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Previous studies suggest that to achieve color constancy,
the human visual system makes use of multiple cues,
including a priori assumptions about the illumination
(“daylight priors”). Specular highlights have been
proposed to aid constancy, but the evidence for their
usefulness is mixed. Here, we used a novel
cue-combination approach to test whether the presence
of specular highlights or the validity of a daylight prior
improves illumination chromaticity estimates, inferred
from achromatic settings, to determine whether and
under which conditions either cue contributes to color
constancy. Observers made achromatic settings within
three-dimensional rendered scenes containing matte or
glossy shapes, illuminated by either daylight or
nondaylight illuminations. We assessed both the
variability of these settings and their accuracy, in terms
of the standard color constancy index (CCI). When a
spectrally uniform background was present, neither CCIs
nor variability improved with specular highlights or

daylight illuminants (Experiment 1). When a Mondrian
background was introduced, CCIs decreased overall but
were higher for scenes containing glossy, as opposed to
matte, shapes (Experiments 2 and 3). There was no
overall reduction in variability of settings and no benefit
for scenes illuminated by daylights. Taken together,
these results suggest that the human visual system
indeed uses specular highlights to improve color
constancy but only when other cues, such as from the
local surround, are weakened.

Introduction

General overview

Observers generally have little difficulty judging
objects as having a relatively stable color under changes
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Figure 1. (a) Spectra of light reaching observer from a flower under D65. (b) Spectra of light reaching observer from the same flower
under Illuminant A. Relative cone activations for each scenario are shown at the bottom.

in illumination—an ability termed color constancy.
However, it is still unknown to what extent they are able
to make use of specular highlights to assist in this. In
this series of experiments, we tested whether observers’
color constancy improves when specular highlights are
present. We also investigated whether judgments are
less variable and more accurate along the daylight locus,
consistent with the use of daylight priors, and whether
these would interact with specular highlights.

Color constancy and cue use

Perceiving objects to have a stable surface color under
changing illuminations is a remarkable computational
challenge that our brains solve every day. This problem
is demonstrated in Figure 1. In Figure 1a, a purple
flower is seen outside under daylight (D65). The
light reaching an observer’s eye is the product of the
spectral power distribution of the illumination and the
spectral reflectance of the flower. Moving the flower
inside under a tungsten light bulb (Illuminant A; see
Figure 1b) changes the spectrum of light reaching
the observer’s eye. While this changes the relative
photoreceptor activation in the retina, our observer
would probably not judge the flower to have changed
color appreciably. The extent to which the color
appearance of the flower changes depends on multiple
factors, including the extremeness of the illumination
change, the duration of exposure and adaptation to
each illumination, the surface properties of the flower,
and its context. Yet, in everyday life, people would
tend to attribute a constant color to the flower despite
changes in the light it reflects caused by changes in
illumination.

As the signal reaching the eye confounds illumination
with reflectance information, our brains must
compensate for any change in illumination in order
to create stable perceptions corresponding to the
object’s invariant surface reflectance properties. This
is computationally difficult as an infinite number
of combinations of reflectances and illuminations
can yield the same photoreceptor activation, and
surfaces that are metamers (appear identical) under one
illumination may not be metamers under a different
illumination (Logvinenko, Funt, Mirzaei, & Tokunaga,
2015). However, given the constraints of natural
illuminations and surfaces, the problem becomes
more tractable (see Hurlbert, 1998, for a review of
computational models).

Many computational color constancy algorithms
have been proposed that all incorporate some form
of illumination estimation from regularities in
the input image (for reviews, see Smithson, 2005;
Lee & Plataniotis, 2014). Although most of the
algorithms have not been explicitly proposed or tested
experimentally as models of human visual perception, a
small number of studies suggest that certain proposed
cues do influence perceived illumination chromaticity,
such as local surround (Valberg & Lange-Malecki,
1990), the global mean chromaticity (“gray world”)
(Land, 1983, 1986), or the chromaticity of the brightest
surface (e.g., “brightest is white”; Hurlbert, 1998).
Kraft and Brainard (1999) demonstrated that these
three cues can all be used in combination and that
none of them is alone sufficient to account for color
constancy performance.

Specular highlights may also be used to gain
information about the illumination chromaticity.
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Figure 2. Chromaticity in CIE xy color space, taken from six
objects with different reflectances under the same illumination.
Gray +s show individual pixel chromaticities and fall on lines
between the diffuse reflectance (squares) and specular
reflectance (triangles). The black circle shows the illumination
chromaticity. As can be seen, the chromaticity of the light
reflected from the six objects converges toward the
illumination chromaticity.

Perfectly specular highlights are perfect reflections of
the incident illumination and therefore have the same
chromaticity as the illumination. However, most objects
in the real world are not purely specular. A model
proposed by Lee (1986) and D’Zmura and Lennie
(1986), coined chromaticity convergence (Hurlbert,
1998), explains how partially specular objects (more
precisely, optically inhomogeneous materials) can
assist in estimating illumination chromaticity. The
light reflected by partially specular objects has two
components: a diffuse component, in which light
has been scattered throughout the material before
being reflected back—typically referred to as diffuse
reflectance, or “color”—and a specular component.
From a single object, the reflected light is a mixture of
these two components, and therefore its chromaticity
falls on a line in color space between the diffuse and
specular components. When there are two or more
surfaces present, these lines would point toward the
illumination’s chromaticity and, if extended, they
would intersect at the chromaticity of the illumination
(see Figure 2). It should be noted that the specular
highlights do not need to be visible for chromaticity
convergence; as long as there are multiple partially
specular surfaces with different diffuse components
present, the chromaticities will form lines toward the
illumination chromaticity.

Research into the use of specular highlights

In one of the few studies into the use of specular
highlights, Yang and Maloney (2001) rendered a set of

specular spheres under two illuminations (D65 and A).
They then swapped the highlights from Scene A with
those in Scene B and vice versa. The observer’s task
was to adjust the color of a patch in the scene so that it
appeared to be gray. These achromatic settings shifted
toward the illumination chromaticity when perturbed
highlights signaled a daylight illumination (D65), but
not when they signaled a nondaylight illumination
(A). Furthermore, specular highlights were only used
when the test patch was on one of the specular objects
in the scene, not when it was on the back wall. This
suggests that observers segment scenes into different
illumination frameworks, which could be achieved
based on the depth plane in which an estimate is being
made (see Werner [2006] and Snyder, Doerschner, &
Maloney [2005]).

Yang and Shevell (2003) also perturbed specular
highlights in an asymmetric matching task under
D65 and A and found observers’ color constancy
to improve with consistent highlights. Additionally,
Yang and Shevell (2002) found better color constancy
for scenes containing specular highlights compared
to scenes without. Lee and Smithson (2016) found
that observers can use specular highlights, even
without any other information, for operational color
constancy (distinguishing a reflectance change from
an illumination change). Xiao, Hurst, MacIntyre, and
Brainard (2012) found better color constancy for glossy,
compared to matte, shapes but only when other cues
were reduced. Measuring lightness constancy, Boyaci,
Doerschner, and Maloney (2006) found that some (two
out of six) observers could use highlights on spheres
in a void to determine an illuminant’s direction and
brightness. Taken together, these few studies suggest
that observers can use specular highlights to improve
their color and lightness constancy under certain
conditions.

Cue combination

In non-color-related domains, observers are able to
optimally combine multiple cues to improve estimates
of ambiguous stimulus properties (Ernst & Banks,
2002; Ernst, 2006), as shown by decreased variable
error, compared to estimates made using single cues
alone. Optimal integration, according to maximum
likelihood estimation and Bayesian models, means that
the reliability of an estimate based on multiple cues is
the sum of the reliabilities of each individual cue (Van
Beers, Sittig, & Gon, 1999; Landy, Maloney, Johnston,
& Young, 1995). Thus, having more cues available
should increase the reliability, thereby decreasing
the variability. So far, none of the research into cue
use in color constancy has considered this model of
optimal cue integration, instead focusing only on
color constancy indices. Here, we ask whether adding



Journal of Vision (2020) 20(12):4, 1–22 Wedge-Roberts et al. 4

a specular highlight cue decreases the variability of
achromatic settings in addition to improving color
constancy.

