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Huang-Lian-Jie-Du Decoction (HLJDD), traditional Chinese medicine (TCM), is proven to have ameliorative effects on learning
and memory deficits of Alzheimer’s disease (AD). -e current study aims to reveal the underlying mechanism of HLJDD in the
treatment of AD by simultaneous determination on the regulation of HLJDD on oxidative stress, neurotransmitters, and AMPK-
SIRT1 pathway in AD. AD model rat was successfully established by injection of D-galactose and Aβ25-35-ibotenic acid. Morris
Water Maze (MWM) test was used to evaluate the success of AD modelling. On this basis, an advanced technique with UPLC-
QqQ MS/MS was built up and applied to determine the levels of 8 neurotransmitters in rat plasma. Significant alternation in
methionine, glutamine, and tryptophan was observed in AD rats’ plasma after the administration of HLJDD, relative to the model
group. Meanwhile, HLJDD could upregulate the levels of SOD, GSH-Px, AMPK, and SIRT1 and downregulate the content of
MDA in the peripheral system of the AD rats. -e underlying therapeutic mechanism of HLJDD for the treatment of AD was
associated with alleviating oxidation stress, inflammation, neurotransmitters, and energy metabolism. -ese data provide solid
foundation for the potential use of HLJDD to treat AD.

1. Introduction

HLJDD, a classical TCM formula used for heat clearance and
detoxification, consists of Rhizoma coptidis (Rc), Radix
scutellariae (Rs), Cortex phellodendr (Cp), and Fructus
Gardeniae (Fg) with a weight ratio of 3 : 2 : 2 : 3. In clinic,
HLJDD has been used to treat AD in China and other Asian
countries recently [1, 2]. Our previous study showed that
alkaloids, flavonoids, and iridoids were the main bioactive
ingredients of HLJDD that exhibited different mechanisms
of action in the anti-inflammatory process [3, 4]. Recently,
HLJDD has made remarkable achievement in the treatment
of AD with the specific characteristics of anti-inflammation,
oxidation resistance, preserving energy metabolism, re-
ducing the production of amyloid beta-peptide (Aβ), and
improving memory in AD mice [5–8]. However, much

attention has been paid to the influence of HLJDD on the
central nervous system while few research focuses on the
regulation of the peripheral system of AD by HLJDD.

AD is an age-related neurodegenerative disorder in-
volving behavioural changes and difficulty in thinking
[9, 10]. -e major pathological hallmarks of AD are neu-
ronal loss, amyloid senile plaques, and neurofibrillary tan-
gles (NFTs) within the cerebral cortex. Guedes et al. reported
that the accumulation of diverse forms of Aβ in the AD brain
occurred before the development of visible senile plaques
and formation of senile plaques and NFTs [11]. -e presence
of methionine at 35 position of Aβ is critical to Aβ-induced
oxidative stress and neurotoxicity [12–14]. -e activities of
antioxidant enzymes including glutathione peroxidase
(GSH-Px) and catalase displayed an age-dependent decline
in both brain and plasma [15]. Neurons, which contribute to
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50–80% of overall energy balance of the whole brain with
glucose oxidative metabolism, are thought as a principal
energy source and are easily vulnerable to diverse pathologic
inputs that limit the supplement of the energy [16–18].
Neurotransmitters play an important role in the various
activities of central and peripheral nervous systems and
show different contents between normal people and patients
with AD [19]. -e interaction of Aβ with mononuclear
phagocytes, including microglia and recruited peripheral
blood monocytes, would further induce neuroinflammation.
Consequently, the occurrence of oxidative stress, distur-
bance of the energy metabolism, and varied levels of the
neurotransmitters are closely related to the development of
AD.

