBS (Welgene, Gyeongsangbuk-do, South Korea) at a concentration of 108/ml,

and were heat inactivated for 3 hours at 65˚C. These cells were used to stimulate murine mac-

rophage RAW 264.7 cell line (ATCC TIB 71, American Type Culture Collection, VA, USA) in
vitro. The RAW 264.7 macrophages were grown in High glucose Dulbecco’s Modified Eagle

Medium (DMEM, Capricorn Scientific, Germany) supplemented with 10% heat-inactivated

fetal bovine serum (Atlas Biologicals, CO, USA), 100 U.mL-1 Penicillin, and 100 μg.mL-1

Streptomycin (Capricorn Scientific, Germany). One ml cultures of 106 RAW 264.7 cells were

stimulated with 106 heat-inactivated P. agglomerans or 1 ug/ml of the E. coli LPS-EK Ultrapure

(Invivogen, CA, USA). This commercial LPS preparation was shown to activate only the TLR4

signaling. The stimulated cells were incubated for 24 hr at 37˚C, afterwards culture superna-

tants were collected and stored at -20˚C for cytokine ELISA. For inhibition studies of immu-

nostimulatory properties of P. agglomerans different inhibitors of intracellular pathways were

used. The involvement of the NF-κB was tested using irreversible inhibitor Bay 11–7082 at

10 μM (Invivogen, CA, USA). The action of MAPK Kinases (MEK1 and MEK2) was blocked

by the use of a selective inhibitor UO126 at 5 μM (Invivogen, CA, USA). The involvement of

the TLR1/2 in signal transduction was tested using CU-CPT22 at 10 μM (Tocris Bioscience,

UK). The used concentrations of inhibitors were selected based on recommendations provided

by the manufacturers. The TLR4 knock-out RAW 264.7 cell line (RAW-Dual™ KO-TLR4, Ini-

vogen, CA, USA) was used to evaluate the involvement of the TLR4 signaling pathway as these

cells do not respond to TLR4 agonists. The inhibition studies were conducted using 106 RAW

264.7 cells or TLR4 knock-out RAW 264.7 cell line that were first seeded for 30 min in 24 well

plates followed by 30 min pre-incubation with various inhibitors. Next, 106 heat- inactivated

P. agglomerans bacterial cells were added to pre-treated RAW 264.7 cells in a final volume of 1

ml. The culture supernatants collected from non-stimulated cells and cells that were treated

only with inhibitors were used as negative controls. The cultures were incubated for 24 hours,

and afterwards supernatants were collected and used for cytokine quantification in ELISA.

Quantification of cytokines by ELISA and nitrite detection

The concentrations of TNF-α, IL-6, and IL-10 in culture supernatants were measured using

ELISA Max Deluxe were from Biolegend1 (CA, USA) according to manufacturer’s instruc-

tions. Taking into account various detection limits of used ELISAs, culture supernatants were

diluted 50 times for TNF-α, 100 times for IL-6, and 2 times for detection of IL-10 secretion.

The detection limits for different cytokines were as follows (TNF-α/IL-6: 500 pg/ml, IL-10:

2.000 pg/ml). The nitrite concentrations were detected in culture supernatants using Griess

reaction and a commercial kit from Promega (WI, USA) according to manufacturer’s instruc-

tions. In this assay, undiluted culture supernatants were used after 24 hrs of stimulation of

RAW 264.7 cells or TLR4 knock-out RAW 264.7 cells with P. agglomerans whole-cell prepara-

tion in the presence or absence of various inhibitors.

Statistical analysis

All values recorded in experiments were presented as mean ± standard error of the mean

(SEM) of three independent experiments. Statistical analysis was conducted using a Student’s

t-test, with GraphPad Prism 5.0c software. Values with P < 0.001 were considered as signifi-

cantly different.
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Results

Genomic features of the Pantoea agglomerans KM1 isolate

Whole-genome sequencing of P. agglomerans KM1, using the Illumina HiSeq 4000 platform,

resulted in approximately 168-fold genome coverage. Collectively, 6,890,002 raw reads of 101

bp in length were subjected to quality filtering with low quality scores (�Q27) and a minimum

length of 36 bases. After trimming, 6,323,946 (91.78%) clean reads were used for downstream

analysis. De novo assembly of the sequence reads resulted in 46 contigs, and the N50 of the

contigs was 330,495 bp. The maximum length of a contig was 1,299,234. BUSCO provides

quantitative measures for the assessment of genome assembly based on evolutionarily

informed expectations of gene content from near-universal single-copy orthologs. Evaluation

of a genome completeness using BUSCO revealed that P. agglomerans KM1 was 99.2% com-

plete, suggesting that most of the recovered genes could be classified as complete and single-

copy. Moreover, the genome contained one fragmented BUSCO contributing to 0.8% of the

total BUSCO groups (S1 Fig). Hence, as demonstrated in Fig 1, the draft genome sequence of

Fig 1. The circular genome maps of the P. agglomerans KM1 draft genome. Genome map showing the features of P. agglomerans KM1 chromosome and

plasmids pKM1_1, pKM1_2, and pKM1_3. Circles illustrate the following from outermost to innermost rings: (1) forward CDS, (2) reverse CDS, (3) GC

content, and (4) GC skew. All the annotated open reading frames (ORFs) are colored differently according to the COG assignments. Stacked bar chart

shows the relative abundance (%) of COG categories calculated based on the total number of predicted ORFs present in the annotated genome.

https://doi.org/10.1371/journal.pone.0239792.g001
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P. agglomerans KM1 included one circular DNA chromosome of 4,039,945 bp with a GC con-

tent of 55.55%. The KM1 chromosome contained 4,651 genes, of which 4488 were protein

coding, 64 tRNAs, 1 rRNA and 9 ncRNAs. In addition to the bacterial chromosome, the

genome consisted of three mega plasmids named pKM1_1, pKM1_2 and pKM1_3 of sizes

562,844 bp, 222,325 bp and 170,642bp, respectively. The number of protein-coding genes pres-

ent on pKM1_1, pKM1_2, and pKM1_3 was 538, 237 and 152, respectively.

