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This study investigated an electrocardiogram (ECG) eigenvalue automatic analysis and detection method; ECG eigenvalues were
used to reverse the myocardial action potential in order to achieve automatic detection and diagnosis of heart disease. Firstly, the
frequency component of the feature signal was extracted based on the wavelet transform, which could be used to locate the signal
feature after the energy integral processing. Secondly, this study established a simultaneous equations model of action potentials
of the myocardial membrane, using ECG eigenvalues for regression fitting, in order to accurately obtain the eigenvalue vector of
myocardial membrane potential. The experimental results show that the accuracy of ECG eigenvalue recognition is more than
99.27%, and the accuracy rate of detection of heart disease such as myocardial ischemia and heart failure is more than 86.7%.

1. Introduction

ECG can record the physiological states of the heart and
cardiovascular system in a real-time manner, and thus it
is widely used for the detection and diagnosis of clinical
heart disease [1]. ECG eigenvalue automatic detection can
rapidly and accurately detect heart diseases [2]. Currently,
ECG eigenvalue detection is based on multiple algorithms:
the envelope analysis technique can effectively decompose
complex signals into single component signals, which are
typically empirical mode decomposition (EMD) and local
mean decomposition (LMD). EMD is an adaptive signal
decomposition method, the data from high frequency to low
frequency decomposition into a series of intrinsicmode func-
tion (IMF) and amargin. Lahmiri and Boukadoum proposed
A Weighted Bio-Signal Denoising Approach Using EMD in
[3], which shows some advantages in ECG denoising. LMD
solves the problem of endpoint effect of EMD method to a
certain extent. However, both LMD and EMD belong to the
recursive model, which have the problems of modal aliasing
[4], end effect, being sensitive to noise and sampling, and

difficulty in separating similar frequency components. But
there is a problem caused by EMD [5]: in the background of
bad noise, IMF will be submerged in the background of noise
that leads to missing the signal characteristic component.
Variationalmode decomposition (VMD) solved this problem
by transforming modal estimates into variational problems
[6, 7].

The above methods are suitable for analyzing and dealing
with aperiodic mutational signals [8]. If the periodic signals
such as ECG are used to calculate the amount of periodic
signals, it is difficult to determine threshold problems, espe-
cially for mobile real-time ECG monitoring, requiring low
computational complexity and high detection accuracy, so
the optimized wavelet processing is an ideal choice [9, 10].

However, two problems remain unresolved: firstly, which
layer is more appropriate for feature detection after wavelet
transform and secondly, whether the high-pass coefficient
or low-pass coefficient is appropriate for feature location. If
these key parameters are decided only by experiences, it is
difficult to obtain systematic and scientific conclusions by
experiments and emulations [11, 12]. This study investigated
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a detection method, which involved directly catching the sig-
nal frequency component during wavelet transform accord-
ing to the frequency characteristics for different wavebands of
ECG signal, to accurately locate the eigenvalue duringwavelet
transform. Currently, detection algorithms are mainly aimed
at location and extraction of the QRS eigenvalue. Using these
results and further reversing the electrophysiological activity
of myocardial cells will be of great significance to automatic
analysis and diagnosis of the physiological status of the heart
[13]. Based on the eigenvalue detection, this research further
studied the reverse analysis of myocardial action potential to
enable automatic detection and diagnosis of heart diseases
such as myocardial ischemia and heart failure.

2. Specific Frequency Coefficient Obtained by
Wavelet Bandpass Filtering

A wavelet transform was performed for signal 𝑓(𝑥) with
frequency 𝑃0, where the high-pass component frequency
was [𝑃0/4, 3𝑃0/4] and the low-pass component frequency
was [0, 𝑃0/4] ∪ (3𝑃0/4, 𝑃0). The high-pass filter 𝐺(𝜔) ≈
2𝐴0𝑒−𝑗𝑁𝑤/2+𝑁𝜋/2(sin (𝑤/2))𝑁 and low-pass filter 𝐻(𝜔) ≈
−2𝐴0𝑒𝑗𝑁𝑤/2(cos (𝑤/2))𝑁 have two intersections in [0, 2𝜋]:
(𝜋/4, 𝐺(𝜋/4)), (5𝜋/4, 𝐺(5𝜋/4)). The two intersections rep-
resent the region where low frequency transitions to high
frequency. According to the Fourier convolution theorem,
it can be concluded that the role of 𝐺(𝜔) and 𝐻(𝜔) on
signal is equivalent to the transfer function in filtering
circuit analysis. For further analysis of the suppression
multiple of signals at the two critical points, 𝐺(𝜋/4) ≈
‖2𝐴0𝑒−𝑁(𝑗𝜋/8−𝜋/2)(sin (𝜋/8))𝑁‖ = 2𝐴0(sin (𝜋/8))𝑁 =
2𝐴0(√2 − √2/2)𝑁; for 𝐴0 = 𝐻(𝑁)