Daylight priors

Bayesian models also predict that combining priors
(previous knowledge) with current information should
aid in the perception of ambiguous stimuli by increasing
accuracy and decreasing variability of estimates (Knill
& Richards, 1996). Color constancy may benefit from
a prior for daylight illuminations (Brainard, Longére,
Delahunt, Freeman, Kraft, & Xiao, 2006). Daylight
illuminations are broadband mixtures of sunlight and
skylight, and vary in a regular, predictable way. Their
chromaticities fall along a curve—the “daylight locus”
(Judd et al., 1964; Spitschan, Aguirre, Brainard, &
Sweeney, 2017)—in the chromaticity plane, ranging in
appearance from orangish to bluish.

Research tentatively supports the notion that
observers have a prior for daylights, although the prior
seems to be asymmetric such that the improvements
are usually found for bluish illuminations. Pearce,
Crichton, Mackiewicz, Finlayson, and Hurlbert (2014)
found lower sensitivity to changes in illumination
along the daylight locus than along the opposite
reddish-greenish direction, implying better color
constancy for daylight illuminations, especially in the
bluish direction (see also Radonjić & Brainard, 2016;
Radonjic, Ding, Krieger, Aston, Hurlbert, & Brainard,
2018; Aston, Radonjic, Brainard, & Hurlbert, 2019).
Additionally, Weiss, Witzel, and Gegenfurtner (2017),
using a different technique (achromatic adjustment),
found the highest degree of color constancy under a
bluish daylight illumination and achromatic settings
made under all other illuminations were skewed toward
blue chromaticities. Finally, Delahunt and Brainard
(2004) found the highest color constancy for bluish
daylight illuminations, but the effect was robust only
when the local contrast cue was silenced (also see
Brainard et al., 2006). As noted above, Yang and
Maloney (2001) found that specular highlights were
only used as a cue to the illumination when they
signaled a daylight and not when they signaled a
tungsten illumination. This, together with the finding
by Delahunt and Brainard (2004), suggests that the
effect of a daylight prior interacts with the effect
of cues, such that the prior is used when cues are
weakened or, in the case of Yang and Maloney (2001),
conflicting.

Current study

Taken together, previous research suggests that the
visual system may be able to use specular highlights and

daylight priors to support color constancy in certain
circumstances. However, there are little data on the
interaction of a specular highlights cue with a daylight
prior. Furthermore, the research into both areas is
limited, and much of it lacks the power to conduct
formal statistical analyses or to quantify the benefit
of either. Therefore, the contexts in which specular
highlights may be useful remain unclear. Here, we take
a novel cue combination approach to ask whether,
in addition to supporting color constancy, specular
highlights help decrease variability of illumination
estimates. We characterized color constancy with
achromatic adjustment and used the equivalent
illuminant modeling approach to obtain observers’
illumination estimates for scenes containing matte or
glossy shapes, under illuminants either on or off the
daylight locus.

Hypotheses

(1) Specular highlights will be used as a cue to the
illumination for color constancy, shown by improved
color constancy and decreased variable error for
scenes containing specular highlights compared to
scenes without.

(2) The effect of specular highlights will be mediated
by (a) the type of illumination, such that observers
will use highlights more when they signal a daylight
(bluish/yellowish, but potentially more so for blues),
and (b) position of achromatic matching patch,
such that observers will only use the highlights when
making settings on a specular object that lies in the
same illumination framework.

(3) Observers will show a higher degree of color
constancy for scenes illuminated by daylights
(particularly blues). This effect will be mediated by
the presence of other cues so the daylight prior will
be relied upon more for scenes with no specular
highlights and an invalid or biased local surround
cue.

Experiment 1

To test our hypotheses, we asked observers to set a
patch in a three-dimensional rendered scene to look
gray (achromatic adjustment) when the objects were
either matte (and therefore had no specular highlights)
or when they were glossy (and had a valid specular
highlights cue). The scenes were illuminated by either
bluish or yellowish illuminants on the daylight locus, or
reddish or greenish illuminants off the daylight locus.
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Methods

Observers
Fourteen paid volunteers aged between 20 and 36

years (mean age = 24.6; 9 females) took part in this
study. All observers were naive to the purpose of
the study. All observers had normal color vision, as
screened by Ishihara plates (Ishihara, Tokyo, Japan),
and all had normal or corrected-to-normal visual acuity.

Materials and apparatus
Stimuli were presented on a 10-bit ASUS (Beitou

District, Taipei, Taiwan) PA382Q 23-in. monitor
controlled by a Nvidia (Santa Clara, California, United
States) quadro k600 graphics card. The monitor was
calibrated by generating a gamma-corrected lookup
table (LUT) converting XYZ to RGB, accounting
for output nonlinearities, based on the monitor
primaries recorded with a Konica Minolta (Osaka,
Japan) CS-2000 spectroradiometer. Observers sat
approximately 60 cm from the monitor and viewed
the screen binocularly with free head movement. At
this distance, the screen subtended 41 × 23 degrees
of visual angle. The computer presenting stimuli was
changed after the first 10 observers as the original PC
malfunctioned. The monitor was recalibrated following
this change.

Stimulus generation
Three unique scenes were pregenerated, each having a

different arrangement of six different three-dimensional
shapes. Each shape in each scene had a different surface
reflectance, except the central shape, which kept the
same surface reflectance in each scene. For each scene,
two versions were generated—one glossy and one matte.
Each of these scenes was shown under five different
illuminations (neutral, red, green, blue, and yellow).
This resulted in a total of 30 unique stimuli.

The three-dimensional scenes were created using
Blender (https://www.blender.org/) and rendered using
Mitsuba (http://www.mitsuba-renderer.org/), compiled
for spectral rendering with 30 spectral bands. They were
then scaled, such that each scene had a mean luminance
of 60 cd/m2, which ensured most pixels were in gamut.
The scenes were tone mapped by clipping any out of
gamut values (negative RGB values were clipped to
0 and RGB values greater than 1 were clipped to 1),
to prevent saturation at high luminance levels. The
pixels which were clipped in each glossy scene, are
shown in the Supplementary Figure S2. Most were
on green/blue shapes, and none of the pixels making
up the specular highlights were truncated. Clipping
did not significantly shift the chromaticities, as can
be seen in the Supplementary Material, which shows

the mean scene chromaticities against the illumination
chromaticities. Finally, the scenes were converted to
RGB images using the LUT constructed from the
calibration described above.

The scenes consisted of six shapes sitting in a box
with gray walls (see Figure 3). The background was
the brightest surface in the scene with a flat spectral
reflectance of 0.8. This ensured the background could
be used for the “brightest is white” cue, even when
specular highlights were present. The specularity of
the background was 0.5 and the alpha (a measure of
roughness) was 0.05—slightly rough. A square area
light, the same size as each wall of the room, was
positioned just behind and above the camera, angled
toward the junction of the two vertical walls. This
produced a diffuse light across the scene.

Fourteen unique naturalistic-looking “blobby
shapes” were generated for the scenes using
ShapeToolbox (Saarela, 2018). Each shape was
created using a sphere base shape with five sets of 20
randomly positioned bumps. For each set of bumps,
the amplitude was randomly selected with an upper
limit of 0.5 radians and a SD between 0.2 and 0.3.
In addition, each of the 14 shapes were modulated
using four sinusoidal modulations with a random
frequency below 10 cycles/2π radians and an amplitude
between 0.05 and 0.2 radians. One of these shapes
was selected to be the standard shape, which was
always in the center of the room, and had a surface
reflectance of Munsell chip 5BG4/6. This shape
subtended approximately 8 degrees of visual angle.
The reflectance functions of each Munsell chip used
were retrieved from https://www.uef.fi/web/spectral/
munsell-colors-matt-spectrofotometer-measured. The
standard shape’s reflectance was consistent over all
stimuli to reduce any noise between trials, and the shape
was selected to have a flat surface for the matching
patch to sit on.

