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Abstract: Aflatoxins (AFs) are among the most harmful fungal secondary metabolites imposing seri-
ous health risks on both household animals and humans. The more frequent occurrence of aflatoxins
in the feed and food chain is clearly foreseeable as a consequence of the extreme weather conditions
recorded most recently worldwide. Furthermore, production parameters, such as unadjusted variety
use and improper cultural practices, can also increase the incidence of contamination. In current
aflatoxin control measures, emphasis is put on prevention including a plethora of pre-harvest meth-
ods, introduced to control Aspergillus infestations and to avoid the deleterious effects of aflatoxins on
public health. Nevertheless, the continuous evaluation and improvement of post-harvest methods to
combat these hazardous secondary metabolites are also required. Already in-use and emerging phys-
ical methods, such as pulsed electric fields and other nonthermal treatments as well as interventions
with chemical agents such as acids, enzymes, gases, and absorbents in animal husbandry have been
demonstrated as effective in reducing mycotoxins in feed and food. Although most of them have no
disadvantageous effect either on nutritional properties or food safety, further research is needed to
ensure the expected efficacy. Nevertheless, we can envisage the rapid spread of these easy-to-use,
cost-effective, and safe post-harvest tools during storage and food processing.

Keywords: aflatoxin; mycotoxin; feed chain; food chain; decontamination; absorption

Key Contribution: Processing methods can significantly reduce the aflatoxin contamination of feed
and food, however, they also influence the physical, chemical and sensory properties of the treated
products. The comprehensive evaluation of the individual processing technologies would further
substantiate their efficient industrial application.

1. Introduction

Mycotoxins are widely known deleterious secondary metabolites produced by various
molds. The furanocoumarin derivative aflatoxins (AFs) are among the most significant
and most harmful mycotoxins contaminating feed and food and, as a consequence, im-
posing real threats on the health of both domestic animals and humans initiating various
highly pathological cellular and physiological processes [1,2]. The mutagenic, teratogenic,
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genotoxic, and carcinogenic effects of AFs have also been confirmed, primarily when the
consequences of long-term exposures to them are evaluated [1,3]. Expectedly, dysfunctions
of many organs of AF-exposed humans and animals have been reported, including the
liver, kidneys, the gastrointestinal tract, and the reproductive and immune systems [1]. Ad-
ditionally, AFs may disturb the early, even embryonic, development of humans, resulting
in growth and mental retardations and immune system dysfunctions [2].

AFs are produced by several Aspergillus species [4], among which Aspergillus flavus, A.
parasiticus, A. nomius, and A. pseudotamarii are regarded as primary AF producers [2,4,5].
The elements and regulations of the gene clusters responsible for AF production in the
Aspergilli are also well known and are still intensively studied [1,6]. Oxidative stress is likely
to play a pivotal role in the activation of the AF gene cluster [6–8]; however, the ecology
of toxin production of Aspergilli is remarkably complex. The multilevel interactions of AF
producer fungi, plant hosts, and soil micro- and macrobiota should be studied in depth to
make the development and improvement of AF prevention strategies more effective [9].
Several pre-harvest biological control methods have been shown to be effective to mitigate
the toxic effects of AFs, which are based on the advantageous, competitive-exclusion, or
biofungicide characteristics of different bacteria, yeasts, fungi, and their excretes, which has
already led to the successful development and implementation of a number of combined
pre-harvest biocontrol technologies [10].

Hazardous AF contaminations can occur at any point of the feed and food chain
starting from field production to the final use of a wide variety of plant products, such
as cereals, nuts, spices, and fruits [5,11–14]. AFs are transferred into different body parts
of animals and humans after consumption and absorption from the gut, and they can
even be modified chemically, giving rise to an array of further dangerous derivatives.
These harmful compounds such as AFM1 will be eventually excreted and appear even in
milk [15]. Dangerous indirect AFM1 contaminations of milk and dairy products have been
reported in the literature in outstandingly high numbers, and the direct AF contaminations
of milk products by molds and their mycotoxins have also been published [16–19]. To make
matters even worse, AFs may also appear in human breast milk after conversion to AFM1,
which is definitely threatening for highly susceptible breastfeeding newborns [20,21]. AFs
also provoke developmental disorders of embryos in utero after passing through the
placenta [22].