𝑁

(1)/𝑁!, |𝐻(𝑧)|2 +
|𝐻(−𝑧)|2 = 1, so 𝐻(𝑧) ≤ |𝐻(𝑧)|2 ≤ 1, obviously

𝐴0 ≤ 1/𝑁!, and then 𝐺(𝜋/4) ≈ 2𝐴0(√2 − √2/2)𝑁 ≤
(2/𝑁!)(√2 − √2/2)𝑁. Clearly, it is a function related to
𝑁 with faster convergence rate. If 𝑁 = 4, 𝐺(𝜋/4) ≈
0.00198178, and if 𝑁 = 6, 𝐺(𝜋/4) ≈ 0.0000101872. For
a given positive 𝜀 close to 0, there exists 𝑁0 that always
makes lim𝑁→𝑁0((2/𝑁!)(√2 − √2/2)𝑁 − 𝜀) = 0. Then an
appropriate vanishing moment can make the suppression
multiple at the critical point infinitely small and thus make
the extra-regional gains of signal passing this point close to
0, theoretically equivalent to cut-off state. Assume the signal
sampling frequency is 𝑃0, including the noise with frequency
of 𝑃𝑠 = 𝑃0/2. Assume the wave-trapped and denoising
tolerable frequency bandwidth is [𝑃𝑠 − Δ𝑃, 𝑃𝑠 + Δ𝑃], where
Δ𝑃 is frequency bandwidth increment. If the signal section is
[𝑃1, 𝑃2], after each wavelet transform, the high-pass compo-
nent covers the frequencies of ((3𝑃1 + 𝑃2)/4, (𝑃1 + 3𝑃2)/4),
while the low-pass component covers the frequencies of
[𝑃1, (3𝑃1+𝑃2)/4]∪[(𝑃1+3𝑃2)/4, 𝑃2]. For higher orders of filter
for wave trapping, the overlaying area of high-pass frequency
and low-pass frequency is smaller, the filter frequency curve
is steeper, and the energy is more concentrated. To facilitate
calculation, this study adopted normalised frequency as the

unit: for the normalised frequency 𝑅 in [𝑃1, 𝑃2], the actual
frequency 𝑃𝑡 refers to

𝑅 = 𝑃𝑡 − 𝑃1
𝑃2 − 𝑃1 . (1)

Any frequency range [𝑃1, 𝑃2], after normalised process-
ing, can be expressed in [0, 1] solid area number field.
According to the Shannon Theory, the sampling frequency
should not be less than two times the maximum frequency
in the analog signal frequency spectrum, so when directly
filtering the sampling signal, the normalised frequency 𝑅
should be in [0, 0.5], while for filtering at the layer of second
or above, 𝑅 should be in [0, 1].

Assume the normalised frequency for signal 𝑆 is in [0, 𝑃𝑡],
and for the normalised frequency 𝑃𝑠 ∈ [0, 𝑃𝑡], if 𝑃𝑠 ∗ 2𝑁 ≈
0.5 ± Δ𝑃, the signal of frequency section 𝐷 can be extracted
from [𝑃1, 𝑃2] by bandpass filtering after𝑁wavelet transform.
As a demonstration, a wavelet transform is performed for
signal 𝑆, where 𝑆𝐷 refers to the low-pass component after
transform and 𝑆𝐻 refers to the high-pass component after
transform. According to the discussed situations, the follow-
ing operations can be made according to concrete situations:

0.5 −Δ𝑃 ≤ 𝑃𝑠 ≤ 0.5 +Δ𝑃 indicates𝐷 ⊆ 𝑆𝐷, where the
result𝐷𝐻 is returned, and then the algorithm ends.
𝑃𝑠 < 0.25 indicates 𝐷 ⊆ 𝑆𝐷 and a wavelet transform
is performed for signal 𝑆𝐷. 𝑃𝑠 = 2 ∗ 𝑃𝑠, Δ𝑃 = 2 ∗ Δ𝑃;
then this algorithm is repeated.
0.25 < 𝑃𝑠 < 0.75 indicates 𝐷 ⊆ 𝑆𝐻, and a wavelet
transform is performed for signal 𝑆𝐷. 𝑃𝑠 = 2 ∗ (𝑃𝑠 −0.25), Δ𝑃 = 2 ∗ Δ𝑃; then this algorithm is repeated.