Three unique scenes were generated from
combinations of the 14 unique shapes. Scene acted
as a random variable, as we were interested in effects
common to different shape, surface reflectance, and
location combinations. In each scene, the five shapes
other than the standard shape were taken randomly
from the set of 13 remaining shapes and randomly
rotated so that a different side was viewed in each scene.
The shapes were positioned randomly within a region
which ensured no overlap so all the shapes were visible.

For each of the three scenes, two versions were created
using the same arrangement of shapes—one glossy
and one matte. Within each pair, the corresponding
glossy and matte shapes had the same diffuse surface
reflectance but different levels of specular reflectance.
Despite the presence of specular highlights on the
glossy shapes, the mean chromaticity across scenes did
not vary much between matte and glossy scenes (see
Supplementary Figure S1 for details). Both matte and

https://www.blender.org/
http://www.mitsuba-renderer.org/
https://www.uef.fi/web/spectral/munsell-colors-matt-spectrofotometer-measured
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Figure 3. Example of matte scenes containing matching patch on shape (a) and wall (b). Example of a glossy scene (c).

Illumination x y u′ v′

Neutral (D57) 0.328 0.344 0.203 0.478
Blue 0.297 0.314 0.193 0.458
Yellow 0.364 0.372 0.216 0.497
Red 0.329 0.310 0.217 0.460
Green 0.327 0.382 0.189 0.496

Table 1. Coordinates of the illuminations used in CIEYxy and
CIEL’u′v′ color spaces.

glossy materials were created using the plastic material
in Mitsuba. The roughness (alpha) of both materials
was set to 0.1, which is relatively rough. This roughness
meant that the specular highlights on the glossy shapes
were not too bright to be presented on the monitor.
For the matte material, the specular reflectance was 0,
meaning they were perfectly matte and contained no
specular highlights. The glossy material had a specular
reflectance of 1, which ensured the shapes had specular
highlights. The surface reflectance of the six shapes
within each scene was chosen such that the average
surface reflectance was neutral (not differing by more
than 1�Eu∗v∗ from a flat surface reflectance). Each of
the three scenes contained a different set of six surface
reflectances to ensure any findings were not specific to
the stimuli used. The Munsell chips used in each of the
three arrangements are given in Table A.1.

The illuminations selected comprised a neutral D57
(CCT 5698), which has been proposed to be the mean
of all daylights (Nascimento, Amano, & Foster, 2016),
and four other illuminations, all 30�Eu∗v∗ away from
neutral (using the neutral illumination as the white
point). These illuminations included two along the
daylight axis in the blue and yellow directions and
two illuminations with chromaticities perpendicular to
the daylight axis at CCT 5698K in CIE L′u′v′ space.
These illuminations will hereafter be referred to as
neutral, blue, yellow, red, and green, respectively. See
Table 1 and Figure 4 for chromaticity coordinates of
the illuminations used in CIE Yxy and CIE L′u′v′ color
space.

Both matte and glossy versions of the scenes were
rendered under all five illuminants for a total of 10

Figure 4. Illumination chromaticities in L′u′v′ space.

scenes, each with three different arrangements of shapes
and reflectances.

Task
We used an achromatic adjustment task in these

experiments, as this has been used extensively to
measure color constancy (Werner, 2007; Boyaci,
Doerschner, & Maloney, 2004; Yang & Maloney, 2001;
Delahunt & Brainard, 2004; Brainard, 1998), and
Speigle and Brainard (1999) have shown that results
from achromatic adjustment agree with those from
asymmetric matching. Observers were shown a scene
with a square patch (approximately 1.4 degrees of
visual angle) either on the central shape in the scene
(see Figure 3a) or on one of the background walls
(Figure 3b). The starting chromaticity of the patch was
chosen randomly from an area within 38 �Eu∗v∗ from
neutral (D57). The luminance of the matching patch
was fixed at 60 cd/m2, to match the mean luminance
of the scenes. Observers adjusted the color of this
patch until it appeared gray, using buttons on an
Xbox controller, which altered the CIE u*v* color
coordinates. There were three different step sizes such
that observers could shift the chromaticity by 10 (big),
5 (medium), or 1 (small) �E in the u* or v* directions.
Observers were free to choose which step sizes to use.
The instructions given to observers were adapted from
Radonjić and Brainard (2016), which emphasized
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considerations of reflectance properties, and are thus
aimed to optimize color constancy. These are given in
the Appendix.

Procedure
Each of the illumination-specularity combinations

was presented nine times within a session, for a total
of 90 trials per session. This consisted of three repeats
of each of the three unique scenes. Half the observers
completed the first session with the patch on the wall
followed by the second session with the patch on
the shape; the other half did the sessions in reverse
order. Each session lasted approximately 1 hr. The two
sessions were separated by a gap ranging from 1 day to
22 days between observers.

Observers were first dark adapted for 2 min. They
were then given five practise trials in which they
adjusted the color of a circular patch on a black
background to appear gray, green, blue, yellow, and
red. This was to ensure observers understood how the
controllers worked. They were then presented with an
empty scene, consisting of the box with gray walls and
floor but no shapes, under one of the five illuminants.
The order of the illumination colors was randomized
between observers. Following 2 min of adaptation to
an empty room, observers made achromatic settings
for the 18 trials under this illumination color (9 glossy;
9 matte). For each illumination, the nine matte scenes
were presented followed by the nine glossy scenes
or vice versa. This order was randomized for each
illumination and observer. After completing all trials
under one illuminant, observers were adapted to the
next illumination for 2 min before completing all trials
under that illuminant, until all conditions had been
completed. Although 2min is not sufficient for complete
global adaptation, each illumination condition lasted
approximately 10 min following adaptation, meaning
most achromatic settings were made after at least 5 min
of adaptation. By this time, global adaptation would
have stabilized.

Data analysis
For all data analysis, settings were converted from

L*u*v* to L′u′v′. Both color spaces are designed to
be perceptually uniform (that is, any two points at a
fixed distance from each other will theoretically be
approximately equally discriminable anywhere in the
color space), but u* and v* vary with changes in L*,
whereas u′ and v′ remain constant for any value of
L′ (Wyszecki & Stiles, 1982). Therefore, conducting
analysis in L′u′v′ ensures that the chromaticity does not
depend on luminance.
Exclusion criterion: In 95% of trials pooled across
observers, at least four adjustments (button presses)
were made to the patch color before a setting was

submitted as gray. We called any trial with fewer than
four adjustments an outlier and removed it from the
analysis. After exclusion, there remained at least seven
valid trials for each observer and condition.
Variable error: A two-dimensional Gaussian was fit
to the settings made for each condition and for each
observer separately. This was done by calculating a
covariance matrix of the data and calculating the
eigenvalues and eigenvectors of this matrix. To calculate
a single measure of variable error, the area of an ellipse
encompassing the eigenvectors of this Gaussian was
calculated:

Area = π ×
√
Eigenvalue1 ×

√
Eigenvalue2 (1)

As these Gaussians were fit to only nine settings,
they could have resulted in poor fits. Therefore, in
addition, the standard deviation of the settings was
calculated separately in the u′ and v′ dimensions. This
additional measure also allowed us to further explore
any significant effects found for the overall variable
error.
Color constancy index (CCI): Color constancy indices
were calculated using the equivalent illumination
method of Brainard (1998), which has been used in
many studies of color constancy (Yang & Maloney,
2001; Delahunt & Brainard, 2004; Kraft, Maloney, &
Brainard, 2002). The equivalent illumination method
effectively recenters an individual observer’s settings
on their individual settings under the neutral reference
illumination. This takes into account the fact that the
observers’ internal representations of gray may not
be spectrally uniform and predicts what chromaticity
observers’ setting would have been if they did have
a spectrally uniform representation of grey. These
were calculated relative to the settings made under
the neutral illumination as follows. All settings and
illumination chromaticities were first transformed to
LMS space. The reference illumination (ri) was defined
as the cone coordinates of the neutral illumination. The
reference match (rm) was the cone coordinates of the
mean setting made under the neutral illumination. The
test illumination (ti) was defined as the cone coordinates
of the chromatic illumination for this condition (blue,
green, red, or yellow). The test match (tm) was the
mean cone coordinates of the settings made under this
condition. The equivalent illumination (ei) was then
calculated as

ei = ri
tm
rm

, (2)

for each cone class (L, M, and S) separately.
The equivalent illumination was then converted to

CIE L′u′v′ in order to calculate a color constancy index,
CCI , as

CCI = 1 − a
b
, (3)
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Figure 5. Example settings for calculating a CCI. The blue circle is
ei, the blue diamond is ti, and the black diamond is ri. See text
for explanation of abbreviations.

where a is the length of the vector projection of ei − ti
onto ri − ti and b is the length of ri − ti (Figure 5).