Genome annotation

The predicted Open Reading Frames (ORFs) were further classified into COG functional

groups (Fig 1) and SEED Subsystem categories (S2 Fig). The top 5 most abundant COG cate-

gory based on counts are class of R (702 ORFs, General function prediction only), class of E

(270 ORFs, Amino acid transport and metabolism), class of C (258 ORFs, Energy production

and conversion), class of J (245 ORFs, Translation, ribosomal structure and biogenesis) and

class of L (238 ORFs, Replication, recombination and repair) categories. For SEED subsystem

analysis, 36,697 ORFs were classified to SEED Subsystem categories (S2 Fig). Among the

SEED categories, the top five most abundant categories were Carbohydrates (5865 ORFs),

Amino Acids and Derivatives (5115 ORFs), Cofactors, Vitamins, Prosthetic Groups, Pigments

(3026 ORFs), Protein Metabolism (2490 ORFs) and DNA metabolism (2242 ORFs) (S2 Fig).

Fig 1 shows the circular genome maps of the KM1strain indicating all annotated ORFs and

GC content using the GView program.

Phylogenetic analysis and comparative genomics

Phylogenetic tree analysis based on the concatenated sequences of six protein-coding house-

keeping genes revealed that strain KM1 clustered closely with strains C410P1 and UAEU18

(Fig 2A). This analysis included closely related members in the genus Pantoea with publicly

available genome sequences. The 16S rRNA gene sequences of the Enterobacteriaceae tend to

provide insufficient resolution and the phylogenetic relationship of P. agglomerans was there-

fore inferred based on multilocus sequence analysis (MLSA). Whole genome phylogenetic tree

based on OrthoANI values among Pantoea genome sequences revealed that strain KM1 had

79.12% to 98.66% genome sequence similarities with its closely related species (Fig 2B). The

OrthoANI values between KM1 and other Pantoea genomes were as follows: P. agglomerans
C410P1 (98.66%), P. agglomeransUAEU18 (98.68%), P. agglomerans IG1 (97.39%), P. agglom-
erans L15 (97.48%), P. agglomerans JM1 (97.41%), P. agglomerans TH81 (97.47%), P. agglomer-
ans Tx10 (97.44%), P. vagans C9-1 (90.82%), and P. ananatis LMG 2655T (79.12%). Our

results showed that P. agglomerans KM1 clustered in the same clade with C410P1 (98.66%)

and UAEU18 (98.68%), suggesting a common evolutionary origin.

Genome synteny analysis was performed to extend our understanding of the genomic char-

acteristics of P. agglomerans KM1 (Fig 3). The genome alignment revealed the presence of 36

collinear blocks and several regions of translocations and inversions. In addition, the chromo-

somal alignments between strains C410P1 and KM1 are nearly identical, as shown by the pres-

ence of large collinear blocks of high similarity when most portions of the two chromosomes

are aligned onto each other. Interestingly, the three plasmids of KM1 are syntenic with the three

plasmids of C410P1 strain, where in plasmid pKM1_3 shows inversions relative to C410P1.

Genomic sequences involved in response to viruses and horizontal gene

transfer

Twenty-two genomic islands (GIs) were identified on the chromosome of P. agglomerans KM1

(Fig 4 and S1 Table), suggesting horizontal DNA transfer. In the KM1 chromosome, GI region 4
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was found to encode type I secretion proteins and GI region 16 encodes LysR-family transcrip-

tional regulator, which are required for virulence. GI region 1 contained glutathione S-transfer-

ase, omega (EC 2.5.1.18), which serve as the primary defenses against oxidative stress [53] (S1

Fig 2. Phylogenetic analysis of P. agglomerans KM1. A: Neighbor-joining phylogenetic tree showing the phylogenetic relationship

between P. agglomerans KM1 and selected Pantoea strains. The neighbor-joining tree was constructed from an alignment of concatenated

fusA, gyrB, leuS, pyrG, rplB, and rpoB gene sequences. The percentage of replicate trees in which the associated taxa clustered together in

the bootstrap test (1000 replicates) are shown next to the branches. Superscript “T” indicates a type strain. The scale bar represents the

number of substitutions per site. Escherichia coli strain K12 substr. MG1655 was used as an outgroup. B: Heatmap showing the OrthoANI

values between P. agglomerans KM1 genome and its closely related species. Values greater than 97% indicate that strains belong to the

same species.

https://doi.org/10.1371/journal.pone.0239792.g002
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Table). Additionally, 4, 2, and 2 GIs were detected on KM1 plasmids pKM1_1, pKM1_2, and

pKM1_3, respectively (Fig 4). Plasmid pKM1_1 harbored genes involved in carotenoid biosyn-

thesis including lycopene cyclase (CrtY), zeaxanthin glucosyltransferase (CrtX) and geranylgera-

nyl diphosphate synthase (CrtE), suggesting that P. agglomeransKM1 is a carotenogenic

bacterium, where carotenoids serve an essential role in protection against oxidative stress and

protection from oxygen during nitrogen fixation [54] (S1 Table). Using PHASTER, two prophage

regions were predicted in KM1 chromosome, where GI regions 6 to 13 coincide with prophage

region 1, and GI region 20 to 21 incorporates prophage region 2 (Fig 4 and S4 Fig). Prophage

region 1 is an intact prophage with a size of 52 kb, a GC content of 52.56%, and 82 ORFs in the

phage protein database. Prophage region 2 is an incomplete prophage and it has a size of 12.9 kb,

with a GC content of 47.26%, and 13 ORFs. Several genes that have a phage-derived genetic mate-

rial were present in the KM1 chromosome such as a phage integrase, a phage lysozyme, a phage

terminase, a phage tail tip, a phage capsid and a scaffold protein. The P. agglomerans KM1

genome also contained six CRISPR loci (CRISPR1-CRISPR6) with direct repeats ranging

between 23 to 42 and mean size spacers ranging from 35 to 59 (S2 Table).