AMP-activated protein kinase (AMPK), a key kinase
involved in regulating cell energy metabolism, is an im-
portant regulator of Aβ generation [20, 21]. Short-term
exposure of cultured rat hippocampal neurons to Aβ olig-
omers transiently decreases intracellular ATP levels and
AMPK activity [22]. When confronted with inflammation,
the combination of AMPK with silent information regulator
of transcription 1 (SIRT1) could exert synergistic effects to
jointly maintain the energy homeostasis [22, 23]. Accu-
mulative findings indicate that increasing in oxidative stress
during aging could decrease the catabolic activity of SIRT1,
possibly by reactive oxygen [24]. -erefore, AMPK-SIRT1
may be potentially involved in the pathogenesis of AD.

HLJDD, as well as its major components, has amelio-
rative effects on learning and memory deficits. However, the
therapeutic mechanism is still unclear. In this study, the rats
injected with D-galactose and Aβ25-35-ibotenic acid were
selected as AD model and this aims to explain the potential
mechanism of HLJDD in treating AD rats from a new
perspective. To the best of our knowledge, this is the first
report on the investigation of the therapeutic mechanism of
HLJDD on AD rats from the perspective of peripheral
oxidative stress, inflammation, energy metabolism, and
neurotransmitters.

2. Material and Methods

2.1. Chemicals andRegents. Rs, Rc, Cp, and Fg were obtained
from their geoauthentic product areas. -ese four herbal
medicines were authenticated as Scutellaria baicalensisGeorgi
(voucher specimen number: SB-0315), Coptis chinensis
Franch (voucher specimen number: CC-0311), Phellodendron
chinense Schneid (voucher specimen number: PC-0311), and
Gardenia jasminoides Ellis (voucher specimen number: GJ-
0311), respectively, by professor He Xi-Rong (Institute of
Chinese Materia Medica, China Academy of Chinese Medical
Sciences) [3, 25–27]. -e reference standards diazepam, se-
rotonin, glutamate, creatinine, arginine, Aβ25-35, and ibotenic
acid were purchased from Sigma (St, Louis, MO, USA).
Among them, diazepam was used as the internal standards
(S1). Tryptophan and methionine were obtained from Ac-
celerating Scientific and Industrial Development thereby
Serving Humanity (Beijing, China). Adrenaline and gluta-
mine were provided by-e National Institute for the Control
of Pharmaceutical and Biological Products (Beijing, China).

HPLC grade methanol and acetonitrile for the qualitative
analysis and extraction were obtained from Honeywell
Burdick and Jackson (Swedesboro, NJ, USA). HPLC grade
formic acid was provided by -ermo Fisher Scientific (Bre-
men, Germany), and ultrapure water was purified by Milli-
pore system (Millipore, Billerica, MA, USA). Other chemicals
and solvents were of analytical grade.

2.2. Formula Preparation. In the preparation of HLJDD,
four samples of dried plants were grinded into powders and
mixed in a ratio of 2 : 3 : 2 : 3 (Rs : Rc : Cp : Fg), further
decocted twice with boiling water (1 :10, w/v) for 2 h. -en,
the aqueous extract was concentrated and dried on a rotary
vacuum evaporator at 80°C.

2.3. Surgical Procedure. Wistar rats (male, 270± 20 g),
purchased from Cisco North Biotechnology Co, Ltd. (Bei-
jing, China), were grown up in an environmentally con-
trolled room (12 h light cycle) at 20± 1°C and 50± 10%
relative humidity and feed with constant access to rodent
chow (Nanjing, China) and water. A certain number of rats
were randomly selected for subcutaneous injection of 50mg/
kg D-galactose for 45 days, which was dissolved in 0.9%
saline (20mg in 2mL). -e control group (n� 6) received
subcutaneous injection of the same volume of saline. In the
forty-sixth day, rats were randomly divided into a sham
group (n� 5) and AD’s model group (n� 20). Aβ23-35 was
dissolved in 0.9% saline and incubated for 7 days at 37°C;
then ibotenic acid was added to form the Aβ25-35-ibotenic
acid solution (4.0mg/mL Aβ23-35 and 2.0mg/mL ibotenic
acid). Sodium pentobarbital (4%, 40mg/kg) was in-
traperitoneally injected before surgery. Aβ25-35-ibotenic acid
solution (2 μL) was administered into the nucleus basalis
magnocellularis (NBM) over a period of 5min, and then the
needle was left in place for 10min after the infusion. Rats in
the sham group were injected with 2 μL of 0.9% saline by the
same procedure. After the operation, all rats received sub-
cutaneous injection of benzylpenicillin sodium immediately
to prevent infections. -e ethics committees of Cisco North
Biotechnology Co., Ltd. (Beijing, China) and the China
Academy of Chinese Medical Sciences (Beijing, China)
approved the experimental protocol. -e ethical approval
number was BJAM2016052105.