Results

The average achromatic settings over all observers
and repeats is shown in Figure 6 (top row), with error
bars representing ± 1 standard error of the mean. As
can be seen, settings are all drawn strongly toward
the blue direction of u′v′ color space, with the mean
setting under neutral, when the patch was on the shape,
being almost on the blue illumination’s chromaticity.
Therefore, for clarity, the equivalent illuminants
(described above) are shown on the bottom row of
Figure 6. The mean color constancy index across all
observers and conditions was 0.519 ± 0.0240.

To test whether people were using specular highlights
as a cue to improve their color constancy and decrease
variability, we ran a 4 (illumination) × 2 (material) × 2
(position) analysis of variance (ANOVA) on the CCIs
and a 5 (illumination) × 2 (material) × 2 (position)
ANOVA on the variable error. The results are shown in
Tables 2 and 3, respectively.

There was no evidence for a main effect of specular
highlights on either CCI or variable error, against our
first hypothesis. In addition, there were no interactions
of specular highlights with illumination or position,
thereby not supporting Hypothesis 2. Against our third
hypothesis, there was no main effect of illumination on
CCI or any significant interactions.

We found a significant main effect of patch position
on both CCI and variable error. When the patch was
on the wall, there was a significantly higher CCI (mean
= .619, SD = .305) than when the patch was on the
shape (mean = .418, SD = .383). Similarly, there was
a smaller variable error when making adjustments to

the patch on the wall (mean = 6.24 × 10−5, SD =
4.31 × 10−5) than on the shape (mean = 1.24 × 10−4,
SD = 7.26 × 10−5), suggesting the estimates were more
reliable when made on the wall than on the shape.
The effect on variable error was further investigated
by looking at the error made in u′ and v′ separately.
For u′, there was a significant main effect of patch
position (F (1, 13) = 36.501, p < 0.001, η2

p = .737),
with a higher variable error on the shape (mean =
.564 × 10−3, SD = .200 × 10−3) than on the wall
(mean = .381 × 10−3, SD = 1.69 × 10−3). Similarly,
for v′ there was a significant main effect of position
(F (1, 13) = 15.513, p = 0.002, η2

p = .544), with a
higher variable error on the shape (mean = 7.62 × 10−3,
SD = 2.87 × 10−3) than on the wall (mean =
5.84 × 10−3, SD = 2.74 × 10−3). The difference between
settings on wall and shape suggested that the effects of
simultaneous contrast between the patch and its local
surround influence observers’ settings.

Interim discussion

In this experiment, we tested 14 observers, which
is more than have been used in much of the previous
research into color constancy: five naive in Yang and
Maloney (2001), eight in Experiment 1 of Lee and
Smithson (2016), and four in Experiment 2. This
allowed us to conduct inferential statistical tests.
Overall, the mean CCI was slightly lower than other
studies measuring color constancy in three-dimensional
rendered scenes (e.g., Yang & Maloney [2001] found
average CCIs of 0.65; Delahunt and Brainard [2004]
found CCIs ranging from 0.67 to 0.81 when cues were
consistent and valid).

Against our hypotheses, there were no main effects
of specular highlights on either CCIs or variable error,
or any significant interactions. It should be noted,
however, that in these scenes, there was a strong cue
from the uniform background, which reflected the
chromaticity of the illumination. This strong cue may
have hidden any smaller effects of specular highlights,
which were predicted to improve color constancy. This
is in agreement with findings from Xiao et al. (2012),
who found specular highlights only improved color
constancy when a local surround cue was silenced.

It was also predicted that observers would show a
higher degree of color constancy for scenes illuminated
by daylights (blue and yellow) than nondaylights.
Although there was no effect of illumination on CCI,
there was a noticeable bias toward blue for the raw
settings, consistent with previous studies (Winkler,
Spillmann, Werner, & Webster, 2015; Weiss et al., 2017).
This could reflect observers, internal representations
of gray being bluish (i.e., containing relatively more
short wavelengths) rather than spectrally neutral.
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Figure 6. Top: raw achromatic settings in u′v′. Bottom: equivalent illuminants in u′v′. Diamonds represent illuminant chromaticities;
circles represent mean settings made in glossy scenes, and triangles represent mean settings made in matte scenes. Colors represent
illuminant colors. Error bars show ± 1 standard error of the mean.

Effect F (df) p η2
p

Illumination (main) 2.156 (1.575, 20.472) .149 .142
Position (main) 8.361 (1, 13) .013* .391
Material (main) .067 (1, 13) .799 .005
Illumination × Material .375 (3, 39) .771 .028
Illumination × Position 1.265 (3, 39) .300 .089
Material × Position 2.053 (1, 13) .175 .136
Illumination × Material × Position 1.553 (3, 39) .216 .107

Table 2. Results from ANOVA on CCIs. *Indicates significance at the p < 0.05 level.

Alternatively, it may result from having a prior for
bluish illuminations (Pearce et al., 2014; Delahunt &
Brainard, 2004), which causes observers to attribute
bluish components of reflected light to the illumination

rather than surface reflectance and thus perceive bluish
surfaces as neutral (see Aston & Hurlbert, 2017).

A noticeable finding from this experiment was that
observers performed significantly better (in terms of
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Effect F (df) p η2
p

Illumination (main) 2.409 (4, 52) .061 .156
Position (main) 55.965 (1, 13) <.001*** .811
Material (main) 1.444 (1, 13) .251 .100
Illumination × Material 1.050 (4, 52) .390 .075
Illumination × Position .267 (4, 52) .898 .020
Material × Position .295 (1, 13) .596 .022
Illumination × Material × Position 1.522 (4, 52) .210 .105

Table 3. Results from ANOVA on variable error (area of ellipse fit to two-dimensional Gaussian). ***Indicates significance at the
p < 0.001 level.

both CCI and variable error) when the patch was on
the back wall than on the turquoise shape. In fact,
when the patch was on the back wall, CCIs were
close to those of previous studies, many of which
had the matching patch on a back wall. One possible
explanation for this difference is the difference in
lightness and chromatic contrast. When the matching
patch was on the back wall, it had a luminance slightly
lower than that of the local surround, which ranged
from 70.31 to 70.32 cd/m2 across different illuminations.
However, on the turquoise shape, the patch had a
much higher luminance than the surround, which had
a mean luminance ranging from 20.73 to 22.34 cd/m2

across the different illumination conditions. Using a
matching patch with a higher luminance than the local
surround has been shown to decrease color constancy
(e.g., Bäuml, 2001; Helson, 1938), and having greater
luminance contrast between matching patch and
surround (in either direction) results in poorer color
constancy (Werner & Walraven, 1982; Kuriki, 2006).
Similarly, chromatic contrast has been found to affect
appearance (Shevell & Wei, 1998; Werner, 2014; Faul,
Ekroll, & Wendt, 2008), which could explain the
difference in performance across patch positions. While
the black border between matching patch and surround
will have decreased the effect of simultaneous contrast
(Faul et al., 2008; Blackwell & Buchsbaum, 1988), it
was not sufficient to eliminate the effect. An alternative
explanation for this difference is that the uniform gray
background is giving strong contributions of global
and local adaptation to constancy, thus masking any
subtler effects of the specular highlights.