3. Eigenvalue Extraction of QRS Wave
Group and T Wave

How to accurately locate QRS wave group and T wave
and extract their eigenvalues is of great significance for the
detection of ECG eigenvalues. Affected by EMG interference,
power frequency interference, and electromagnetic inter-
ference and noises, ECG signals are mixed with baseline
drift and various noises, causing difficulties in the accurate
location of ECG eigenvalues [14]. The basic method is to first
analyze the frequency features of QRSwave group and extract
the frequency components during wavelet decomposition,
then enhance the signals according to certain strategy, and
finally accurately locate the QRS wave group and T wave.

3.1. Analysis of Frequency Features of QRS Wave and T
Wave. Figure 1 shows the energy distribution of QRS wave
and T wave on the frequency spectrum. It shows that the
bandwidth for QRS wave is 0–40Hz, accumulating nearly
99% of energy. To extract the wavelet system of QRS wave
by bandpass filtering, the frequency bandwidth should be
limited to about 20Hz, so that the frequency section of
20Hz bandwidth with maximum energy density in 0–40Hz
is achieved. By assuming 𝜑(𝑡) only covers QRS wave signals,
𝐹(𝜔) = ∫∞

−∞
𝜑(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 can transform𝜑(𝑡) from time domain
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Figure 1: Schematic diagram of frequency characteristics of QRS wave and T wave of ECG signal. (a) shows the original ECG, (b) shows
energy distribution of T wave after FFT, and (c) shows energy distribution of QRS wave after FFT.

to frequency domain. Section 𝐷 of 10Hz bandwidth with
maximum energy density is calculated by the following
formulae:

𝑃 (𝑠) = ∫𝑠+10
𝑠

𝐹2 (𝜔) 𝑑𝜔

= ∫𝑠+10
𝑠

[∫∞
−∞

𝜑 (𝑡) 𝑒−𝑖𝜔𝑡𝑑𝑡]
2

𝑑𝜔,
𝐷 = {[𝑠, 𝑠 + 20] | max (𝑃 (𝑠)) ∧ 𝑠 ∈ [0, 20)} .

(2)

Through calculation, it can be concluded that 76% of
total energy is accumulated near 9.4Hz–19.4Hz ofQRSwave.
It can utilise the bandpass to extract the signal of this fre-
quency section, where after the signal is enhanced, amplified,
and processed, the higher identification can guarantee the
signal is accurately locked. The wavelet coefficient has both
frequency features and time domain features; location and
extraction can be furthermade on the timedomain.As shown
in Figure 1, T wave has nearly 94% of energy in the 0–8Hz
frequency section. The bandwidth is narrower, to avoid
overlapping with the baseband, and it selects 5Hz waveband
for extraction to calculate the frequency section of T wave of
5Hz bandwidth with maximum energy density. By assuming
𝜑(𝑡) only covers T wave signal, 𝐹󸀠(𝜔) = ∫∞

−∞
𝜙(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡.

Section𝐷󸀠 of 5Hz bandwidth with maximum energy density
is calculated by the following formulae:

𝑃󸀠 (𝑠) = ∫𝑠+5
𝑠

𝐹󸀠2 (𝜔) 𝑑𝜔

= ∫𝑠+5
𝑠

[∫∞
−∞

𝜙 (𝑡) 𝑒−𝑖𝜔𝑡𝑑𝑡]
2

𝑑𝜔,
𝐷󸀠 = {[𝑠, 𝑠 + 5] | max (𝑃󸀠 (𝑠)) ∧ 𝑠 ∈ [0, 5)} .

(3)

Through calculation, it can be concluded that 75% total
energy is accumulated near 3.0–8.0Hz.

3.2. Extraction of Wavelet Coefficient Related to Features of
QRS Wave Group and T Wave. According to the previous
discussion, the wavelet signal component of QRS wave
group should be extracted from 9.4Hz to 19.4Hz. To allow
calculations, 10–20Hz is used as the signal sampling section.
When the sampling frequency is 200Hz, the corresponding
normalised frequency section is 𝐷 = [0.05, 0.10]. By anal-
ysis, the wavelet bandpass filtering algorithm flow of 𝐷 =
[0.05, 0.10] is as follows.

The normalised frequency for the QRS frequency spec-
trum center is 𝑝𝑚 = 0.075. When 𝑝𝑚 < 0.25, the band-
pass extraction fails to be made at the current wavelet
decomposition layer, so the next round of wavelet transform
needs to be made for the low-pass component after wavelet
transform to finish the bandpass extraction. At this time, the
resolution of wavelet-based signal space is shortened to a
half, so the bandpass space should be expanded: 𝐷 = 2𝐷 =
[0.10, 0.20], 𝑝𝑀 = 2 ∗ 𝑝𝑀 = 0.15. In the second round of
wavelet transform, 𝑝𝑀 = 0.24 is included in the low-pass
space 𝑝𝐷 = (0, 0.25) and the low-pass signal includes the
direct current signal, so it should be further separated; let
𝑝𝑀 = 0.48, to make the high-frequency component of the
third round of wave transform as the extraction signal of QRS
wave.