2.4. Morris Water Maze (MWM) Test. Seven days after the
surgical procedure, all rats underwent a spatial learning and
memory test using the MWM test [15, 26] with tiny
modification, as used for screening. In navigation experi-
ment which contains four test sessions per day for con-
tinuous four days, the interval between each test sessions was
45 minutes. For each assay, rats were allowed to swim until
they found and landed on the platform for 15 sec. If they
failed within 90 sec, the rats were picked up and placed on
the platform for 15 sec. At the end of the last training, the
platform was removed and the rats were placed from a fixed
location. -en the swimming distance and time were
recorded using video tracking.
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2.5. Animal Grouping and Sample Collection. After the
success of AD modelling, the remaining AD rats (n� 12, the
postoperative survival rate was 60%) were divided into two
groups at random: AD rats with HLJDD for one week
(HLJDD one week group, n� 6) and AD rats with physi-
ological saline group (model group, n� 6). -e other two
groups were sham group (n� 4) and control group (n� 6).
-e prepared HLJDD extract power (HLJDD-EP) solution
was administered to the rats by oral gavage for one week at
2mL/100 g body weight (crude material content: 3.5 g/kg/d).
-e sham group, model group, and control group received
the same dose of physiological saline by oral gavage.

2.6. Determination of Superoxide Dismutase (SOD),
Malondialdehyde (MDA), and GSH-Px in Rat’s Hepar,
Spleen, Kidney, and Plasma. -e excised hepar, spleen,
and kidney tissues were homogenized with ice-cold saline
and centrifuged at 2500 rpm for 10min to obtain the
supernatant. -e expressions of SOD, GSH-Px, and MDA
in plasma, hepar, spleen, and kidney tissues were mea-
sured by spectrophotometer kits (SOD, GSH-PX, and
MDA checkerboard were purchased from Nanjing
Jiancheng Biotechnology Co., Ltd (Nanjing, China)). All
of the procedures were performed by the same operator
according to the manufacturer’s protocol.

2.7. Determination of 8 Neurotransmitters in Rat’s Plasma by
UPLC-QqQ MS/MS

2.7.1. Preparation of Standards Solutions and Plasma
Samples. Eight reference standards including serotonin,
glutamate, creatinine, arginine, tryptophan, methionine,
adrenaline, and glutamine were dissolved in 50% methanol
and diluted with 50% methanol (containing 0.1% formic
acid) to a series of concentrations. An internal standard
stock solution was also prepared with 50% methanol. Ali-
quots of 100 μL from plasma were mixed with 10 μL of
ascorbic acid (dissolved in physiological saline, w/v: 1 g/
100mL), 10 μL of IS, and 380 μL of methanol (containing
0.2% formic acid), respectively. Followed by vortex and
centrifugation at 12000 rpm for 15min, the aliquots were
analyzed by UPLC-QqQ MS/MS.

2.7.2. Chromatographic Conditions. An Agilent 6490 triple
quadrupole LC-MS system (Agilent Corporation, MA,
USA) equipped with G1311A quaternary pump, G1322 A
vacuum degasser, G1329 A autosampler, and G1316 A
thermostat was used for the UPLC-QqQ MS/MS analysis.
-e mobile phase consisted of acetonitrile containing
0.05% formic acid (solvent A) and water containing
20mmol ammonium acetate (solvent B). -e stepwise
linear gradient was optimized as follows: 0–20min, linear
from 95% to 70% A; 20–21min, linear from 70% to 50% A;
21–24min, held at 50% A; 24–25min, linear from 50% to
95% A; and 25–30min, held at 95% A for equilibration of
the column. -e flow rate was 0.3mL/min. -e injection
volume was 3 μL.-e separation was achieved at 25°C using

an optimized Waters ACQUITY UPLC BEH Amide col-
umn (2.1mm × 100mm, 1.7 μm).