Biochemical characterization

Biochemical analysis of the P. agglomerans KM1 was conducted using an API 20E test (S3

Table). The isolate was catalase positive and scored negative in the oxidase and urease

Fig 3. Genome alignments showing synteny blocks among P. agglomerans strains obtained using progressive Mauve. P. agglomerans KM1 were compared with

other closely related strains namely C410P1, UAEU18, TH81 and L15. Each genome is laid out horizontally with homologous segment outlined as colored rectangles.

Each same color block represents a locally collinear block (LCB) or homologous region shared among genomes. Rearrangement of genomic regions was observed

between the two genomes in terms of collinearity. Inverted regions relative to KM1 are localized in the negative strand indicated by genomic position below the black

horizontal centerline in the Mauve alignment.

https://doi.org/10.1371/journal.pone.0239792.g003
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test. KM1 did not decarboxylate lysine and ornithine, nor produced hydrogen sulfide

(H2S) and indole. In addition, the isolate was able to ferment D-glucose, D-mannitol, L-

rhamnose, D-sucrose, Amygdalin, L-arabinose and Lactose. The API 20E test was negative

for arginine dihydrolase and tryptophan deaminase. The KM1 isolate had no ability to fer-

ment inositol, D-sorbitol, and D-melibiose, however, it showed positivity in acetoin pro-

duction, β-galactosidase test, citrate utilization test, and possessed gelatinase activity.

Obtained numerical profile confirmed that isolated KM1 strain belongs to P. agglomerans
species.

Fig 4. Genomic islands (GIs) in P. agglomerans strain KM1 predicted using IslandViewer4. The predicted genomic islands are colored based on the prediction

methods. Red indicates an integrated analysis, blue represents IslandPath-DIMOB prediction, orange represents SIGI-HMM prediction, and green indicates IslandPick

analysis. The circular plots show the genomic islands in P. agglomerans KM1 chromosome, and plasmids pKM1_1, pKM1_2 and pKM1_3. GIs are labelled in blue.

Prophage regions predicted by PHASTER were indicated in red boxes for prophage region 1 (P1) and region 2 (P2).

https://doi.org/10.1371/journal.pone.0239792.g004
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Genes involved in antibiotic resistance

The presence of Antibiotic Resistance Genes (ARGs) was identified using BLAST against the

CARD reference sequences (S4 Table). We identified 12 ARGs in KM1 chromosome and 1

ARG in plasmid pKM1_3 showing greater than 70% identity to well-characterized ARGs in

CARD database. The ARGs identified in KM1 were classified into five gene families including

resistance-nodulation-cell division (RND) antibiotic efflux pump (CRP, oqxB,mdtA, mdtB,

mdtC, acrR, acrD, and MuxB), ATP-binding cassette (ABC) antibiotic efflux pump (msbA),

major facilitator superfamily (MFS) antibiotic efflux pump (emrA and emrB), undecaprenyl-

pyrophosphate related protein (bacA) and family of phosphoethanolamanine transferase

(arnA). These genes provide resistance to multiple antibiotic classes such as macrolides, fluo-

roquinolones, tetracyclines, aminoglycosides, nitroimidazoles aminocoumarins, and peptide

based antibiotics. The predicted multidrug resistant genes present in KM1 genome were pri-

marily involved into two resistance mechanisms namely antibiotic efflux and antibiotic

target alteration. These results are consistent with data obtained from the Kirby-Bauer disk dif-

fusion test showing that KM1 strain is resistant to penicillin G, vancomycin, bacitracin, fosfo-

mycin, and rifampicin (Table 1).

Genes involved in adaptations to environmental stress

In the past, P. agglomerans strains have been isolated from a multitude of environments such

as extreme desiccation in powdered infant milk formula [10], broad range of temperature (3–

42 oC) or pH (5–8.6) regimes [55] and osmotically challenging environments [56], as such its

survival in stressful environments have not been examined so far at the molecular level.

Table 2 demonstrates the list of genes found in the KM1 isolate, associated with resistance to

stressful environmental conditions. Several genes encode products involved in osmoregulation

included aquaporin Z (aqpZ), osmotically inducible protein (OsmY), potassium transporter

protein (TrkH and TrkA), glycine betaine transporter protein (proP), trehalose-6-phosphate

synthase (otsA and otsB), and glutathione-regulated potassium-eflux system protein (kefB).

Further in-depth analysis revealed the presence of genes coding for proteins involved in adap-

tation to temperature fluctuations such as cold shock proteins (cspA, cspE, and cspD) and heat

shock proteins (DnaJ, DnaK, GrPE, hslR, IbpA, hspQ). Finally, genes conferring resistance to

oxidative stress were also detected in KM1 strain such as catalase (katE, katG), superoxide dis-

mutase (sodA), glutathione S-transferase (GST), glutathione peroxidase (GPX), and DNA pro-

tection during starvation protein (Dps).

Table 1. Antibiotic susceptibility profile of P. agglomerans KM1.