Experiment 2

In Experiment 2, we tested whether we would see
an effect of specular highlights when the uniform
background was replaced with a checkerboard,
Mondrian-like background. This was designed to
prevent use of a uniform background color as a direct
reference cue, to limit the contribution from local

surround adaptation on the wall, and to more closely
equate the local surround across patch positions. The
average chromaticity of the wall’s reflectance remained
neutral so observers could theoretically still use the
global mean cue.

Methods

Observers
A different group of 14 naive psychology

undergraduates participated in this experiment to earn
course credits. They had a mean age of 20.93, ranging
from 18 to 41, and included 11 females. All observers
were screened for color blindness using Ishihara plates
and had normal or corrected-to-normal visual acuity.

Materials and apparatus
The materials and apparatus were the same as in

Experiment 1.

Stimulus generation
The stimuli were the same as in Experiment 1 except

the background wall consisted of a checkerboard
pattern with multiple instances of 20 distinct surface
reflectances (henceforth, Mondrian background). To
generate this, 10 Munsell chips were selected (5B7/8,
5BG7/8, 5G7/8, 5GY7/8, 5Y7/8, 5YR7/8, 5R7/8,
5RP7/8, 5P7/8, and 5PB7/8). These were reconstructed
using the basis functions of Parkkinen, Hallikainen,
and Jaaskelainen (1989). To create the remaining
10 surfaces, the weights on the basis functions were
inverted, and the spectra shifted to have the same
mean reflectance as the original surface. As a result,
the average of the 20 surfaces has a flat spectral
reflectance. In addition to these 20 reflectances, a
spectrally nonselective surface was also used, which
reflected 80% of light at all wavelengths, which is more
light than any of the other surfaces. This ensured the
brightest-is-white cue was still valid. The reflectance
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Figure 7. Spectral reflectance functions of 21 patches used in
Mondrian. The 20 colored lines are the original and inverted
Munsell chip reflectances. The black line is the reflectance of
the white patches.

Figure 8. Example scene.

spectra of all 21 surfaces are shown in Figure 7. Each
wall and floor consisted of a 40 × 40 array of small
planes (varying from 0.4 degrees at the furthest point
to 0.6 degrees of visual angle at the nearest point), each
randomly assigned one of the reflectances described
above. An example scene is shown in Figure 8.

The rendered scenes were scaled to have a mean
luminance of 40 cd/m2—lower than in Experiment 1.
This was to keep the luminance of the shapes similar to
Experiment 1, despite the darker background.

The rendered adaptation rooms were the same as
in Experiment 1, with blank neutral walls. They were
scaled to have a mean luminance of 40 cd/m2 to match
the experimental stimuli used.

Task
The task was to set a patch to appear gray, on either

the central shape or the back wall, as in Experiment 1.
In order to overcome the difference in local lightness
contrast in Experiment 1, in which the matching

patch was lighter than the surround on the shape but
darker than the surround on the wall, in the present
experiment, the luminance of the matching patch was
set to 20 cd/m2. The luminance of the local surround
on the shape ranged from 20.06 to 21.54 cd/m2 and on
the wall ranged from 41.80 to 42.15 across the different
illumination conditions. Therefore, decreasing the
luminance of the matching patch ensures it is close to,
or lower than, the local surround in all conditions.

Procedure
The procedure for each session was identical to

Experiment 1, and the order of the sessions was
counterbalanced between observers. However, this time,
observers were given the option to do both sessions in
immediate succession, and 11 observers chose to do
this. For the remaining 3 observers, the sessions were
completed between 7 and 19 days apart. Each session
lasted approximately 1 hr.

Data analysis
The data were analyzed in the same way as in

Experiment 1. Using the same exclusion criterion, only
three trials were included for one observer under one
condition. All other conditions had at least five valid
trials.

Modeling local surround
In further analyses, we wished to compare observers’

matches with those predicted from the local adaptation
cue alone. We modeled the predicted CCIs which would
be obtained using only local surround information,
as follows. The local surround for the patch on the
wall was defined as the area encompassing at least one
square of Mondrian in every direction. On the shape, it
was defined as an area the same size as the wall’s local
surround, minus any pixels making up the Mondrian.
This local surround subtended approximately 0.5
degrees of visual angle on each side of the matching
patch. The mean chromaticity of the local surround
was calculated from the hyperspectral rendering for
one matte scene under each of the five illuminants. It
should be noted that the local surround did not extend
onto any highlights, meaning there was no difference
in the local surround on matte compared to glossy
shapes. A CCI was calculated for each patch position
under each illuminant according to the equivalent
illumination calculation described in Equations 2 and 3.
tm was defined as the chromaticity of the local surround
under the chromatic illuminants, and rm was defined
as the chromaticity of the local surround under the
neutral illuminant. ti and ri were defined as in Equation
2. Note that the equivalent illumination calculation
ensures the overall shift away from neutral in local
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Figure 9. Top: raw settings in u′v′, Bottom: equivalent illuminants in u′v′. Diamonds represent illuminant chromaticities; circles
represent mean settings made in glossy scenes and triangles represent mean settings made in matte scenes. Colors represent
illuminant colors. Error bars show ± 1 standard error of the mean.

surround on the shape does not impair predicted
CCIs.

Results

The raw achromatic settings averaged across all
14 observers are shown in Figure 9 (top row). As in
Experiment 1, and in line with some previous research
(Weiss et al., 2017), there is a clear bias in the settings
toward a blue daylight illumination. However, there
is a stronger bias toward blue when the patch was on
the back wall than in Experiment 1. The equivalent
illuminants are plotted in Figure 9 (bottom row) for
clarity. The mean CCI over all observers and conditions
was 0.255 ± 0.0160.

The results of the 4 (illumination) × 2 (position)
× 2 (material) ANOVA on CCIs and 5 (illumination)

× 2 (position) × 2 (material) ANOVA on variable
error are shown in Tables 4 and 5, respectively. In
line with our first hypothesis, we found a significant
main effect of material on CCI, with a higher CCI
for scenes containing glossy shapes (mean = .272,
SD = .220) compared to matte shapes (mean = .239,
SD = .237). This effect was not found on variable
error.

In support of our second hypothesis, we also found a
significant interaction between material and position on
variable error. This interaction is shown in Figure 10a.
To further explore the interaction, paired samples t tests
were conducted separately for patch on shape and patch
on wall conditions. When the patch was on the shape,
but not on the wall, there was a significant effect of
material (t(13) = 2.376, p = 0.034), with less variability
of estimates for scenes containing glossy shapes (mean
= 1.30 × 10−4, SD = 4.5 × 10−5) than for scenes
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Effect F (df) p η2
p

Illumination (main) .302 (3, 39) .823 .023
Position (main) 5.469 (1, 13) .036* .296
Material (main) 5.958 (1, 13) .030* .314
Illumination × Material 1.863 (2.097, 27.258) .173 .125
Illumination × Position .773 (3, 39) .516 .056
Material × Position .526 (1, 13) .481 .039
Illumination × Material × Position .091 (2.002, 26.023) .914 .007

Table 4. Results of ANOVA on CCIs. *Indicates significance at the p < 0.05 level.

Effect F (df) p η2
p

Illumination (main) 1.188 (4, 52) .327 .084
Position (main) 7.219 (1, 13) .019* .357
Material (main) 2.374 (1, 13) .147 .154
Illumination × Material 1.364 (4, 52) .259 .095
Illumination × Position .637 (4, 52) .638 .047
Material × Position 7.531 (1, 13) .017* .367
Illumination × Material ×
Position

.270 (4, 52) .896 .020

Table 5. Results of ANOVA on variable error (area of ellipse fit to
two-dimensional Gaussian). *Indicates significance at the p <

0.05 level.

containing matte shapes (mean = 1.56 × 10−4, SD =
6.0 × 10−5). To determine whether this effect was driven
by variability in u′, v′, or both, we ran further ANOVAs
on the standard deviation in both directions separately.
There was a significant Material × Position interaction
in u′ (F (1, 13) = 4.651, p = 0.050, η2

p= .264) but not
in v′. The interaction in u′ is shown in Figure 10b, and
is driven by significantly less variable error in scenes
containing glossy shapes (mean = .0060, SD = .00143)
than in scenes containing matte shapes (mean = .0068,

SD = .00180), when the patch is on the shape: t(13) =
3.106, p = 0.008. There was no significant difference
in variable error in u′ between scenes containing matte
and glossy shapes when the patch was on the back wall.