Recent research performed in the development and improvement of AF control tech-
nologies focuses on both prevention and good storage and manufacturing practices that
can be applied in the feed and food chain to reduce AFs exposure, but these efforts are
not always satisfactory to ensure food safety [3]. Therefore, recent research activities seem
to be shifted towards reducing the AF contents already present in feeds and foods, and
several biological, physical, and chemical methods have been tested and evaluated in the
mitigation of AFs in this way (Table 1). Biological detoxification methods rely on specific
microorganisms, which bind and/or transform AFs into less toxic compounds [23,24] and
which are also advantageous in terms of the sensory and nutritional values of food and
represent a safer option to choose considering food safety aspects [10]. However, due to
the inherent nature of these methods, they typically cannot be applied for a wide spectrum
of commodities. Physical and chemical methods can also be applied safely and with high
efficiency, and they are generally much faster than the biological methods, which makes
them much more acceptable for potential consumers [25]. Traditional and novel technolo-
gies and practices for AF mitigation in feed and food are summarized and discussed in this
review, paying a special attention to the physical (sorting, dehulling, heating, irradiation,
and cold plasma treatment) and chemical (e.g., acidification, ozonation) detoxification
methods available in feed and food processing with an emphasis on the most promising
novel and innovative approaches and technologies.
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Table 1. Intervention levels to reduce aflatoxin hazard in the feed and food chain.

Level 1: Prevention Level 2: Decontamination Level 3: Detoxification

Biological control in field
Good agricultural practice

Good storage practice
Good manufacturing practice

Removal
Sorting

Classification
Absorption
Filtration

Radiation and light treatments
Thermal and pressure treatments
Nonthermal plasma treatments

Chemical agents

2. Reduction in Aflatoxins in Feed and Food

The post-harvest methods employed to decrease the AF contents of foraging can be
classified into three main groups: physical, chemical, and biological ones [26,27]. However,
there is another way to classify the AF-reducing technologies, which distinguishes natural,
physical, and chemical methods. The natural methods cover all those physical applications
such as sorting, cleaning, and screening, where AFs are not destructed, inactivated, or
absorbed. Instead, those particles, which show signs of possible contamination, including
detectable differences in size, color, and/or shape, are removed from the seed lots by
various physical approaches [5].

2.1. Physical Methods

The post-harvest physical processing operations have been widely evaluated (Table 2),
and several recommended measures have been found useful in reducing AF levels. For
example, hand sorting by visible fungi infection is found to be a very efficient tool to
decrease the AFB1 concentration of corn kernels. Nevertheless, this approach is only
applicable on an industrial scale using optical sorting equipment [28]. When feed corn
grains were sorted visually into three groups based on the content of foreign materials and
moldy and damaged grains, the aflatoxin concentration increased from the best graded to
worst graded [29]. On the other hand, size separation, e.g., sieving, can also be useful, as
the small components such as broken kernels may be infected or damaged by fungi and can
be a source for further spoilage [30]. Size separation of in-shell Brazil nuts was also found in
toxin reduction, only the small ones contained AFB1 [31]. There are quantifiable differences
in the major and minor diameters, sphericities, densities of Aspergillus contaminated and
healthy corn kernels and industrial use of screen cleaner and gravity table resulted in
significantly decreased AF contents [32].

Table 2. Physical methods available for aflatoxin reduction in feed and food samples.

Principle Method Commodity Reducing Efficiency

Removal

Sorting by size and density Brazil nuts [31],
Corn [32]

Only small nuts contained
AFB1
98%

Washing Corn [28,33,34] 90–97%

Color classification using UV fluorescent
and multispectral analysis Corn [35,36], 81–83%

Removal of external grain parts
(dehulling, polishing)

Corn [28,33,34,37],
Rice [38]

<92%
88–92%

Carbon filtration AFs spiked liquid coffee samples
[39] 74–79%

Reduction,
Destruction

Thermal treatment

Wheat [40],
Soybean [41],
Peanuts [42],
Pistachio [43]

50–90%
42–81%
57–80%

93%

High moisture thermal treatment
(roasting, extrusion, cooking,

High-pressure cooking, instant catapult
steam explosion)

Maize [44],
Rice [45,46],

Corn starch [47],
Corn stalk [48]

51–85%
25–88%
75–87%
100%
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Table 2. Cont.