Antibiotic Amount Inhibition zone diameter (mm)a Resistant/Susceptible

Imipenem 10 μg 32 Susceptible

Ampicillin 30 μg 21 Susceptible

Penicillin G 10 U 13 Resistant

Vancomycin 10 μg 0 Resistant

Bacitracin 10 μg 0 Resistant

Fosfomycin 50 μg 0 Resistant

Kanamycin 30 μg 20 Susceptible

Streptomycin 10 μg 17 Susceptible

Chloramphenicol 30 μg 30 Susceptible

Rifampicin 5 μg 12 Resistant

Ofloxacin 5 μg 39 Susceptible

a Values are expressed as means from three independent experiments.

https://doi.org/10.1371/journal.pone.0239792.t001
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Genome-based identification of virulence factors

The putative virulence factors in P. agglomerans KM1 were predicted by BLAST searches

against the VFDB and genome annotation using NCBI PGAP. As demonstrated in Table 3,

identified virulence factors were classified into five categories including secretion systems,

adhesion, motility, iron uptake/sequestration system and toxins.

In the secretion system category, all the putative genes belonging to type VI secretion sys-

tem (T6SS) were present. The genes encoding the complete structural gene components of the

T6SS apparatus consisted of TssA-TssM, hemolysin-coregulated protein (Hcp), valine-glycine

repeat G (VgrG) protein, proline-alanine-alanine-arginine repeats (PAAR) and ClpV. In addi-

tion, the presence of T6SS hallmarks Hcp and VgrG genes in KM1 was validated using PCR

and amplicon sequencing (S5 Fig). The latter showed 100% sequence identity to Hcp and VgrG
proteins in P. agglomerans. In the adhesion category, the identified genes encoded filamentous

hemagglutinin (FHA) and the outer membrane protein A (OmpA). In the motility category,

genes involved in flagella were detected in KM1, which play roles in biofilm formation, viru-

lence factor secretion and adhesion in addition to motility [57]. In the iron uptake category,

chromosomal genes encoding proteins related to iron uptake and transport included ferric

Table 2. Genes associated with resistance to environmental stress in P. agglomerans KM1.

Environmental stress

resistance

Annotation Locus tag

Osmotic stress

OsmY Osmotically-inducible protein Y HBB05_RS01050

aqpZ Aquaporin Z HBB05_RS05300

TrkH, TrkA Trk system potassium transporter

protein

HBB05_RS05080, HBB05_RS02110

proP Glycine betaine/L-proline

transporter

HBB05_RS19460, HBB05_RS02985

proQ RNA chaperone ProQ HBB05_RS14815

otsA, otsB Trehalose-6-phosphate synthase HBB05_RS15190, HBB05_RS15195

kefB, Glutathione-regulated potassium-

efflux system protein

HBB05_RS02355, HBB05_RS02360

TreF Cytoplasmic trehalase HBB05_RS00975

Heat shock

DnaJ, DnaK Molecular chaperone DnaJ HBB05_RS18860, HBB05_RS19155, HBB05_RS07025, HBB05_RS07020

hslR Ribosome-associated heat shock

protein Hsp15

HBB05_RS02565

IbpA, hspQ Heat shock protein HBB05_RS04290, HBB05_RS10600

GrpE Nucleotide exchange factor HBB05_RS18265

Cold shock

cspA, cspE, cspD Cold shock protein HBB05_RS19980, HBB05_RS03250, HBB05_RS09100, HBB05_RS10245

Oxidative stress

dps DNA protection during starvation

protein

HBB05_RS09995, HBB05_RS00870

oxyR, DNA-binding transcriptional

regulator

HBB05_RS03440

Gpx Glutathione peroxidase HBB05_RS19175, HBB05_RS03445, HBB05_RS12185

Gst Glutathione S-transferase HBB05_RS18795, HBB05_RS18945, HBB05_RS19010, HBB05_RS20560, HBB05_RS01550,

HBB05_RS03195, HBB05_RS03320, HBB05_RS04480, HBB05_RS05500

KatE, katG Catalase HBB05_RS12490, HBB05_RS16130

sodA Superoxide dismutase HBB05_RS04520, HBB05_RS12380

https://doi.org/10.1371/journal.pone.0239792.t002
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Table 3. Virulence factors of P. agglomerans KM1.

Virulence factor Annotation Locus tag

Secretion system

TssA, TssB, TssC, TssD (Hcp), TssE, TssF, TssG, TssH (ClpV),

TssI (vgrG), TssJ, TssK, TssL (DotU), TssM (IcmF), tagF, tagH,

PAAR

Type VI secretion protein HBB05_RS11570, HBB05_RS11575, HBB05_RS11580,

HBB05_RS11585, HBB05_RS11590, HBB05_RS11595,

HBB05_RS11600, HBB05_RS11605, HBB05_RS11615,

HBB05_RS11650, HBB05_RS11670, HBB05_RS11675,

HBB05_RS11680, HBB05_RS11685, HBB05_RS11700,

HBB05_RS11705, HBB05_RS11710, HBB05_RS11900,

HBB05_RS11905, HBB05_RS11910, HBB05_RS17335,

HBB05_RS17360, HBB05_RS17365, HBB05_RS17370,

HBB05_RS17375, HBB05_RS17380, HBB05_RS17385,

HBB05_RS17410, HBB05_RS17415, HBB05_RS17420,

HBB05_RS17435, HBB05_RS17440, HBB05_RS17445,

HBB05_RS18610, HBB05_RS18655, HBB05_RS17395

Adhesion

fha Filamentous hemagglutinin HBB05_RS03515, HBB05_RS04420, HBB05_RS11225,

HBB05_RS15615

ompA Outer membrane protein A HBB05_RS19865, HBB05_RS04215, HBB05_RS10555,

HBB05_RS11915, HBB05_RS17425

Motility

fliC, fliD, fliE, fliF, fliG, fliH, fliI, fliJ, fliK, fliL, fliM, fliN, fliO, fliQ,