Against our third hypothesis, there was no significant
main effect of illumination on CCI, or any significant
interactions involving illumination.

As in Experiment 1, a significant main effect of
position was found on CCIs, with significantly higher
CCIs when the patch was on the back wall (mean =
.286, SD = .253) than on the shape (mean = .225, SD
= .222). To investigate this further, we modeled the
predicted CCIs for each patch position, using local
surround information only, as described above. The
predicted equivalent illuminants from this analysis are
plotted in Figure 11. As expected, there was a greater
bias in the local surround when the patch was on the
turquoise shape than on the back wall. It should be
noted, however, that due to the random nature of the
Mondrian background, the local surround on the wall
was slightly biased toward blue. Modeling optimal
performance using only local surround information,
higher CCIs are predicted when the patch is on the back
wall (mean = 0.980 across all illuminations) than on the
shape (mean = 0.744 over all illuminations).

Figure 10. (a) Variable error (area of an ellipse fit to eigenvectors of Gaussian) when the matching patch was on the shape (left) and
wall (right). Dark gray bars are for scenes containing matte shapes; light gray bars are for glossy shapes. Error bars are ± 1 standard
error of the mean. (b) The same interaction for variable error in u′, measured as the standard deviation across all settings.
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Figure 11. Predicted optimal performance using local surround
information only. As in previous figures, diamonds indicate
actual illumination chromaticities. Squares reflect optimal
performance when making estimates on the central shape;
asterisks are optimal performance when making estimates on
the back wall (using local surround information only).

In addition, there was a significant main effect of
position on variable error, with significantly more
variable error when the patch was on the back wall
(mean = 1.866 × 10−4, SD = 1.326 × 10−4) than on
the shape (mean = 1.433 × 10−4, SD = 8.347 × 10−5).
To further explore this, we looked at the ANOVA
conducted on variable error in u′ and v′ separately. There
was a significant main effect of position on variable
error in u′ (F (1, 13) = 10.009, p = 0.007, η2

p = .435),
but not v′ (p = 0.093). In u′, there was significantly
more variable error when the patch was on the wall
(mean = 7.251 × 10−3, SD = 3.040 × 10−3) than on the
shape (mean = 6.416 × 10−3, SD = 2.340 × 10−3).

Interim discussion

In the present experiment, unlike Experiment 1,
we did find a significant main effect of material on
CCIs, supporting the first hypothesis that the presence
of specular highlights can improve color constancy.
In addition, there was a decrease in variability of
estimates for scenes containing specular highlights
when observers were making illumination estimates on
the shapes but not on the back wall, in terms of both
overall variability and standard deviation in u′. This
is in agreement with Yang and Maloney (2001), who
found no effect of perturbing specular highlights when
judgments were made on a back wall. Taken together,
these findings suggest that observers are able to make
use of specular highlights when estimating illumination
chromaticities but segment the scene into different

illumination frameworks before making estimates. An
alternative explanation is that observers may be relying
on specular highlights more when making estimates on
the shape because the local surround cue is harder to
use so more weight is applied to the highlights. With the
Mondrian background, observers appear to rely more
on the specular highlights than when scenes contained
a uniform neutral background (Experiment 1). It is
important to note that CCIs were, on average, much
lower here than in Experiment 1. This could be due to
the Mondrian background making the local and global
mean cue harder to use. Nevertheless, the fact that an
effect of specular highlights was found here suggests
that the high overall performance in Experiment 1 may
have masked any potential effect of highlights.

As in Experiment 1, we did not find the predicted
benefit for scenes illuminated by daylight illuminants.
There was still a strong bias toward blue in the raw
settings, but when converted to equivalent illuminants,
there was no difference in constancy between the
illuminations. This suggests observers’ internal
representations of gray are not spectrally uniform
but biased toward spectra containing more shorter
wavelengths, which appear bluish-gray. However, an
alternative explanation—at least when the matching
patch was on the shape—is that the turquoise local
surround from the shape could have biased settings
toward blue.

Experiment 3

In Experiment 3, we aimed to test to what extent the
bias in local surround could have driven a difference
between performance on the wall versus on the shape
in Experiments 1 and 2. To this end, we varied the
reflectance of all shapes, including the one containing
the matching patch, on every trial. This allowed us to
determine whether the effect of position depended on
having the same local surround on the shape on every
trial. This also ensures any findings are not specific
to the limited range of stimuli used in Experiments 1
and 2. However, changing the color of the shape on a
trial-by-trial basis is likely to add variability and noise
to estimates. In order to counteract this, we ensured
observers used the smallest adjustment step size, thus
making more finely tuned settings overall than in the
previous experiments.

Methods

Observers
Fourteen naive paid volunteers participated in this

study. They had a mean age of 24.79, ranging from 20
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to 35, and included eight females. All observers were
screened for color blindness using Ishihara plates and
had normal or corrected-to-normal vision.

Materials and apparatus
The materials and apparatus were the same as in

Experiment 2.

Stimulus generation
The same Mondrian room from Experiment 2 was

used in the present experiment. Rather than having
three scenes, we selected one scene from Experiment 2
(using the reflectances in Set 1 in Table A.1). This meant
all stimuli had identical shapes. For each trial and each
observer, the six reflectances were randomly assigned to
each of the six shapes. This meant that the scenes were
more variable, and the shape containing the matching
patch could have one of six different reflectances. It is
important to note that the average chromaticity of all
six reflectances under all illuminants used did not differ
by more than 1�EL∗u∗v∗ from a neutral surface with the
same mean luminance. This means that, over all trials,
on average, there should be no biased local surround
when the patch is on the central shape.

Task
The task was the same as in Experiment 2. However,

in order to decrease the noise in observers’ settings,
they were now required to use the smallest adjustment
step size (1�E) at least once before a match could be
recorded.

Procedure
There were nine repeats under each condition, with

a different arrangement of reflectances on each repeat,
individually defined for each observer.

Initially, observers completed a session with the
patch on a wall and a session with the patch on the
shape, as in Experiments 1 and 2, spread out between 1
and 22 days. However, when running the wall condition,
some data were lost for 11 observers due to computer
error. To rectify this, a third session was conducted in
which observers made settings on both the wall and
the shape, with the position changing halfway through.
This was conducted at a later date, between 49 and
82 days after the latter of the first two sessions. For
this, half the trials from the first session and half the
trials from the second session were used. The order was
matched to the original sessions such that if an observer
participated in the shape session before the wall session,
in the final session they would see the shape trials first.
Although this was conducted to replace missing data,

it also allowed us to test for consistency in achromatic
settings over time.

No data were lost for the remaining three observers,
so they just took part in two sessions each.

Data analysis
The same exclusion criterion was applied as in

Experiments 1 and 2, and CCI and variable error
were calculated in the same way. After exclusion, all
conditions had at least eight valid trials.

The data collected on the shape session and shape
half of the third session were compared to test for a
difference across time points. To determine whether
there was a difference between the sessions, a 2 (session)
× 4 (illuminant) ANOVA was conducted on the CCIs,
collapsed across both material types as only one
material was used under each illuminant in the third
session. There was no significant main effect of session,
illuminant, or interaction. From this, it was concluded
that observers’ illumination estimates are consistent
over time.

For the full analysis below, data collected on the
shape session were analyzed as in Experiments 1 and 2.
For the 11 observers who completed three sessions, the
data from the wall session and the wall half of the final
session were combined for analysis. The data from the
remaining three observers were analyzed as normal.

Results

The mean raw settings over all observers and repeats
are shown in Figure 12 (top row). As can be seen,
there is still a strong pull toward blue in these settings
in both the wall and shape conditions. The equivalent
illuminants are shown for clarity in Figure 12 (bottom
row). The mean CCI over all conditions and observers
was 0.361 ± 0.0193—higher than in Experiment 2 but
lower than in Experiment 1.