The energy distribution for T wave is 3.0–8.0Hz, where
the corresponding normalised frequency is [0.015, 0.04] and
its center frequency is 𝑝𝑀 = 0.0275. After the fourth wavelet
transform, 𝑝𝑀 = 24 ∗ 𝑝𝑀 = 0.44, and the corresponding
frequency range is 𝐷 = [0.24, 0.64], 𝐷 ⊂ 𝑝𝐷, so it can select
the high-frequency component after fourth filtering as the
extraction signal, as shown in Figure 2.

3.3. Location and Eigenvalue Extraction of QRS Wave Group
and T Wave. This processing has extracted the wavelet
coefficient concentrating energies of the R wave signal, so
next the coefficient can be accurately localised at the time
domain. This study utilised a 0-1 extraction function 𝑍(𝑡) to
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Figure 2: Schematic diagram of wavelet component of QRS wave and T wave of ECG signal. (a) shows the original ECG, (b) shows wavelet
component of QRS wave after bandpass extraction, and (c) shows the wavelet component of T wave after bandpass extraction.

transform the wavelet feature component 𝜒(𝑡) into a series of
0-1 square waves and then took the midpoint of each wave 1
as the time domain location result. The extraction function
𝑍(𝑡) is expressed as follows:

𝑍 (𝑡) =
{{{{{
{{{{{
{

0
𝐿

∑
𝑘=0

𝜒2 (𝑡 − 𝑘) < 𝑀
2 ,

1
𝐿

∑
𝑘=0

𝜒2 (𝑡 − 𝑘) ≥ 𝑀
2 .

(4)

During the algorithm implementation process, the threshold
value𝑀 should be upgraded:

if:
𝐿

∑
𝑘=0

𝜒2 (𝑡 − 𝑘) ≥ 𝑀
2

then:𝑀 = 𝑀(1 − 𝜆) + 𝜆
𝐿

∑
𝑘=0

𝜒2 (𝑡 − 𝑘) .
(5)

Generally, a real number of 𝜆 ≤ 0.25 is used. While the
𝐿 value can be determined as per the actual width of R wave
in the time domain, generally speaking, if R wave lasts for 𝑇,
𝐿 = 𝑇/2. When the square wave is wider, it should be further
localised to minimum time. A trigger mechanism should be
set so that when 𝑍(𝑡) = 1, 𝑄 = 𝑡 is triggered, and when 𝑍(𝑡)
changes from 1 to 0, the calculation and location will be made
by 𝑄 = (𝑄 + 𝑡)/2. A concrete algorithm implementation can
be finished in a loop iteration where the time complexity is
𝑂(𝑛). Figure 3 shows the location of features of QRSwave and
T wave, and Figure 4 shows the location results of algorithm
features. The feature detection and location are based on the
wavelet transform and are combined with signal denoising,
compressing, and other processing so that the algorithm can
save resources.

4. ECG Reverse Analysis and
Myocardial Membrane Action Potential
Feature Detection

The electrocardiogram (ECG) is a dynamic potential dif-
ference of myocardial membrane action potential between
two points of body surface, and it can objectively reflect
the physiological status of the heart [15]. ECG is of great
significance to clinical diagnosis, but ECG automatic disease
diagnosis and analysis face certain technology challenges.
Some studies [16, 17] have put forward an ECG mode
recognitionmethod to establish a complete ECG feature tem-
plate database in advance and then match it with extracted
signal for analysis. However, this method has difficulties in
establishing a complete ECG template and complexity in
matching analysis time; it is not suitable for mobile and real-
time ECG.Other studies [18, 19] have put forward an artificial
intelligent algorithm, by learning, training, and accumulat-
ing the knowledge and experiences to perform intelligent
recognition on extracted signals. This method can adapt to
big-data and high-performance platform processing but is
of insufficient resources for mobile and real-time ECG. The
current study reversely calculated the heart outer membrane
potential and obtained its eigenvalue based on previously
extracted ECG eigenvalue, to enable the physiological status
of heart to be shown and to provide a basis for automatic
analysis of heart disease diagnosis and health surveillance.