fliS, fliT,fliZ, flhA, flhC, flhD, flhE, flgA, flgB, flgC, flgD, flgE, flgF,

flgG, flgH, flgI, flgJ, flgK, flgL, flgN, motB

Flagella HBB05_RS15305, HBB05_RS15310, HBB05_RS15315,

HBB05_RS15320, HBB05_RS15410, HBB05_RS15415,

HBB05_RS15420, HBB05_RS15425, HBB05_RS15430,

HBB05_RS15435, HBB05_RS15440, HBB05_RS15445,

HBB05_RS15450, HBB05_RS15455, HBB05_RS15460,

HBB05_RS15470, HBB05_RS15285, HBB05_RS15115,

HBB05_RS15180, HBB05_RS15185, HBB05_RS15110,

HBB05_RS11030, HBB05_RS11035, HBB05_RS11040,

HBB05_RS11045, HBB05_RS11050, HBB05_RS11055,

HBB05_RS11060, HBB05_RS11065, HBB05_RS11070,

HBB05_RS11075, HBB05_RS11080, HBB05_RS11085,

HBB05_RS11020, HBB05_RS15170

CheV, CheY, CheW, CheA Chemotaxis protein HBB05_RS21255, HBB05_RS08110, HBB05_RS12020,

HBB05_RS15130, HBB05_RS15160, HBB05_RS15165,

HBB05_RS15645

Iron uptake system

fur Ferric iron uptake

transcriptional regulator

HBB05_RS09340

EfeO Iron uptake system protein HBB05_RS15240

SitC Iron/manganese ABC

transporter permease

subunit

HBB05_RS21090

fepB,fepG, entS Enterobactin transporter HBB05_RS06140, HBB05_RS06155, HBB05_RS06145

fepA TonB-dependent

siderophore receptor

HBB05_RS20475, HBB05_RS21020, HBB05_RS06180

fepD Ferric siderophore ABC

transporter permease

HBB05_RS06150

fhuF Siderophore-iron reductase HBB05_RS06780

Toxin

Hha, ShlB, FhaC, HecB, XhlA Hemolysin HBB05_RS23025, HBB05_RS03510, HBB05_RS04405,

HBB05_RS08630, HBB05_RS11220, HBB05_RS14060,

HBB05_RS15620

hlyIII Hemolysin III HBB05_RS00635

https://doi.org/10.1371/journal.pone.0239792.t003
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iron uptake transcriptional regulator (fur), iron uptake protein (EfeO). Plasmid pKM1_3 con-

tained the iron/manganese ABC transporter permease (SitC). In addition, genes related to

high-affinity iron-chelating molecules i.e. siderophores, encompassed the enterobactin trans-

porter (fepB, fepG, entS), TonB-dependent siderophore receptor (fepA), ferric siderophore

ABC transporter permease (fepD, and siderophore-iron reductase (fhuF). The last group of vir-

ulence factors contained genes coding for extracellular cytotoxic proteins hemolysin III, hemo-

lysin XhlA, and hemolysin secretion/activation genes (Hha, ShlB, FhaC,HecB).

A pan-genome map for the KM1 strain and four other completely sequenced P. agglomer-
ans strains L15, TH81, UAEU18 and C410P1 was drawn using PGAP and Gview server (Fig

5). Pan-genome analysis revealed that the T6SS effector proteins Hcp and VgrG were detected

in all five strains. Moreover, the hemolysin transporter protein ShlB, adhesion protein (ompA),

iron uptake genes (fur, EfeO, fepA, fepD, fhuF, fepB, fepG, entS), chemotaxis proteins (CheV,

CheY, CheW, CheA) and flagellin (fliC) were present in all strains. Interestingly, RND

Fig 5. Pan-genome analysis of P. agglomerans strains obtained using Gview server. The innermost circle shows the pan-genome (purple), and outer circlers indicate

the genomes of Pantoea agglomerans strains L15 (orange), TH81 (brown), UAEU18 (red), C410P1 (blue), and KM1 (green). Genes with specialized functions were

labelled with different colors: virulence-related genes (blue), antibiotic resistance genes (red), and strain-specific regions (black).

https://doi.org/10.1371/journal.pone.0239792.g005
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antibiotic efflux pump associated genes (CRP, oqxB, mdtA,mdtB,mdtC, and acrR) were

detected in all five strains. These findings indicated that virulence factors and ARGs identified

in this study might play important roles in the potential pathogenicity of P. agglomerans.
Based on Roary-matrix pipeline, the pan-genome analysis of five P. agglomerans strains

revealed 6,727 protein coding genes comprising the pan-genome, of which 3,065 genes

(45.6%) corresponded to the accessory genome and 3,662 genes (54.4%) to the core genome

(Fig 6). As the P. agglomerans pan-genome increases with the addition of new strains, the size

of core genome decreases, suggesting that P. agglomerans has an open pan-genome [58] (S3

Fig).

Fig 6. Roary matrix-based pan-genome analysis of P. agglomerans strains. The core-genome tree generated was compared with a matrix where the core and accessory

genes were either present (blue) or absent (white).

https://doi.org/10.1371/journal.pone.0239792.g006
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Immuno-stimulatory potential of P. agglomerans KM1
In order to supplement the genomic virulence study with additional data on the potential con-

tribution of P. agglomerans KM1 to induction of inflammation, the immuno-stimulatory prop-

erties of the KM1 isolate were tested in vitro using the RAW 264.7 macrophage cell line. The

latter was stimulated with a heat-inactivated whole-cell preparation of the KM1 isolate, fol-

lowed by the measurement of cytokine secretion and Nitric Oxide (NO) production. The

mechanisms underlying KM1-associated production of cytokines and NO were tested by

inhibiting TLR1/2 and TLR4 signaling and activation of NF-kB and MAPK Kinases, such as

MEK 1 and MEK2.