Principle Method Commodity Reducing Efficiency

High hydrostatic pressure Spiked grape juice [49],
water [49]

14–29%
61–87%

UV light, near-infrared radiation
Milk [50],
Rice [51],

Peanuts [52]

65–100%
<99%

14–17%

Gamma irradiation

Mixed poultry feed [53],
Corn [54–56],
Wheat [54],

Rice [54],
Soybean [57],
Peanuts [58]

43%
15–90%
22–69%
27–65%
62–76%
20–43%

Pulsed light treatment Rice kernel and bran [59] 39–90%

Pulsed electric field
Potato dextrose agar: [60,61],

Sesame seed [62],
Spiked grape juice [49]

79–96%
86.9–98.7%

24–82%

Ultrasound Corn flour [63] 11%

Cold or nonthermal plasma
treatment

Corn [32],
Hazelnuts [64,65],

Peanuts [66],
Spiked food samples [67]

62–82
21–50%
23–38%
45–56%

Electrolyzed water Peanuts [68,69],
Olive oil [69]

85–90%
<99%

Dehulling is also an effective physical tool for fungal and mycotoxin decontamination
of grains where it can be applied [30]. For example, it can remove more than 90% of the
original AF content from the corn kernel [37]. Several other researchers reported that
removing the external layers of the kernel decreased the AF content of grains significantly,
and the efficiency of this application can be much more remarkable by floating and wash-
ing [28,33,34]. Rice kernel polishing is also a recommendable process for AF reduction
resulting in more than nine-fold decreases in mycotoxin content [38].

AFs are highly resistant to heat treatment, since their decomposing temperature is
higher than 235 ◦C [30,68,70]; therefore, simple drying cannot decrease their concentrations
in stored grains significantly. However, long-time high-temperature treatments seem to
have a beneficial effect on decontamination: 100 and 150 ◦C heat treatments for 90 min
resulted in significant decreases (41.9 and 81.2%, respectively) in the AFB1 contents of
soybean [41]. The application of higher drying temperature for a longer time decreases
both infection and toxin content. Similar degradation ratios were observed during dry
heat treatment of wheat grains [40]. Roasting between 90 and 150 ◦C for 30 to 120 min
reduced AF concentrations in peanuts and pistachio by 57–90 and 93%, respectively [42,43].
The cooking of maize can decrease AF content by 51 to 85% [44]. Simple rice cooking
also yielded a 34% decrease in AFB1 content [45], which could be improved up to 88%
using high pressure [46]. Extrusion of cornmeal decreases AFBs content by 80.5 to 83.7%
and AFGs content by 74.7 to 87.1%, and with the addition of amylose-rich corn starch,
the effectiveness of reduction increased by 0.3 to 8.1% [47]. Instant catapult steam explo-
sion, initially used for the deconstruction of lignocellulose biomass, was found similarly
effective combined with heat–pressure treatment. The AFB1 content of treated corn stalk
yielded 78.8 to 100.0% decrease; the efficiency of treatment is higher by increasing the
applied pressure and temperature, resulting in a toxin-free feed owing to the combined
effects of hydrolysis–oxidation–dehydrogenation and dehydrogenation–decarbonylation
pathways [48]. According to previous reports, moisture content, heating temperature,
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processing time, and the properties of the food matrix are the critical efficiency parameters
in thermal unit operations [40–43,46–48].

Due to the adverse effects of heat treatments on nutritional properties, the food
industry is increasingly interested in non-thermal technologies. For example, high pressure
techniques are ecologically friendly treatments that do not affect significantly either the
nutritional status or the organoleptic properties of foods; meanwhile, they significantly
reduce spoilages caused by microorganisms and enzymes [71]. High-pressure (500 MPa)
treatment for 5 min was successfully applied to decrease the AFB1, B2, G1, and G2 contents
of spiked water samples by 61–87%; however, the degradation aflatoxins was significantly
less effective in artificially contaminated grape juice samples (14–29%) [49].