4.1. Heart Membrane Potential Action Figure and Feature
Model. The potential difference between the inside and
outside of the myocardial membrane is called the transmem-
brane potential or membrane potential. When the myocar-
dial cells are excited by irritation, the membrane potential
will suddenly change; the potential inside the membrane
will change from negative potential to positive potential
[20], while the potential outside the membrane will change
from positive potential to negative potential. This change in
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Figure 3: Schematic diagram of feature location of QRS wave and T wave of ECG signal. (a) shows QRS component, (b) shows T wave
component, (c) shows QRS energy, and (d) shows T wave energy.
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Figure 4: Schematic diagram of feature detection of QRS wave and T wave. (a) shows the original ECG signal and (b) shows the features
location of ECG filtering.

myocardial transmembrane potential is called action poten-
tial. Figure 5 shows the relationship between myocardial
membrane potential and ECG signal.The TNNPmodel is the
single cell transmembrane potential action model presented
by Köhler et al. [21]. By H-H equivalent model principle,
the cell membrane acts as a capacitor, the ionic currents and
pumps are equivalent to interrelated power and resistance
[22], so the single cell electrophysiological model of TNNP
model can be expressed by

𝑑𝑉𝑚
𝑑𝑡 = −𝐼ion + 𝐼stim𝐶𝑚 , (6)

where 𝑉𝑚 is membrane potential, 𝑡 is time, 𝐼stim is outside
stimulated current, and 𝐶𝑚 is unit membrane capacitance.
𝐼ion as total transmembrane current can be expressed by

𝐼ion = 𝐼Na + 𝐼KI + 𝐼to + 𝐼Kr + 𝐼Ks + 𝐼CaL + 𝐼NaCa + 𝐼NaK
+ 𝐼pCa + 𝐼pK + 𝐼bCa + 𝐼bNa,

(7)

where 𝐼CaL is type-L Ca2+ current, 𝐼NaCa is the current of
Na+/Ca2+ exchanger, 𝐼NaK is Na/K pump current, 𝐼pCa and
𝐼pK are calcium and potassium current at platform phase,
respectively, 𝐼bCa and 𝐼bK are background potassium and
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Figure 5: Relationship between myocardial membrane potential and ECG signal. (a) shows the myocardial membrane potential and (b)
shows the original ECG signal.
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Figure 6: Comparison of normal and abnormal epicardium action potentials. (a) shows the normal epicardium action potential, (b) shows
the action potential of epicardium with myocardial ischemia, and (c) shows the action potential of epicardium with heart failure.

calcium current, respectively, 𝐼Na is rapid Na+ current, 𝐼KI is
inward rectifier K+ current, 𝐼to is transient outward current,
𝐼Kr is rapid delayed rectifier K+ current, and 𝐼Ks is slow
delayed rectifier K+ current. The H-H model makes the
influence factor of each current equivalent to a control
logic gate to show the electrophysiological status of heart
cells. The control parameters of the membrane potential
action equation are as many as 256 [23]. For ECG automatic
detection and calculation, the detection and extraction of
large amounts of fine and sensitive physiological parameters
is a complicated and difficult task, not suitable for a mobile
and real-time calculation platform.

This complicated heart potential action equation cannot
be directly determined by parameters and is hard to fit
with polynomials. Based on this, the current study utilised
big data to establish a standardised heart outer membrane
action potential mode andmodulated this model with simple
parameters, to enable thismodel to show different heart outer
membrane action potential characteristics and reversely cal-
culate this model with ECG eigenvalue. The myocardial cell
action potential can directly reflect the electrophysiological
activity of cells in universality and stability; under normal

circumstances, it can better show the electrophysiological
activity status of myocardial cells. This study used the heart
outermembrane potential database as sample data to perform
regression analysis and establish the v-lead left and right
standard models, where the corresponding figures are as
follows.

Let 𝐶𝐿(𝑡) indicate left epimyocardium standard action
potential of human and let 𝐶𝑅(𝑡) indicate right epimy-
ocardium standard action potential of human.

𝐹(𝑅, 𝑡, 𝑘, ℎ𝑅) = ℎ𝑅𝐶𝑅(𝑘𝑡)means the𝑥-coordinate of𝐶𝑅(𝑡)
is scalable in 𝑘 times and the 𝑦-coordinate is scalable in ℎ𝑅
times.