As before, a 4 (illumination) × 2 (position) ×
2 (material) ANOVA was run on CCIs, and a 5
(illumination) × 2 (position) × 2 (material) ANOVA
was run on the variable error. The results of these are
shown in Tables 6 and 7, respectively.

In support of our primary hypothesis, a main effect
of material on CCIs was once again found, with a
higher CCI for scenes containing glossy (mean = .391,
SD = .282) than matte shapes (mean = .331, SD =
.295). There were no significant interactions between
material and position or illumination on the CCIs,
against our second hypothesis. In addition, this time
there was no significant main or interaction effects of
material on the variable error.

There were no significant main or interaction effects
of illumination on either CCIs or variable error, against
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Figure 12. Top: raw settings in u′v′. Bottom: equivalent illuminants in u′v′. Diamonds represent illuminant chromaticities; circles
represent mean settings made in glossy scenes, and triangles represent mean settings made in matte scenes. Colors represent
illuminant colors. Error bars show ± 1 standard error of the mean.

Effect F (df) p η2
p

Illumination (main) .119 (3, 39) .948 .009
Position (main) 4.654 (1, 13) .050* .264
Material (main) 35.477 (1, 13) <.001*** .732
Illumination × Material 1.958 (3, 39) .136 .131
Illumination × Position .241 (1.514, 19.683) .726 .018
Material × Position .342 (1, 13) .569 .026
Illumination × Material × Position .302 (3, 39) .824 .023

Table 6. Results of ANOVA on CCIs. *Indicates significance at the p < 0.05 level. ***Indicates significance at the p < 0.001 level.

our final hypothesis that scenes illuminated by daylight
illuminants would result in higher CCIs.

A significant main effect of position was found on
both CCIs and variable error. There was a higher CCI

when the patch was on the wall (mean = .385, SD =
.263) than on the shape (mean = .337, SD = .313),
as in Experiment 2. To test whether the difference in
local surround could explain this finding, we modeled
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Effect F (df) p η2
p

Illumination (main) 1.877 (2.356, 30.631) .165 .126
Position (main) 19.662 (1, 13) .001** .602
Material (main) .017 (1, 13) .899 .001
Illumination × Material .866 (4, 52) .491 .062
Illumination × Position 1.565 (4, 52) .197 .107
Material × Position .539 (1, 13) .476 .040
Illumination × Material × Position .683 (1.963, 25.520) .512 .050

Table 7. Results of ANOVA on variable error (area of ellipse fit to two-dimensional Gaussian). **Indicates significance at the p < 0.01
level.

the CCIs that an ideal observer would achieve using
only local surround information on either the back
wall or the shape. Unlike in Experiment 2, the shape
containing the matching patch now changes reflectance
on every trial. Therefore, the mean predicted settings
over all six reflectances were averaged before calculating
a predicted CCI on the shape. As before, CCIs on the
wall were predicted to be higher (0.980) than on the
shape (0.967). However, these are a lot more similar
than in Experiment 2, which may explain why the effect
size is smaller (η2

p = .264 in Experiment 3 vs. η2
p = .296

in Experiment 2).
In addition, there was more variable error when the

patch was on the shape (mean = 1.979 × 10−4, SD =
1.455 × 10−4) than on the wall (mean = 1.238 × 10−4,
SD = 8.87 × 10−5). To further explore this, we
analyzed the variable error separately in u′ and v′. A
significant main effect of position was found both on
u′ (F (1, 13) = 20.850, p = 0.001, η2

p = .616) and v′

(F (1, 13) = 23.754, p < 0.001, η2
p = .646). Variable

error in u′ was higher when the patch was on the shape
(mean = 7.08 × 10−3, SD = 3.07 × 10−3) than on
the wall (mean = 5.21 × 10−3, SD = 2.18 × 10−3).
This pattern was also replicated in v′ with a higher
variable error on the shape (mean = 9.83 × 10−3, SD =
3.52 × 10−3) than on the wall (mean = 8.02 × 10−3, SD
= 2.99 × 10−3).

Interim discussion

The findings of this experiment are generally in
agreement with those of Experiment 2. Again, we
found evidence that observers are able to benefit from
the presence of specular highlights, as shown by an
increase in CCI. In fact, the effect was even stronger
here, suggesting the effect of specular highlights found
in Experiment 2 may have been underestimated. In
the present experiment, observers were required to
make more fine-tuned settings, resulting in more precise
estimates, giving us more power to detect the true effect
of highlights. However, there was still no decrease in

the variability of settings for scenes containing glossy,
compared to matte, shapes. In addition, the interaction
between material and position on variable error, which
was found in Experiment 2 was no longer significant (p
= 0.071). The lack of an interaction between material
and position or illumination suggests that the use of
specular highlights is not mediated by either of these
factors.

The CCIs were generally higher than in Experiment 2,
which could be due to observers using the smallest
step size for each achromatic setting. This encouraged
observers to make settings closer to their true perceived
gray, compared to in the previous experiments.
Furthermore, this resulted in less variability when
observers were making settings on the back wall. It
should be noted that the variability when the matching
patch was on the central shape remained high as the
reflectance of the shape, and thus the local surround,
changed on every trial.

As in both Experiments 1 and 2, there appears to
be no benefit for scenes illuminated by daylights as
opposed to nondaylights, against our final hypothesis,
and previous research (e.g., Delahunt & Brainard,
2004). As there were no effects of illumination found
on CCIs in any of the experiments, we ran one more
analysis to determine whether this was due to lack of
power. For this, the data from Experiments 2 and 3 were
combined for a total of 28 observers. It should be noted
that the data from Experiment 1 were not included in
this analysis as the methods used were so different from
the other experiments that it would not be appropriate
to combine the data. A 4 (illumination) × 2 (position)
× 2 (material) × 2 (experiment) ANOVA on the
combined data still found no significant main effect of
illumination (p = 0.688), but the effects of material (p
< 0.001) and position (p = 0.004) remained significant.
This suggests the lack of effect of illumination found
in any individual experiment was not due to a lack of
power.

The similarity of findings in this experiment and
Experiment 2 suggests that the findings are not specific
to one particular scene with certain reflectances. In
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Figure 13. Summary results across all three experiments. Top:
mean CCIs for matching patch on shape and wall, with matte or
glossy shapes. Bottom: mean variable error, as measured by the
area of an ellipse fit to a Gaussian. For both graphs, error bars
show ± 1 standard error of the mean.

addition, the fact that raw settings are still drawn
toward the blue illumination chromaticity suggests
that this is not caused by the local surround of the
central shape, which previously always had the same
surface reflectance but here averages out to a neutral
chromaticity.

Discussion

This series of experiments was designed to test
three primary hypotheses: that specular highlights
would improve color constancy and decrease variable
error, that the effect of highlights would be mediated
by the type of illumination (daylight or nondaylight)
and position of a matching patch, and that scenes
illuminated by daylights would result in a higher
degree of color constancy than scenes illuminated
by nondaylights. A summary of findings across all
experiments, in terms of both variable error and
CCIs, is shown in Figure 13. Observers had higher
CCIs when making achromatic settings on the back
wall than on the shape in all three experiments. In
addition, in Experiments 2 and 3 (when a Mondrian
background was introduced), CCIs were higher for
scenes containing glossy, compared to matte, shapes.

In both Experiments 1 and 3, estimates were less
variable when the matching patch was on the back wall
compared to on the shape. In Experiment 2, this effect
was reversed, with higher variable error on the wall
than on the shape. In addition, there was an interaction
between material and patch position on variable error
in Experiment 2.