Another physical method, which can be employed for the reduction in AF contami-
nation, is irradiation. When A. flavus contaminated corn kernels are illuminated with UV
light, they emit bright greenish-yellowish light making separation possible. However, this
reaction is not visible in every case, and the internal fungal contaminations have no visible
effects either [72]. An AF-containing peanut sorting method based on red and green light
reflectance was also developed [73]. A low-cost multi-spectral analyzer was developed to
monitor single corn kernels at nine distinct wavelengths in the λ = 470–1550 nm region
for qualitative use [36], which can also be applied in the cleaning process. The fluorescent
technique showed higher sensitivity and specificity than near-infrared spectroscopy and
hyperspectral imaging; however, near-infrared spectroscopic evaluation has high capability
on both AF and fungal contamination and has already been applied in automatic sorters in
practice [74].

Pulsed electric field (PEF) is a relatively new processing method, and it takes ad-
vantage of short pulses of electric field from 80 kV/cm to 100 V/cm, which alters the
permeability of cell membranes. While PEF can be applied to improve material transfer
processes, increasing the strength of the electric field will elicit antimicrobial inactivation
and AF degradation processes. PEF treatments can decrease both AFB2 and AFG1 contents
of contaminated water and grape juice samples; however, the efficiency of the method was
dependent on the food matrix [50] and increased with increasing exposure periods [74].
Pulsed high-power ultrasound radiation was also effective and resulted in cavitation in
the treated material, significant structural changes and inactivation of proteins and en-
zymes [75]. In another study, pulsed ultrasound treatment at 1.65 W/cm3 power intensity
for 10 min reduced the AFB1 content of maize flour slurry with 11% removal rate [63].

AFs are destroyed by UV light in the presence of oxygen. The absorption maximums
for various AFs are different: AFB1 shows maximum absorption at 223, 265, and 362 nm,
AFB2 at 265 and 363 nm, AFG1 at 243, 257, 264, and 362 nm; meanwhile, AFG2 has its
absorption maxima at 265 and 363 nm [76]. When AFG1, AFB1, and AFB2 were spiked
in pure water and were treated by UV light, significant decreases in their concentrations
(67.22, 98.25, and 29.77% decreases, respectively) were recorded [77]. Higher dose and
more extended UV-C treatment (6.18 kJ/cm2, 3 h) decrease the AFB1 content of brown,
black, and red rice [51]. The key issue of the efficiency of UV treatment is that the radiation
has to be applied on the whole surface ensuring uniformity: e.g., rotation of peanuts during
UV-C treatment resulted in 25% higher AFB1 degradation [52].

Gamma irradiation reduces both the number of fungi and the AFB1 content of natu-
rally contaminated corn kernels: irradiation doses between 1 and 10 kGy can result in 69.8
and 94.5% mycotoxin reductions, respectively [55,56]. For corn, wheat, and rice kernels,
4, 6, and 8 kGy doses were found effective in 15–56% AF reductions by the increasing
doses [54]. Higher than the 10 kGy dose was found to be useful in AFB1 reduction in
soybean [57]. Lower values for AF decreases (20–43% decrease for 5–9 kGy doses) were
reported in peanuts and found that low power microwave heating was much more ef-
fective (59–67% decrease at 360, 480, and 600 W), although the combination of the two
irradiations resulted in a higher than 95% reduction [58]. When the effects of 5–25 kGy
dose gamma irradiations on the AF content of artificially contaminated mixed poultry
feed were examined, lower efficiency, 5–43% decrease in total aflatoxin and aflatoxin B1
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content was found [53]. Meanwhile, the direct natural sunlight applied on the same media
placed on a tray in 1–2 mm thickness for 30 h yielded higher decontamination ratios (up to
75%). It is noteworthy that three hours of sunlight treatments already had 40% efficiency
under the same irradiation conditions [53]. Instead of direct light, pulsed light has also
been evaluated and found to be an applicable technology for AF decontamination and
was also found useful in the decontamination of solid materials [78]. Polychromatic light
in the wavelength spectrum of 100–1100 nm applied with a xenon flash lamp resulted in
75 to 90% decreases in AFB1 and AFB2 contents of rice and rice bran [59]. Electric beam
treatment was also evaluated in toxin mitigation of red pepper powder, and while it was
useful in ochratoxin A reduction, it was ineffective in AFB1 degradation [79].