𝐹(𝐿, 𝑡, 𝑘, ℎ𝐿) = ℎ𝐿𝐶𝐿(𝑘𝑡)means the 𝑥-coordinate of 𝐶𝐿(𝑡)
is scalable in 𝑘 times and the 𝑦-coordinate is scalable in
ℎ𝐿 times. Figure 6 compares the normal and abnormal
epicardium action potentials, showing 𝑘, ℎ𝐿, and 𝐻𝑅 have
influences on epicardium action potential forms. Figure 6(b)
shows the myocardial action potential figure and ECG with
myocardial ischemia, and Figure 6(c) shows the myocardial
action potential figure and ECG with heart failure. In the
case of myocardial ischemia, in 𝐹(𝑅, 𝑡, 𝑘, ℎ𝑅), 𝑘 is less than
0.9 and 𝐻𝑅 is less than 0.95. In the case of heart failure,
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in 𝐹(𝑅, 𝑡, 𝑘, ℎ𝐿), 𝑘 is less than 1.1 and ℎ𝐿 is less than 0.96.
Therefore, eigenvalues 𝑘 and ℎ𝐿 can effectively show the status
of myocardial electrophysiology activity and thus provide a
way for intelligent diagnosis and analysis.

4.2. Extraction of Potential Features of Heart Membrane.
Through detection of ECG eigenvalue, it can obtain basic
features of the ECG signal: to locate the time of R peak value
and T peak value, obtain R peak value Ψ and T peak value 𝑇,
and acquire the integral of ECG signal time on time Δ from
R wave starting time to rest time. Accordingly, the following
simultaneous equations model can be established:

𝑌1 = 𝐹 (𝑅, 𝑡𝑇 − 𝑡𝑅, 𝑘, ℎ𝑅) ,
𝑌2 = 𝐹 (𝐿, 𝑡𝑇 − 𝑡𝑅, 𝑘, ℎ𝐿) ,
𝑇 = ℎ𝑅𝑌1 − ℎ𝐿𝑌2,
Δ = 𝑘 (ℎ𝑅Φ1 − ℎ𝐿Φ2) ,

(8)

whereΦ1 andΦ2 indicate the integral of𝐹(𝑅, 𝑡, 𝑘, ℎ𝑅) on time
𝑡. This model is unidentifiable from structure. To simplify
calculations, this study assigned 1, respectively, to 𝑟 𝑘, ℎ𝑅,ℎ𝐿 to get 𝑌1, 𝑌2, and hence, formula (7) is simplified into a
regression simultaneous equations model:

𝑇 = ℎ𝑅𝑌1 − ℎ𝐿𝑌2,
Δ = 𝑘 (ℎ𝑅Φ1 − ℎ𝐿Φ2) .

(9)

In the simultaneous equations model, the first equation is
a linear equation with two unknowns and is not dependent
on the second equation, so the least square method can be
adopted independently for unbiased estimation of parame-
ters ℎ𝑅, ℎ𝐿. Through detection and analysis, the experimental
data can be attained:

𝑇 = 𝑇1, 𝑇2, . . . , 𝑇𝑛,
𝑌1 = 𝑌11, 𝑌12, . . . , 𝑌1𝑛,
𝑌2 = 𝑌21, 𝑌22, . . . , 𝑌2𝑛.

(10)

The corresponding deviation equation is

∑ V𝑖
2 = ∑[𝑇𝑖 − (ℎ𝑅𝑌1𝑖 + ℎ𝐿𝑌2𝑖)]2 . (11)

Calculate the partial derivative of ℎ𝑅, ℎ𝐿, let it be 0, and
then solve the equation to get

ℎ𝑅 = 𝑠1𝑦 ⋅ 𝑠22 − 𝑠2𝑦 ⋅ 𝑠12
𝑠11𝑠22 − 𝑠122 ,

ℎ𝐿 = 𝑠11 ⋅ 𝑠2𝑦 − 𝑠12 ⋅ 𝑠1𝑦
𝑠11𝑠22 − 𝑠122 ,

(12)

where

𝑠11 = ∑𝑌1𝑖2 − (∑𝑌1𝑖)2
𝑛 ,

𝑠22 = ∑𝑌2𝑖2 − (∑𝑌2𝑖)2
𝑛 ,

𝑠12 = ∑𝑌1𝑖𝑌2𝑖 + (∑𝑌1𝑖∑𝑌2𝑖)
𝑛 ,

𝑠1𝑦 = ∑𝑌1𝑖𝑇𝑖 − (∑𝑌1𝑖∑𝑇𝑖)
𝑛 ,

𝑠2𝑦 = ∑𝑌2𝑖𝑇𝑖 − (∑𝑌2𝑖∑𝑇𝑖)
𝑛 .

(13)

By 𝑚 rounds of the least square method, the estimated
values of ℎ𝑅, ℎ𝐿 of𝑚 sets will be attained:

ℎ𝑅 = ℎ𝑅1, ℎ𝑅2, . . . , ℎ𝑅𝑚,
ℎ𝐿 = ℎ𝐿1, ℎ𝐿2, . . . , ℎ𝐿𝑚.