As shown in Fig 7A, stimulations of RAW 264.7 macrophages with P. agglomerans KM1

resulted in the production of TNF-α. Under identical stimulation conditions RAW 264.7

TLR4 knock-out cells exhibited a significantly reduced TNF-α secretion. Analysis of a possible

involvement of the TLR1/2 signaling in TNF-α secretion by stimulated RAW 264.7 macro-

phages showed partial reduction in the presence of the CU-CPT22 TLR-1/2 inhibitor. How-

ever, this inhibitory effect was itself significantly less potent than the effect observed in the

TLR4 knock-out condition. Adding CU-CPT22 to stimulated TLR4 knock-out cells did not

result in an additional inhibitory effect, indicating a dominant role of the TLR4 signaling. The

use of inhibitors of intracellular pathways leading to activation of the NF-κB (Bay 11–7082)

and MAPKKs (UO126) allowed to further analyze mechanisms underlying KM1 associated

TNF-α secretion. The use of Bay 11–7082 resulted in a significant reduction of TNF-α secre-

tion by RAW 264.7 cells, similar to the inhibition observed in the absence of the TLR4

Fig 7. Cytokine and nitrite production by RAW 264.7 macrophages stimulated with a heat inactivated whole-cell P. agglomerans. Panels A, D, G and J show TNF-

α, IL-6, Nitrite and IL-10 secretion by the simulated RAW 264.7 cells (RAW), TLR4 knock-out RAW 264.7 cells (TLR4KO), RAW 264.7 cells (RAW) in combination

with TLR2 inhibitor (RAW+ TLR2 inhib), TLR4 knock-out RAW 264.7 cells in combination with TLR2 inhibitor (TLR4KO + TLR2 inhib.). Additionally stimulations

were performed using RAW 264.7 cells in combination with NFκB inhibitor (RAW+NFκB inhib.), TLR4 knock-out RAW 264.7 cells in combination with NFκB

inhibitor (TLR4KO + NFκB inhib.) and RAW 264.7 cells in combination with MEK1/2 inhibitor (RAW + MEK inhib.). Panels B, E, H, and K, include control

conditions: RAW 264.7 cells stimulated with TLR4 agonist ultrapure LPS (RAW + LPS), TLR4 knock-out RAW 264.7 cells stimulated with TLR4 agonist ultrapure LPS

(TLR4KO + LPS), non-stimulated RAW 264.7 cells (RAW control), non-stimulated TLR4 knock-out RAW 264.7 cells (TLR4 control). Panels C, F, I and L include

control stimulations: RAW 264.7 cells and TLR4 knock-out RAW 264.7 cells in the presence of inhibitors alone, RAW + TLR2 inhibitor, TLR4KO + TLR2 inhibitor,

RAW + NFκB inhibitor, TLR4KO + NFκB inhibitor, and RAW + MEK inhibitor. Values with P< 0.001 were considered as significantly different (����).

https://doi.org/10.1371/journal.pone.0239792.g007

PLOS ONE Whole genome sequence analysis of Pantoea agglomerans KM1

PLOS ONE | https://doi.org/10.1371/journal.pone.0239792 January 6, 2021 17 / 27

https://doi.org/10.1371/journal.pone.0239792.g007
https://doi.org/10.1371/journal.pone.0239792


receptor. There was no added effect of the inhibitor in the TLR4 knock-out stimulation setting.

Finally, we did not observe any inhibitory effect of the UO126, indicating a lack of the involve-

ment of MAPK Kinases in P. agglomerans induced TNF-α secretion. In order to assess the

results, the experimental setting was accompanied by a series of control conditions. First,

RAW 264.7 cells and the RAW 264.7 TLR-4 knock-out cell line were both stimulated with

ultra-pure LPS, showing the effectiveness of the absence of TLR4 in the inhibition of TNF-α
secretion (Fig 7B). Under non-stimulated conditions, neither of the cell lines produced any

measurable level of TNF-α. Finally, none of the inhibitors used in this study was able to drive

TNF-α secretion by itself (Fig 7C)

To evaluate the capacity P. agglomerans to trigger IL-6 production by RAW 264.7 cells, an

identical experimental set-up was used as the one described above. Here, the results presented

in Fig 7D show that high levels of cytokine production were obtained by P. agglomerans stimu-

lation of RAW 264.7 cells, but not RAW 264.7 TLR4 knock-out cells. In contrast to the partial

inhibition of TNF- α production by CU-CPT22, addition of this TLR1/2 inhibitor resulted in a

complete abolishment of IL-6 production. The same level of inhibition was also obtained by

blocking the NF-κB signaling pathway alone or in combination with inhibition of TLR func-

tion. Blocking of MAPK Kinases did not result in reduction of IL-6 production. As for the

TNF-α induction experiment, all necessary control culture conditions were included, showing

the potency of the TLR4 knock-out construct in the inhibition of LPS-induced cytokine pro-

duction (Fig 7E), as well as the lack of significant IL-6 induction by any of the inhibitors alone,

used in this study (Fig 7F).