Cold (or non-thermal) plasma can also be used against fungal pathogens and their
toxins. Cold plasma is a result of atmospheric dielectric discharge, which causes the ionized
gas to contain metastable atoms and molecules with a nearly zero net electrical charge. The
mycotoxin degradation is attributed to these free radicals (for example, O•- and OH•) [80].
The effects of pressure (atmospheric or vacuum), air composition, humidity, flow rate,
discharging power, and treatment time on the efficiency of cold plasma application are
under continuous evaluation nowadays [80]. A 30 min treatment of AFB1-spiked food
samples at 1.5 A and 15 mm distance from the electrode can result in a 95% decrease in toxin
concentration [67], and the efficiency of treatment is proved on naturally contaminated
samples too. Cold plasma was more active on hazelnuts than a 10 kGy dose gamma
irradiation and resulted in a 72–73% decrease in AF contents compared to the 47% efficiency
of irradiation [65]. A 20 to 52% decrease in aflatoxin content was measured on different
kinds of nuts [64,66,68], on corn [32], and wet and dried distilled grain with solubles [68].
Cold plasma is found as a cost-effective and ecologically friendly treatment, not significantly
affecting the quality of kernels when compared to other detoxification methods [81]. This
procedure can reach total detoxification of AFs, as it cleaves the vinyl bond between the 8
and 9 position on the terminal furan ring of AFB1, suppressing its toxic potential [82].

The use of electrolyzed water can result in significant degradation of the AF content of
different substrates. For example, soaking of grains in electrolyzed acidic water for 15 min
resulted in an 85 to 90% decrease in AB1 of peanuts [68]. The mechanism of inactivation
caused by chlorenium and hydroxide ions [83]. In another study, alkaline-electrolyzed
water was found useful in removing AFB1 from peanut and olive oil [69]. Carbon filtration
can be also applied for AF removal from liquid materials, e.g., in coffee samples spiked
with different concentrations of AF resulted in a 73 to 78% decrease, and therefore, it seems
to be an effective and cheap strategy to AF control and mitigation [39].

Post-harvest losses in stored maize can be significant due to storage pests such as
the maize weevil or the larger grain borer, improper storage conditions, and practices.
Awuah et al. (2019) evaluated the effectiveness of packaging with triple-layer hermetic
and standard woven polypropylene bags in Ghana. The triple layer of hermetic bags
significantly decreased the growth of the pest populations, and AF counts were consider-
ably worse in woven polypropylene packaging (16.39%) than in the triple-layer hermetic
bags (3%) under both ambient and simulated hot storage conditions [84]. Another evalua-
tion done in Nigeria revealed that Purdue Improved Crop Storage (PICS) hermetic bags
were the most efficient in mitigating pest population growth [85]. The effectiveness of
the treatments decreased in the order PICS > ZeroFly bags > polypropylene bag control.
However, the purchasing power of and the willingness to buy such hermetic bags in
Malawi’s very low-income farmer communities was low even among those who attended
demonstrations [86].

2.2. Chemical Methods

Current chemical methods to be chosen for AF reduction are traditionally based
on various chemical agents, ozonation, and adsorption; however, there are a number of
emerging chemistry-based techniques as well (Table 3). Some organic and inorganic acids
such as citric, lactic, tartaric, propionic, and hydrochloric acids seem to be more effective
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than others, such as succinic, acetic, ascorbic, and formic, which were found only marginally
successful [87,88]. Citric acid treatment resulted in a remarkably high 86–92% decrease
in the AFB1 content of duckling feed; meanwhile, only a more moderate 67% decrease
was recorded with lactic acid solutions [89,90]. The AFB1 decomposing effect of sodium
bisulfite, an effective reducing agent relies on the formation of sulfonate derivate [91],
which can be significantly enhanced by concomitant heat treatment and the addition of
ozone and hydrogen peroxide. Using this technique at 25 ◦C, a 28% mycotoxin reduction
was achieved in AFB1-contaminated dried fig fruits, which efficiency was increased further
up to 65% when 0.2% H2O2 was added 10 min before sodium-bisulfite treatment, and
48 and 68% AFB1 reduction was documented when 45 and 65 ◦C heat treatment was
employed for 1 h after the addition of reducing agent [92]. The oxidizing agent ammonium
persulfate was also with a 31 to 51% decrease in the AFB1 contents [93]. Aflatoxin-reducing
effects of ammoniation were also reported in an alkaline environment [87].