In support of our primary hypothesis, we found
highlights to improve color constancy in Experiment 2,
when scenes contained a Mondrian background,
in agreement with previous research (Yang &
Shevell, 2002; Lee & Smithson, 2016). This finding
was replicated with another group of observers in
Experiment 3, when the reflectance of the shapes
was changed on each trial. However, there was no
effect of specular highlights when there was a uniform
background (Experiment 1). The uniform light gray
background in Experiment 1 could have provided a
strong cue to the illumination, in terms of both local
and global adaptation, thereby weakening reliance
on specular highlights. Removing this cue resulted in
an overall reduction in CCIs, allowing an otherwise
masked effect of specular highlights to be revealed,
in line with Xiao et al. (2012). While observers could
theoretically have used the global mean or local
surround cue with the Mondrian background, it seems
that they found it more difficult to use such cues for
color constancy. This is in contrast with previous
research (Linnell & Foster, 2002) suggesting that having
multiple surfaces of different reflectances in the scene
(as in our Mondrian backgrounds) should improve
color constancy. However, it should be noted that
observers were probably using the global and local
mean and brightest-is-white cues to some extent in
Experiments 2 and 3, as shown by the nonzero CCIs for
scenes containing matte shapes.

While it could be argued that the benefit seen for
scenes containing specular highlights could be explained
simply by the difference in local surround, there are at
least three reasons to believe this not to be the case.
When modeling the effect of local surround (subtending
roughly 0.5 degrees from the matching patch), we found
no difference between matte and glossy shapes. If the
region of local surround were increased to include the
specular highlights when the patch was on the shape,
it could still not explain the increase in CCIs we see
for scenes containing glossy shapes when the matching
patch is on the back wall. Furthermore, if observers
were simply using the local surround, we would expect
to find the same results when the matching patch is on
the shape in Experiments 1 and 2. The fact that there
is no benefit for specular highlights with a uniform
background suggests that observers are using more
information than simply the local surround.

There was no overall reduction in variable error
for scenes containing specular highlights on any of
the three experiments. While we did find a Position
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× Material interaction in Experiment 2, this was not
robust enough to show up in Experiment 3. This is
against our prediction, based on the cue combination
literature (Ernst & Banks, 2002; Ernst, 2006), that
adding valid cues should decrease variability of
estimates. A possible explanation for this null finding
is that the variable error is sensitive to the number of
trials, and nine per condition may be insufficient. Due
to the many conditions in these experiments, it would
be unfeasible to add more repeats per condition as each
experiment already lasts an hour. Future experiments
using more trials per condition, but fewer conditions,
are needed to determine whether an effect of specular
highlights on variability of estimates can be found.

In support of our second hypothesis, there was an
interaction between material and position on variable
error in Experiment 2, such that specular highlights
only reduced variance when estimates were made on the
shape and not the back wall. While this lends support
to the notion that scenes are separated into different
illumination frameworks and agrees with Yang and
Maloney (2001), the finding was not replicated in
Experiment 1 or 3, so should be taken with caution.
Furthermore, there were no such interactions on CCIs
in any of the three experiments. Therefore, our results
do not strongly support the prediction that the effect of
specular highlights on constancy will be mediated by
patch position.

In addition, there were no significant interactions
between specular highlights and illumination,
suggesting the effect is also not mediated by type of
illumination. This is in contrast to Yang and Maloney
(2001), who found observers only used specular
highlights when they signaled a daylight illumination.
However, it should be noted that the illuminations
used in the present study were more controlled, such
that they were all equally discriminable from neutral.
Furthermore, as highlights were not perturbed in the
present study, all scenes were physically possible—even
those illuminated by nondaylights—which may explain
the lack of interaction found here.

Against our final hypothesis, there were no
significant effects of illumination, even when data
from Experiments 2 and 3 were pooled. Unlike
Delahunt and Brainard (2004), we did not find an
improvement in color constancy for scenes illuminated
by daylights compared to nondaylight illuminants.
However, it should be noted that in Delahunt and
Brainard (2004), the effect of illumination was only
statistically significant when a local surround cue
was silenced. While the specular highlight cue was
absent in half the trials of the present experiments,
there were no inconsistent cues, and the global mean
and brightest-is-white cues were always present and
consistent.

While there were no effects of illumination on the
equivalent illuminant calculations, a robust finding

was a bias in raw achromatic settings toward blues.
This was not an artifact of the local surround, as in
Experiment 3, the local surround on the shape was
varied on a trial-by-trial basis. A plausible explanation
for this bias is that observers assume illuminations are
bluish. Therefore, when they see a surface containing
more shorter wavelengths, they attribute the extra blue
to the illumination and discount it in their achromatic
settings.

A further finding was the overall effect of patch
position on CCIs. In all three experiments, observers
had a higher degree of color constancy when the
matching patch was on the back wall than on the
shape. This was most likely due to the difference in
local surround, rather than differences in local lightness
contrast between the patch and surround across
positions. In Experiments 2 and 3, the patch luminance
was lower than that of the surround in both positions,
and the absolute luminance contrast was greater on the
wall than the shape, which should have resulted in lower
CCIs on the wall, counter to what we found. In fact, the
effect we found was qualitatively predicted by modeling
the effect of local surround.

Over all three experiments, but particularly in
Experiments 2 and 3, we found CCIs lower than
reported in many previous studies. There are a number
of possible explanations for the low CCIs found here.
In many of the previous studies, the environment was
more immersive than here—either using an immersive
room (Gupta, Gross, Pastilha, & Hurlbert, 2020) or
stereoscopic viewing (Yang, Kanazawa, Yamaguchi,
& Kuriki, 2013; Delahunt & Brainard, 2004;
Xiao et al., 2012). Yang and Shevell (2002) found that
binocular disparity, achieved through stereoscopic
viewing, improves color constancy, with CCIs under
monocular viewing similar to those found here.
Furthermore, there are large individual differences in
CCIs, with nonnaive observers often outperforming
naive observers. Here we used only naive observers,
which may have contributed to the lower CCIs.
Finally, the specific setup of the stimuli used, as
well as the instructions (Arend & Reeves, 1986), can
have a large impact on the resulting degree of color
constancy. Indeed, this is what we found here, with
much lower CCIs when a Mondrian background wall
was introduced, as opposed to a uniform, spectrally
neutral wall.

Many of the previous studies into the use of
specular highlights as a cue are not suitable for formal
statistical analyses and did not consider how specular
highlights may interact with other factors. Here, we
increased the number of observers and extended
previous findings that observers are able to use specular
highlights. However, this was only the case when a
uniform background cue was weakened. Furthermore,
controlling the illuminations, such that those on and
off the daylight locus were equally discriminable,
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removed the interaction between illumination and
specular highlights found previously (Yang & Maloney,
2001). We did not find that observers used a daylight
prior to improve color constancy estimates. The novel
cue combination approach taken here revealed some
interesting results that would have otherwise been
overlooked. However, further studies investigating the
effect of cues on variable error in color constancy using
different methods, such as asymmetric matching, or
using more immersive environments, are needed to
draw firmer conclusions. Additionally, using the cue
combination approach to study how variable error is
affected by other cues (such as global mean), which we
did not manipulate here, would be of great interest.

Keywords: color constancy, specular highlights, cue
combination, daylight prior
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Appendix

Munsell reflectances

Instructions

“In the following trials, you will see an image of a
scene. In each scene, there are six randomly colored
shapes sitting in a box. On top of the central shape (on
one wall) you will see a small patch, indicated by a black
outline. Your task is to adjust the color of this patch so
that it looks like a grey piece of paper sitting on top
of the shape in the scene. That is, adjust the patch so
that it looks like it has the same reflectance properties
as a grey surface would in this scene. You may notice an
overall color change of the scenes on some trials. Think
of this as a change to a different color of illumination
and focus on adjusting the patch so that it looks like it
has the same surface reflectance as a grey surface. That
is, adjust the patch so that it looks like a grey surface
under the changed illumination.”

Set 1 Set 2 Set 3

5BG4/6 5BG4/6 5BG4/6
10B3/4 2.5Y7/6 10Y7/8
10Y5/6 7.5B3/6 10RP5/8
2.5PB4/8 10YR6/8 5PB5/10
5YR5/8 2.5RP5/10 10B5/8
2.5P4/4 7.5PB5/6 10YR5/4

Table A.1. The sets of Munsell chips used for the six blobby
shapes in Experiments 1 and 2. In Experiment 3, only Set 1 was
used.
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