Next, the secretion of NO, an important pro-inflammatory effector molecule was analyzed

using the same experimental setting. The presence of NO in culture supernatant can be mea-

sured using Griess reaction recording levels of a nitrite. As showed in Fig 6G, while P. agglom-
erans stimulated RAW 264.7 cells produced NO, interrupting either TLR4 or TLR1/2

signaling, resulted in a significant reduction of NO production. Inhibition of NO production

was obtained by blocking of the NF-κB signaling, but not the MAPK Kinase pathway. As for

the experiments outlined above, all cell culture control conditions were included, allowing

proper result interpretation (Fig 7H and 7I.)

Finally, the potential of P. agglomerans to induce the anti-inflammatory cytokine IL-10 was

analyzed. Results in Fig 7J show that stimulated RAW 264.7 cells produced IL-10 in a TLR1/2/

4 and NF-κB dependent manner. As opposed to TNF-α, IL-6 and NO induction, the MAPK

Kinases pathway appeared to contribute to triggering of IL-10 secretion, as the MEK 1 and

MEK 2 inhibitors had a significant effect. All control conditions showed the validity of the in
vitro experimental setup (Fig 7K and 7L).

Discussion

This study provides the comprehensive genomic and immunologic analysis of the foodborne

P. agglomerans KM1 strain, that was isolated from homemade kimchi, a traditional South

Korean fermented side dish prepared using Baechu cabbage (Brassica rapa subsp. pekinensis)
as the main ingredient. Hence the origin of the KM1 stain is most probably the Baechu cab-

bage itself, as P. agglomerans was shown to grow as an epiphyte on vegetables and fruits [59,

60]. The analysis of the KM1 genomic data led to the identification of several virulence genes

such as the genes associated to the type VI secretion system (T6SS), adhesion, iron uptake and

sequestration system, as well as secretion of toxins such as hemolysins.

In the secretion system category, the KM1 strain harbors the complete structural gene com-

ponents of the T6SS. Human pathogenic Pseudomonas aeruginosa and Vibrio cholera were

shown to possess T6SS, which functions as a delivery apparatus of bacterial toxins into the host
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cells [61, 62]. The Hcp is regarded as one of the secreted effectors of T6SS and it forms a tube

in the outer component of the T6SS apparatus [61]. Moreover, we also detected the gene

encoding the VgrG spike protein and PAAR domain-containing protein, which facilitates the

translocation of effector proteins to mediate microbe-host interactions [63, 64]. In addition,

the ATPase ClpV disassembles the contracted tail sheath, which enables a new T6SS complex

to be reassembled from the released subunits [65]. In Pantoea ananatis, the T6SS complex

plays important roles related to its pathogenicity, host range determination, niche adaptation

and competition through killing of neighboring bacteria [66]. In Francisella tularensisis subsp.

tularensis, the causative agent of the life-threatening zoonotic disease tularemia, T6SS is essen-

tial for entry and multiplication within host macrophages [67]. As such, the T6SS is a versatile

protein secretion machinery that is able to target eukaryotic cells, highlighting its importance

in the context of infection and disease [65]. In case of the isolated KM1 strain, the presence of

T6SS may increase its fitness in relation to the host-associated microbial communities or cause

pathology to neighboring host cells during infection.

In the adhesion category, FHA is an important virulence factor that is required for adhesion

to the epithelial cells of mammalian hosts [68]. Bordetella pertussis uses FHA as a major adhe-

sion protein to attach itself to the host cells and at the same time increasing the adherence of

other pathogens [69]. OmpA has essential roles in bacterial adhesion, invasion, and intracellu-

lar survival along with evasion of host defenses or stimulators of pro-inflammatory cytokine

production [70]. Thus, these findings indicate that FHA and OmpA in KM1 may have poten-

tial pathogenic roles in life-threatening lower respiratory tract infections and urinary tract

infections associated to P. agglomerans [12].

The KM1 strain also harbors genes involved in hemolysis. These genes code for extracellu-

lar cytotoxic proteins, which are known virulence factors that target cell membranes causing

erythrocyte lysis [71]. The last category of identified virulence factors includes genes associated

with an iron uptake and siderophore mediated iron sequestration. Iron is an important ele-

ment for survival and colonization by bacteria since it plays a crucial role in the electron trans-

port chain to produce energy [72]. Iron acquisition systems are used by bacteria to scavenge

iron from the environment under iron-restricted conditions [73]. Therefore, successful com-

petition for iron is crucial for pathogenicity. Ferric uptake regulator (Fur) is a transcription

factor that upregulates virulence factors in bacteria during iron depletion [74]. These findings

suggest the ability of KM1 to survive in the blood and its potential ability to invade the central

nervous system by crossing the blood-brain barrier as have been observed in Cronobacter saka-
zakii [75]. Interestingly, the presence of ferric siderophore enterobactin transporter in KM1

may facilitate extraction of iron from host-iron complexes like lactoferrin, transferrin, and

hemoglobin [73]. Taken together, these results suggest that siderophore system could be an

essential genetic determinant for growth, virulence and potential pathogenicity of P. agglomer-
ans KM1.

The genomic data and results obtained from the Kirby-Bauer disk diffusion method

pointed out that KM1 genome carried 13 antibiotic resistance genes conferring resistance to

clinically important antibiotics among them penicillin G, bacitracin, vancomycin, rifampicin

and fosfomycin. However, genome-based analysis was not able to predict the specific ARGs

that confer resistance to the antibiotics that KM1 was resistant to except for bacA, which con-

fers resistance to bacitracin. Recently, Su et al. suggested that these limitations of genome-

based prediction arise from scarcity of genetic basis of resistance for some antibiotics [76].