(14)

Substitute them into Δ = 𝑘(ℎ𝑅Φ1 − ℎ𝐿Φ2) for regression
fitting of the least square method on 𝑘. Generally speaking,
the system will tend to be stable after multiple rounds of
iterations, and then the parameters ℎ𝑅, ℎ𝐿, 𝑘 can objectively
reflect the basic features of myocardial electrical activity.
Figure 7 shows ECG reverse feature analysis results.

This investigation sampled 15 records, respectively, from
the European ST-T database and the BIDMC congestive heart
failure database and sampled 10 records from ECG ID for
comparative experiments, to analyze the correlation between
𝐾 and𝐻 andmyocardial ischemia and heart failure.When𝐾
is less than 0.85, the myocardial ischemia probability begins
to increase; when 𝐾 is less than 0.7, the probability is as high
as 89%. When 𝐾 is greater than 1.2, the correlation of heart
failure will obviously increase; when 𝐾 is greater than 1.45,
the probability of heart failure will be as high as 77.5%. The
correlations are shown in Figure 8.

5. Experiment and Emulation Results

This research utilised the ECG ID database to evaluate the
ECG detection method. The ECG database includes the
two-channel ECG records of 48.5 hours, with 11 digits of
resolutions and 10mV. ECG records from this database cover
sharp waves and high T waves, negative QRS wave group,
small QRS wave group, wide QRS wave group, myoelectricity
noise, baseline drift, sudden change of QRS amplitude, QRS
morphological mutation, polymorphous premature ventric-
ular contraction, long pause, and irregular heart rhythm.
Detection and experiments were performed by the algorithm
presented in this paper to obtain six quantitative results:
correct detection of R or T peak time showed true positive
(TP); loss of R or T peak time showed false negative (FN);
and the noise spike detected to be R or T peak time showed
false positive (FP). To evaluate the performance of the
given detection algorithm, the following formulae should
be utilised to calculate the sensitivity (Se) and detection
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Figure 7: Schematic diagram of ECG reverse features analysis results. (a) shows the ECG with myocardial ischemia, (b) shows the normal
ECG, (c) shows the reverse calculation results of (a), and (d) shows the reverse calculation results of (b).
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Figure 8: Schematic diagram of the correlation between 𝐾 and 𝐻 and myocardial ischemia and heart failure. (a) shows the 𝐾 correlation
and (b) shows the𝐻 correlation.

error rate (DER). To evaluate the detection accuracy and
accuracy rate of this method, accuracy (Acc) is defined.
In Table 1, R peak detection rate of first channel (each)
of 16 ECG records in the MIT-BIH arrhythmia database is
summarised. By running the algorithm for detection, QRS

wave totally generates 43 FN pulses and 44 FP beats, totalling
87 failures. The detection accuracy of ECG records change
from 99.32% to 100% based on normal and pathological ECG
signal features and different noises. The detection accuracy
for QRS wave is slightly higher than T wave; T wave totally
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Table 2: Detection results of 40 ECG pathological samples.

ECG record 𝐾 𝐻_𝑅 𝐻_𝐿 Clinical signs Detection result
E0111 0.71 0.97 0.95 Myocardial ischemia TP
E0112 0.79 0.89 0.87 Myocardial ischemia TP
E0113 0.69 0.91 0.93 Myocardial ischemia TP
E0114 0.63 0.93 0.92 Myocardial ischemia TP
E0115 0.96 0.99 0.91 Myocardial ischemia FP
E0116 0.71 0.88 0.92 Myocardial ischemia TP
E0117 0.73 0.89 0.88 Myocardial ischemia TP
E0118 0.71 0.91 0.87 Myocardial ischemia TP
E0112 0.69 0.91 0.93 Myocardial ischemia TP
E0113 0.63 0.93 0.92 Myocardial ischemia TP
E0114 0.66 0.89 0.91 Myocardial ischemia TP
E0115 0.71 0.88 0.92 Myocardial ischemia TP
E0116 0.70 0.86 0.88 Myocardial ischemia TP
E0117 0.79 0.87 0.87 Myocardial ischemia TP
E0118 0.63 0.91 0.93 Myocardial ischemia TP
Chf01 1.79 0.81 0.83 Heart failure TP
Chf02 1.62 0.79 0.81 Heart failure TP
Chf03 1.16 0.91 0.97 Heart failure FN
Chf04 1.70 0.86 0.88 Heart failure TP
Chf05 1.69 0.79 0.86 Heart failure TP
Chf06 1.79 0.87 0.83 Heart failure TP
Chf07 1.62 0.79 0.81 Heart failure TP
Chf08 1.66 0.81 0.77 Heart failure TP
Chf09 1.10 0.92 0.98 Heart failure FN
Chf10 1.69 0.99 0.86 Heart failure TP
Chf11 1.79 0.89 0.83 Heart failure TP
Chf12 1.62 0.89 0.81 Heart failure TP
Chf13 1.65 0.81 0.77 Heart failure TP
Chf14 1.71 0.82 0.88 Heart failure TP
Chf15 1.68 0.79 0.86 Heart failure TP
Person_01/rec_1 1.01 0.98 0.99 Normal TP
Person_01/rec_1 1.02 1.04 1.01 Normal TP
Person_01/rec_1 0.99 1.02 0.97 Normal TP
Person_01/rec_1 1.01 0.97 0.99 Normal TP
Person_01/rec_1 1.05 0.99 1.02 Normal TP
Person_01/rec_1 1.01 0.98 0.99 Normal TP
Person_01/rec_1 1.04 0.98 0.99 Normal TP
Person_01/rec_1 1.02 1.01 1.01 Normal TP
Person_01/rec_1 0.99 1.02 0.97 Normal TP
Person_01/rec_1 1.01 0.97 0.99 Normal TP
Person_01/rec_1 1.00 0.98 1.02 Normal TP