-e analytes were determined by monitoring the pre-
cursor-product transition in the MRM mode using ion
polarity switchingmode. To ensure the desired abundance of
each compound, the CE values and other parameters were
optimized and were as follows: cycle time, 300ms; gas temp,
200°C; gas flow, 14 L/min; nebulizer, 20 psi; sheath gas flow,
11 L/min; capillary voltage, 3 kV; nozzle voltage, 1.5 kV; and
Delta EMV(+), 200V. -e optimized mass transition ion
pairs (m/z) and CE values for neurotransmitters are shown
in Table 1.-eMRM chromatograms of 8 neurotransmitters
are shown in Figure 1.

2.8. Detection of AMPK and SIRT1 in Rat’s Hepar, Spleen,
and Kidney with Western Blot and Real-Time-PCR

2.8.1. Western Blot. Excised hepar, spleen, and kidney tis-
sues were homogenized in ice-cold saline with a SCIENTZ
glass homogenizer (DY89-1). Further, 200 μL of cell lysis
buffer was added to the slurry containing 10mg of tissue and
incubated on ice for 15min. -en, the supernatant was
separated by centrifugation (12000 rpm for 10min at 4°C)
and stored at − 20°C. Protein concentrations were de-
termined by BCA assay kit. After SDS-PVDF, proteins were
transferred from gel to nitrocellulose membranes. Mem-
branes were blocked in 5% no fat dried milk in TBST
(1.65mL of 20％ Tween was added to 700mL TBS) for 1 h
and then incubated overnight with the specific antibody of
the AMPK (Ab32047, Abcam, UK) and SIRT1 (Ab12193,
Abcam, UK). After incubation with the relative second
antibody, immunoreactive bands were quantified using
imaging system (EUV-LDUV, Korea Biotech). Values were
corrected with the absorbency of the β-actin (4957 CST, Cell
Signaling, China).

2.8.2. Real-Time PCR. Total RNA was extracted from hepar,
spleen, and kidney using standard Trizol RNA isolation
method. Reverse transcription of 10 μg RNAwas carried out.
-e qualities of RNA and cDNA were checked using 2720
nucleic acid analyzer (ABI, USA). Special primers designed
against rat SIRT1 and AMPK subunit were verified in NCBI
Blast. Primers against rat β-Actin were used as the internal
control. Sequences of the primers along with their annealing
temperature are shown in Table 2. -e total reaction volume
was 10 μL, and 1 μL cDNA was used as the template.
Fluorescence was detected using Roche Light Cycler® 480II
Detection System. PCR products were visualized with gel
electrophoresis to confirm a single product of the correct
size. Ratios of the target gene to β-actin were calculated and
compared between samples.

2.9. Statistical Analysis. All values measured were presented
as means± SD. Statistical significance was determined by
one-way ANOVA followed by Fisher’s LSD test or Student’s
t-tests. A p value less than 0.05 was considered statistically
significant.
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3. Results

3.1. Morris Water Maze (MWM) Test. -e swimming dis-
tance and time were recorded in the MWM test using video
tracking (Figure 2). Data was analyzed by MWM software.
-e times across the platform showed a decreased tend in
both the sham group and the model group. Compared with
the control group, the times across the platform, the distance
percentage, and time percentage of the sham group de-
creased slightly while decreased significantly in the model
group (p< 0.01), demonstrating successful establishment of
AD model rats.