These findings suggest that there is a need for better standardization of ARG annotation to

facilitate accurate detection of ARGs Previously published clinical reports demonstrated that

P. agglomerans can be responsible for a wide range of infections encompassing pneumonia,

bladder and wound/skin infections, septicemia and meningitis [77]. While bacitracin is an
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antibiotic prescribed against skin infections, fosfomycin is an effective drug against bladder

infections [78–80]. Vancomycin is used to treat meningitis, and rifampicin exerts antimicro-

bial activity against Mycobacterium species, as such being the antibiotic of choice prescribed

against tuberculosis [81, 82]. Hence, in the context of our study, these antibiotics would be

ineffective against P. agglomerans KM1 strain. Previous studies showed that isolates of P.

agglomerans harbored wide spectrum of antibiotic resistant genes, clinical reports demon-

strated cases of pneumonia and death in children with comorbidities where the causative

agent was identified as a carbapenem-resistant P. agglomerans [12]. Additionally, another

study showed that fifty percent of P. agglomerans isolates extracted from an infant formula

milk were resistant to cefotaxime, moxifloxacin, cotrimoxazole and ticarcillin [10]. As such,

the food-borne P. agglomerans, including the KM1 isolate, may serve as reservoir of antibiotic

resistance genes, posing health risks, food safety concerns, and contributing to the spread of

antibiotic resistance through horizontal gene transfer. These findings suggest that P. agglomer-
ansmay increasingly become more common in clinical settings, as reported in case of major

nosocomial pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa [83].

Interestingly, the same virulence factors of KM1 strain were found back in the closely

related complete genomes of P. agglomerans strains L15, TH81, UAEU18 and C410P1. For P.

agglomerans Tx10, a clinical isolate from the sputum sample of a cystic fibrosis patient, similar

virulence factors of KM1 can be found in the NCBI database despite the incomplete deposition

of the genome sequence of this strain [84]. The P. agglomerans pan-genome analysis of various

soil and plant derived isolates as well as a clinical sample, revealed the presence of multiple

antibiotic resistance genes and virulence factors, including genes related to T6SS effectors,

iron uptake system, adhesion, hemolysin and flagella. Notably, genes related to type III secre-

tion system (T3SS), which are genotypic trait of phytopathogenic P. agglomerans, were absent

in the KM1 strain [85]. These virulence genes in P. agglomeransmay play a role in niche-adap-

tation, colonization and pathogenesis in a wide range of hosts.

In order to complete the characterization of isolated P. agglomerans KM1, immunostimula-

tory properties were assessed, using RAW 264.7 macrophages. The heat inactivated whole-cell

preparation of P. agglomerans triggered secretion of pro-inflammatory cytokines TNF-α and

IL-6, as well as NO. At the same time, culture supernatants contained high levels of anti-

inflammatory IL-10. While the bacterial cell wall contains lipopolisacharide (LPS), the main

immuno-stimulatory molecule and a well-known agonist of TLR4, bacterial triacylated lipo-

proteins were shown to activate TLR1/2 signaling pathway [86, 87]. Previously published

reports attributed TNF-α production mainly to the action of P. agglomerans derived LPS, able

to trigger activation of the TLR4. Our current study provides an additional evidence that

beside the strong involvement of the TLR4, TNF-α section can also be mediated by TLR1/2,

however to a lesser extent. The analysis of the downstream involvement of transcriptional fac-

tors such as NF-kB or MAPKKs in TNF-α secretion indicated dominant activation of NF-kB

and no activation of MAPKKs (86–88]. The dependence on the NF-κB was also demonstrated

in case of secretion of IL-6 and NO. Here in contrast to TNF-α, a strong involvement of both

TLR1/2 and TLR4 was recorded. Interestingly, the heat inactivated whole-cell preparation of

P. agglomerans was also capable of inducting IL-10 production. The anti-inflammatory cyto-

kine IL-10 was shown to antagonize the action of pro-inflammatory cytokines such as TNF-α,

preventing tissue and cell injury due to induction of an excessive inflammation with cytotoxic

activity [88]. The secretion of IL-10 was mainly dependent on TLR4 and to a lesser extent on

TLR1/2 signaling. While the role of TLR2 in section of IL-10 is well documented, the involve-

ment of the TLR4 is less characterized, and as such our study sheds a new light on TLR4 medi-

ated IL-10 secretion [89–92]. Important to keep in mind is that the abrogation of IL-10

secretion may reflect a cumulative effect of the deletion of the TLR4 present on the surface and
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TLR4 located in endosomal compartment. As opposed to production of TNF-α, Il-6 and NO

production, the secretion of IL-10 involved partial activation of MAPKKs and the dominant

role of the NF-κB. The involvement of TLR4 in signaling for IL-10 secretion may have an addi-

tional regulatory function in maintaining the balance between secretion of the pro-inflamma-

tory and inflammatory cytokines, controlling at the same time the extent of an injury during

inflammation.

In conclusion, the genome analysis of the foodborne isolate P. agglomerans KM1 improves

our understanding of its virulence determinants indicating potential for pathogenicity. In

addition to thirteen antibiotic resistance genes, several virulence factors were identified such

as the complete T6SS, filamentous hemagglutinin, siderophore-mediated iron acquisition sys-

tem (Enterobactin transporter) and hemolysin. The KM1 strain showed strong immuno-stim-

ulatory properties on RAW 264.7 macrophages, with a dominant role of TLR4 signaling and

NF-κB activation, resulting in secretion of TNF-α, Il-6, NO and Il-10. Further large-scale stud-

ies of clinical isolates are needed to validate the identified virulence factors and antibiotic resis-

tance genes of this potentially opportunistic P. agglomerans. Hence, the high quality draft

genome of P. agglomerans KM1 will provide a baseline for further studies leading to in-depth

understanding of molecular mechanisms of P. agglomerans pathogenesis.
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