Table 3. Chemical methods available for aflatoxin reduction in feed and food samples.

Method Commodity Reducing Efficiency

Use of organic and inorganic acids
(e.g., citric, lactic, tartaric,

propionic, and hydrochloric acids)

Grains, mixed feed, black pepper,
distillers’ grains, and condensed

distillers’ solubles [87–90,92,94,95]
<92%

Ammoniation Milk [96] 79–90%

Redox-active enzymes AFs spiked liquid coffee samples
[97] <96%

Ozone treatment

Corn [98,99]
Wheat [100]

Pistachios [101]
Poultry feed [102]

79–95%
85–95%

13%
86%

Sodium hydrosulfite is also a useful chemical agent in AF reduction. A 96 to 100%
decrease in the AF content of black pepper was found when sodium hydrosulfite was
applied in concentrations selected in the range of 0.25 to 2% both under atmospheric and
high pressures [94]. Several acidic and alkaline compounds and salts can also be used
to decrease total AFs in white and black pepper [95]. The application of chloridric acid,
phosphoric acid, sodium, potassium, calcium hydroxide, sodium bicarbonate, sodium
bisulfite, sodium hydrosulfite, sodium chloride, and sodium sulfate resulted in a 18 to 51%
reductions in AF concentrations; however, the addition of pure water alone also resulted in
13 to 20% shrinkages of the same AF pools [95].

Certain redox-active enzymes can be regarded as novel tools in chemistry-based AF
mitigation procedures. For example, a recombinant type B dye-decolorizing peroxidase
(Rh_DypB) was also effective in in vitro digestion of AFB1 [97]. Depending on the experi-
mental setup, 96% of bioconversion was reached after 96 h by the addition of 0.1 U/mL
enzyme and 0.1 mM H2O2, which is promising and can be applicable in mycotoxin mitiga-
tion in feeds.

Another novel chemical method is the employment of the antifungal and insect-killing
ozone during grain storage to control AF [101]. The highly reactive O3 molecules may
take part in the direct mycotoxin reduction as well without any adverse effects on food
quality [103,104]. Ozone destructs AFs with high efficiency (up to 66–95% of the initial
toxin concentration) in cereal grains and flours, soybean, and peanut [97,102,105].

A broad spectrum of chemicals can inactivate AFM1 in milk, and various ammoniation,
acidification, oxidative, and reductive technologies based on them have been developed
and tested. By applying ammoniation, the AFM1 content can be reduced by 79 to 90% [96].
The application of 0.5–2.0% ammonia under high pressure (45–50 psi) with 12–16% of
moisture at 80–100 ◦C for less than an hour is considered the most effective method to
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reduce the AFM1 content of milk [106]. Chlorine dioxide gas is also an effective detoxifying
agent to mitigate AFB1-contaminated maize [107].

Adsorption has also been evaluated as a possible mycotoxin-reducing method, and dif-
ferent kinds of adsorbents, nanoparticles, nanocomposites, and magnetic-activated carbon
were tested extensively. These absorbents are suitable agents for AFB1 decontamination
in poultry feed [108] and in AFB1-contaminated vegetable oils [109–111]. In these exper-
iments, the dose of adsorbents, treatment time, temperature, initial toxin concentration,
and pH were the critical parameters of efficiency [110,111]. The AF-reducing capability
of chitosan nanoparticles has also demonstrated in several studies [112,113]. Considering
that mycotoxin-binding absorbents are quite commonly used to alleviate AFs in animal,
especially ruminant feed, they are presented in more detail in a separate section as shown
below.

2.3. Agents Detoxifying AFs in Animal Husbandry

Mycotoxin detoxifying agents used in animal husbandry have been reviewed exten-
sively in some recent publications [91,114–116]. AFB1 binders traditionally attract lots of
interest from researchers as well as from agricultural experts and farmers [115,117,118].
Adsorbents with multi mycotoxin binding efficacy are also in the limelight of current
research performed in this field [114,119,120].