generates 48 FN pulses and 54 FP beats, totalling 102 failures,
as shown in Table 1:

Se = TP
TP + FN

× 100%,

DER = FP + FN
TP

× 100%,

Acc = TP
TP + FP + FN

× 100%.

(15)

To test the detection effects of the algorithm on patho-
logical ECG signals of myocardial ischemia and heart failure,
this study used 15 ECG samples with myocardial ischemia
from the European ST-T database, 15 ECG samples with heart
failure from the BIDMC congestive heart failure database,
and 10 raw signal ECG samples from the ECG ID database,
with 100 heart rhythm signals included for each sample.
As seen from the detection results in Table 2, 14 ECG
samples with myocardial ischemia were accurately detected,
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Figure 9: Comparison of two different algorithms for ECG signal processing.

with an accuracy of 93.3%; 13 samples with heart failure
were accurately detected, with an accuracy of 86.7%; and 10
raw signal ECG samples were accurately detected, with an
accuracy of 100%.

Signal analysis and processing can be divided into two
methods: direct analysis and transformation analysis. Signal
transformation analysis and processing is carried out by
mapping the signal to another domain, such as wavelet
transformation or EMD transformation.

Figure 9(a) shows the ECG signal processing of conven-
tional processes, including denoising, feature detection, and
filtering of the three main processes. If 𝑛 is the length of
the signal under normal circumstances, each process needs
to undergo a transformation, assuming that each transfor-
mation requires a time frequency of 𝑇0(𝑛) = 𝐶0𝑛2. Under
these conditions, denoising, detection, and compression are
performed. Assuming that the time frequency of each process
is 𝑇1(𝑛) = 𝐶1𝑛, the total time required for the conventional
signal processingmethod is 3(𝑇0(𝑛)+𝑇1(𝑛)) = 3(𝐶0𝑛2+𝐶1𝑛).
If the proposed algorithm is used for completing the denois-
ing, the detection, and the compression operation, the whole
process only needs to perform the wavelet transform one
time, with a total time taken of 𝑇0(𝑛) + 3𝑇1(𝑛) = 𝐶0𝑛2 + 3𝐶1𝑛
(as shown in Figure 9(b)). The algorithm proposed in this
paper can reduce the time for transformation between signal
domains due to the combination of feature detection, signal
filtering, and signal compression, thus saving resources and
speeding up the operation. As the wavelet transformation
needs to undergo both processes of decomposition and
reconstruction, the useful signal is often lost in the process
of conversion; for example, the symmetry of the orthogonal
wavelet will decrease with the increase of the order of
the vanishing moment and the process will cause signal
distortion. In this paper, we present a method which reduces
the time for transformation, so useful signal loss can be
reduced and accuracy of detection increased.

6. Conclusion

The wavelet transform was performed to achieve wave
trapping extraction, to extract the feature signal component
from wavelet decomposition signal and then enhance and
locate the energy expressing eigenvalue. This method can
integrate the feature location, signal filtering, signal com-
pressing, and other processing, and therefore it can save
computing resources, speed up the processing, and enhance
the detection accuracy.This study utilised ECG eigenvalue to
reversely calculate myocardial potential action features. This
research also established the simultaneous equations model
to represent the myocardial membrane potential activity
and utilised iterative regression to analyze the asymptotic
approximation, to cause the model to accurately show the
myocardial potential action and provide the basis for auto-
matic diagnosis of heart diseases.
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