3.2. Variation of SOD, GSH-PX, and MDA between Different
Groups. -e oxidative stress related substances including
SOD, MDA, and GSH-Px were measured in the present
study. Compared with the control group, the contents of
SOD in the plasma, hepar, spleen, and kidney displayed the
same downward trend in the sham group (Figure 3(a)),
especially in the model group (plasma: p< 0.01; hepar,
spleen, and kidney: p< 0.05). After the gastric gavage of
HLJDD for one week, the level of SOD was improved in
different degrees (plasma: p< 0.01; hepar: p< 0.05). -e
concentration of GSH-Px in diverse tissues showed different
variations in the sham group (Figure 3(b)) but displayed
dominant difference in the model group (plasma, hepar, and
spleen: p< 0.01; kidney: p< 0.05). After treating with
HLJDD, the contents of GSH-Px went up except in kidney
(plasma: p< 0.01; spleen: p< 0.05). MDA, an important
product of lipid peroxidation, presented a slight change in
the sham group (Figure 3(c)) but increased significantly in
the model group (plasma, hepar, and spleen: p< 0.01;
kidney: p< 0.05) and turned back after the administration of
HLJDD (plasma: p< 0.05; hepar and kidney: p< 0.01).
Totally, the levels of SOD and GSH-Px in the periphery
declined and MDA raised in the sham group and the model
group, and the trend of this change was much more obvious
in the model group.

3.3. Quantification of Neurotransmitters. Different standard
solutions (containing IS) were diluted with 50% methanol
(containing 0.2% formic acid) to six different concentra-
tions. -e calibration curves (each neurotransmitter peak
area/the internal standard peak area (Yi/Ys) was plotted

against the concentration) of neurotransmitters were ob-
tained using the least-squares linear regression fit (y� ax+ b)
and a weighting factor of 1/x2. All the calibration curves
indicated good linearity with correlation coefficients (r)
ranging from 0.991 to 0.999.-e limits of detection (LOD : S/
N� 3) and the limits of quantification (LOQ : S/N� 10) were
from 0.05 to 40.56 ng/mL and from 0.1 to 101.4 ng/mL,
respectively. -e precision of the method was determined
using quality control (QC) samples (n� 6), and the results
are summarized in Table 3. All the analytes showed relative
standard deviation (RSD) below 15%.

-e contents of 8 neurotransmitters in the plasma were
determined using UPLC-QqQ MS/MS. -e contents of
creatine, serotonin, adrenaline, glutamine, and glutamate
displayed the same trend variation: increased in the model
group while decreased in the HLJDD one-week group. In-
versely, the contents of tryptophan, methionine, and argi-
nine declined in the model group and raised in the HLJDD
one-week group, particularly for tryptophan (Figure 4).
Among them, the levels of tryptophan, methionine, and
glutamine were reserved significantly after the administra-
tion of HLJDD.

3.4. Determination of AMPK and SIRT1 by Western Blot and
Real-Time PCR. -e levels of AMPK and SIRT1 in AD rats’
hepar, spleen, and kidney were determined from the per-
spectives of protein and gene. According to the result of
Western Blot (Figure 5), the protein levels of AMPK in
hepar, spleen, and kidney declined in the model group and
raised after HLJDD treatment. Interestingly, the protein
expression trend of SIRT1 was the same as that of AMPK
between these groups. As far as the result of the real-time
PCR concerned (Table 4, Figure 6), the mRNA level of
AMPK in rats’ hepar, spleen, and kidney went down sig-
nificantly (p< 0.05) in themodel group and went up after the
administration of HLJDD. Regarding the mRNA level of
SIRT1, it drooped obviously after modelling and showed
slight fluctuation in the HLJDD group.

4. Discussion

HLJDD, a traditional Chinese medicine, has widely been
applied to treat cerebrovascular disease including dementia
and ischemic stroke. Studies have demonstrated the great
therapeutic effects of HLJDD in various AD models,

Table 1: -e selected detecting ions, collision energy (CE), and scan width of the analytes.

RT (min) Chemical compounds Quant/qual pair Quant/qual CE(V) Internal standard (IS) Ion mode
IS 1 1.0 Diazepam 285⟶193/285⟶154 37/30 — +
1 4.98 Creatinine 114⟶ 44/114⟶ 86 18/9 IS1 +
2 6.60 Serotonin 160⟶115/160⟶132 27/18 IS 1 +
3 8.08 Adrenaline 166⟶107/166⟶ 57 21/21 IS 1 +
4 9.00 Tryptophan 205⟶188/205⟶146 10/15 IS 1 +
5 10.08 Methionine 150⟶104/150⟶ 56 12/9 IS 1 +
6 14.94 Glutamine 147⟶ 84/147⟶130 9/18 IS 1 +
7 16.48 Glutamate 148⟶ 84/148⟶130 15/5 IS 1 +
8 19.18 Arginine 175⟶ 70/175⟶116 18/15 IS 1 +
Quant: quantitative; qual: qualitative.
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Figure 1: Continued.
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including triple transgenic mice (3×Tg-AD) and Tg-APP/
PS1 mice [28, 29]. In this study, the rats injected with
D-galactose and Aβ25-35-ibotenic acid were used as AD
models. D-galactose, an aging accelerator, induces glycation
end-products and causes oxidative stress [30] and was
widely used in the construction of AD model [31, 32]. In-
tracerebral injections of Aβ and ibotenic acid in mice
represent an acute and practical method to mimic AD
pathology [33]. Plenty of evidences show that, in AD, a key
factor in the accumulation of Aβ throughout the brain is the
failure of neuroprotective microglia to remove extracellular
amyloid [34, 35]. Overactive microglia and astrocytes
clustered around Aβ plaques and secreted proinflammatory
mediators [36, 37]. Compared with the control group and
the sham group, rats in the model group showed worse
memory impairment in the MWM test, which means that
the model was successful.

In our previous study, 69 compounds of HLJDD were
identified, mainly including iridoids, alkaloids, and flavo-
noids, and berberine is a representative element [3]. -e
achievements of berberine in the treatment of AD have been
widely recognized [38, 39]. Due to the blood concentration
of berberine, geniposide, and magnolia in AD rat induced by
D-galactose and Aβ25-35-ibotenic acid tended to be constant
in 5th day [40], rats were sacrificed in the 7th day. After
administration for one week, there was a slight fluctuation in
peripheric oxidative stress of the sham group compared to
the control group, but it is not obvious. However, in the

peripheral system, including plasma, hepar, spleen, and
kidney, significantly decreased levels of SOD and GSH-Px
and an increased contents of MDA were found in the model
group by comparison with the control group. Combining
with the MWM test, injection with D-galactose and Aβ25-35-
ibotenic acid leads to oxidative stress disorder and cognitive
impairment. HLJDD significantly lowered the levels of
oxidative stress markers (MDA) in the peripheral system
and enhanced the activities of antioxidases (SOD and GSH-
Px), as compared with the model group. -e cross talk
between oxidative stress and Aβ deposition may occur via
multiple ways affecting transcription of the APP gene or
translation of APP mRNA [41]. Studies showed that the
presence of methionine at 35 position of Aβ is critical to Aβ-
induced oxidative stress and neurotoxicity [14, 42]. Severe
methionine deficiency might cause dementia [43]. In this
study, higher contents of methionine were found in the
HLJDD group. -us, alleviating oxidative stress and further
reducing Aβ deposition may be the potential mechanism of
HLJDD in treating AD.

Tryptophan, an essential amino acid, is the sole pre-
cursor of peripherally and produced serotonin (5-HT), and
tryptophan metabolism by the Kynurenine (Kny) pathway
generates neurotoxic metabolites [44]. Tryptophan depletion
inhibits the levels of 5-HT and tryptophan in brain and
reduced 5-HT1A [45–47], which was responsible for cog-
nitive impairment. In our study, HLJDD could reverse the
decreased level of tryptophan in the AD model, which was

Table 2: Primer sequences and real-time PCR conditions.

Gene Primer sequences (5′ to 3′) Base number Product size T annealing (°C) Cycle

β-Actin F: GAAGTGTGACGTTGACATCCG 21 282 bp 60 40
R: GCCTAGAAGCATTTGCGGTG 20 60 40

AMPK F: TCTCGGGGTGGTTCGGTG 18 178 bp 60 40
R: GGGGACAGGATTTTCGGATT 20 60 40

SIRT1 F: TTCACCACAAATACTGCCAAGA 22 218 bp 60 40
R: GATACATTACACCAAATCCTCAACA 25 60 40
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Figure 1: -e extracted chromatograms of 8 constituents and internal standards in mixed reference substance and plasma.
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possibly related to improving 5-HTsynthesis and Kyn pathway
metabolisms. -e Kyn pathway may also be associated with
inflammatory processes as well as the excitotoxic effects of
glutamate [48]. In the present study, lower levels of glutamine
and glutamate were found in the HLJDD group. Glutamine, a
nonessential amino acid, becomes a conditionally essential
amino acid in catabolic states due to the body’s inability to
synthesize sufficient amounts of glutamine during stress. -e
synthesis of glutamine is higher in rats of advanced age than
that in youth, which may be considered an indicator of stress
and frailty and, thus, the need for more glutamine [49].
Meanwhile, the glutaminase catalyzes the hydrolysis of glu-
tamine to glutamate, while glutamine synthetase catalyzes the
synthesis of glutamine fromglutamate and ammonia. Together,
the underling mechanism may be that the intervention of
glutamine and tryptophan metabolism by HLJDD to reduce
glutamate excitotoxicity.

In addition, AMPK-SIRT1 pathway may be closely related
to oxidative stress, inflammation, and energymetabolisms.-e
increase in the expression of AMPK and SIRT1 byHLJDDmay
be owned to the reduction in oxidative stress observed in this
model, which may furtherly influence the inflammation, and
energy metabolism. AMPK, a major cellular energy sensor,
plays a key role in cellular energy homeostasis. AMPK could
regulate the expression of α and β-secretases, thus, affecting
APP processing and Aβ generation [50]. SIRT1, an NAD+-
dependent histone deacetylase, became famous molecules for
slowing aging and decreasing age-related disorders. During
oxidative stress, the NAD+-dependent DNA repair enzyme,
poly (ADP-ribose) polymerase-1 (PARP), is activated and
decreasesNAD+ level which increases aging [51]. Decline in the
SIRT1 activity in mice could be related to oxidative damage
[52]. AMPK could activate SIRT1 by increasing NAD+ and
NAD+/NADH and inverse SIRT1 by activating liver kinase B1
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Figure 2: Effects of D-galactose and Aβ25-35-ibotenic acid injection on memory loss in rats. (a) -e real-time monitoring of rats motion
track Morris Water Maze test experiment. (b) Changes in the distance percentage and the time percentage and (c) the times across platform
in the target quadrant. All the results are expressed as mean± SD. n� 10; ∗p< 0.05, ∗∗p< 0.01 (comparison with control group).
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Figure 3: Effects of HLJDD on oxidative stress index in peripheral tissue of AD rats (n� 5). (a)-e concentration of SOD, (b) GSH-PX, and
(c) MDA in rats’ plasma, hepar, spleen, and kidney. ∗p< 0.05, ∗∗p< 0.01 (comparison with control group); &p< 0.05, &&p< 0.01
(comparison with sham group); #p< 0.05, ##p< 0.01 (comparison with model group).

Table 3: -e regression equations, LOD, LOQ, and linear range of the 8 analytes.

Compounds Regression equations R2
LOD
(ng/
mL)

LOQ
(ng/
mL)

Linear range
(ng/mL)

Repeatability (RSD, %)
Low

concentration
Middle

concentration
High

concentration
Creatinine Y� 0.013015∗X+ 0.355134 0.999 0.05 0.10 39.24–39240 4.54 3.57 5.43
Serotonin Y� 0.050158∗X − 6.815533×10− 4 0.998 1.01 2.02 4.048–404.8 12.21 1.58 2.42
Adrenaline Y� 0.004093∗X+ 3.553836×10− 4 0.991 9.85 39.40 78.80–3940 4.16 3.27 2.31
Tryptophan Y� 0.003530∗X − 0.009977 0.993 0.30 1.02 421.2–25272 1.98 1.88 2.05
Methionine Y� 2.488989×10− 4∗X+ 6.677709×10− 4 0.995 40.16 80.32 160.64–8032 7.02 1.28 2.53
Glutamine Y� 7.373791× 10− 4∗X − 7.910165×10− 4 0.999 40.56 101.40 405.6–40560 13.52 10.62 8.91
Glutamate Y� 0.003640∗X+ 0.003405 0.998 1.12 2.40 119.64–2991 8.12 5.43 3.13
Arginine Y� 0.003604∗X+ 4.417252×10− 5 0.992 0.15 0.50 203.8–48912 7.47 3.34 3.28
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(LKB1) to react to AMPK [53]. It was reported that the AMPK-
SIRT1 pathway had a significant regulatory effect on in-
flammation [54]. Study reported that HLJDD could inhibit the
growth of hepatocellular carcinoma by activating AMPK-eEF2K
[55]. Berberine, the main component in HLJDD, reduces Aβ
deposition and decreases the expression of β-secretases via

activating AMPK in neuroblastoma cells and primary cultured
cortical neurons [38]. And even, baicalin is also reported as
AMPK activators. -us, regulating peripheric AMPK-SIRT1
pathway was probably one of the mechanisms of HLJDD in the
treatment of AD rats, which involved the alleviation of oxidative
stress, inflammation, and energy metabolism.
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Figure 4: Changes of neurotransmitters in plasma of AD rats after HLJDD administration (n� 5). ∗p< 0.05 (comparison with control
group); #p< 0.05 (comparison with model group).
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Figure 5: -e expression of AMPK and SIRT1 in rats’ hepar, spleen, and kidney with Western Blot analysis.

Table 4: -e relative expression of AMPK and SIRT1 in rat tissues (n� 5).

Genes
Hepar Spleen Kidney

Control
group

Model
group

HLJDD
group

Control
group Model group HLJDD

group
Control
group Model group HLJDD

group
AMPK 1.68± 0.62 0.63± 0.23∗ 1.06± 0.40 2.54± 1.56 0.77± 0.66∗ 0.85± 0.62∗ 1.83± 0.58 1.08± 0.24∗ 1.29± 0.12∗
SIRT1 1.06± 0.29 0.45± 0.46∗ 0.54± 0.34∗ 1.81± 0.73 0.95± 0.21∗ 0.97± 0.20∗ 0.90± 0.12 0.68± 0.21 0.64± 0.38
∗p< 0.05 (comparison with control group).
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5. Conclusion

In this investigation, a method for the simultaneous mea-
surement of 8 neurotransmitters in AD rat’s plasma was
established using an advanced technique with UPLC-QqQ
MS/MS. Western Blot and Real-time PCR were used for the
analysis of AMPK and SIRT1 to illuminate the mechanism
underlying the anti-inflammation and regulating energy
metabolism effects. -e underlying therapeutic mechanism
of HLJDD for the treatment of AD was associated with
alleviating oxidation stress, inflammation, neurotransmit-
ters, and energy metabolism. -ese data provide solid
foundation for the potential use of HLJDD to treat AD.

Abbreviation

5-HT: Serotonin
AD: Alzheimer disease
AMPK: AMP-activated protein kinase
Aβ: Amyloid beta-peptide
BSA: Bovine serum albumin
GSH-Px: Glutathione peroxidase
HLJDD: Huang-Lian-Jie-Du Decoction
HLJDD-EP: HLJDD extract power
Kny: Kynurenine

LKB1: Liver kinase B1
MDA: Malondialdehyde
MRM: Multiple reaction monitory
NBM: -e nucleus basalis magnocellularis
NFTs: Senile plaques and neurofibrillary tangles
QC: Quality control
SIRT1: Silent information regulator of transcription 1
SOD: Superoxide dismutase
TCM: Traditional Chinese medicine.
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