Mycotoxins can enter into the livestock organism via adsorption. After intake, AFB1
transformation to AFM1 and AFM2 takes place in the liver and can have unfavorable effects
on the organs [121]. To reduce the presence of mycotoxins in the gastrointestinal tract and
prevent their further spread in the tissues, adsorbents are added to feeds or used separately
at mealtime. There have been various mycotoxin binders tested and employed in the
last years, such as minerals (bentonite, vermiculite, nontronite, montmorillonite, activated
carbon, glucomannan, zeolite, hydrated sodium calcium aluminosilicate (HSCAS), sepiolite
and diatomite), chemicals, organic adsorbents (yeast, lactobacilli, micronized fibers, and bio-
sorbents), and as a long-known and long-practiced solution, synthetic polymers [122,123]
(Table 4.).

Table 4. Comparison of the flatoxin-binding efficiency of different absorbents.

Name of Binder Concentration Binding Efficiency References

Activated carbon 1% suspension >99.5% [124]
Calcium bentonite 1% suspension 98.5% [124]

Diatomite 50 mg/2 µg/mL AFB1 90–95% [125]
Esterified glucomannan 1% suspension 96.6% [124]

Hydrated sodium calcium
aluminosilicate (HSCAS) 100 mg/2 µg/mL AFB1 98–100% [126]

Vermiculite, nontronite, and
montmorillonite 2% of feed 41% [127]

Zeolite 82 mg/0.821 µg/mL AFB1 80% [128]

One of the most widely used minerals is the aluminum phyllosilicate bentonite clay,
particularly its sodium and calcium forms [129,130]. A diet with 227 g bentonite/cow/day
could diminish AFM1 content in milk by 60.4% [131]. The addition of clay—including
vermiculite, nontronite, and montmorillonite—to cow feed in 0.5, 1, and 2% concentration
could reduce AFM1 excretion by 25, 18, 41%, respectively [127]. Activated carbon and
glucomannan are very useful in lowering the AFM1 content of milk without changing milk
composition [132]. Activated carbon mixed with hydrated sodium calcium aluminosilicate
(HSCAS) mitigates the conversion of AFB1 to AFM1 by 36 to 50% [130]. In an in vitro
study, Muhammad and Farhat, (2018) and Zahoor and Khan (2018) claimed that magnetic
carbon particles prepared from bagasse, containing nanocrystalline iron oxide are used
to detoxicate poultry feed as an alternative of the currently used powdered activated
carbon adsorbent [133]. The mixture of activated carbon and HSCAS adsorbent could
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partially alleviate the negative effects of aflatoxin on blood profiles, growth performance,
and hepatic gene expression in broilers [134]. The aluminosilicate mineral zeolite has
a large internal surface, and high cation exchange capacity, therefore, can bind polar
molecules [135]. Organically modified zeolites are more efficient adsorbents than the
original natural minerals [136]. Diatomite (a sedimentary silica rock mineral) and sepiolite
(a soft white clay mineral) have also been studied over the last few years and have proved
to be effective adsorbents as well owing to their large surface [135].

Microfibers derive from cereals and legumes and contain mainly cellulose, hemicel-
lulose, and lignin. Microfibers and bio-sorbents can adsorb mycotoxins favorably in the
digestive tract and can be excreted easily with feces [137].

Many synthetic polymers, such as cholestyramine, divinylbenzene-styrene, and
polyvinylpyrrolidone, have been shown to bind mycotoxins effectively [138]. More recently,
Arak et al. (2019) have synthesized polymers based on methacrylic acid, and a macrop-
orous molecularly imprinted polymer, TMU95, was efficient in binding AFB1 in the feed of
ducklings. It also had beneficial effects on the growth of the livestock and alleviated the
harmful physiological effects of the mycotoxin [139]. A new adsorbent was developed for
the selective removal of AFM1 content of raw milk using a molecularly imprinted polymer,
which is coated on the surface of the stainless-steel plate [140].

3. Potentials and Challenges of Upscaling Experimental Detoxifying Methods

The available physical and chemical AF mitigation and detoxification methods in-
fluence not only the toxin concentrations of feed and food, but have—at least in several
cases—significant effects on nutritional status and food safety (Table 5). The advantage of
most physical methods such as radiation, high-pressure treatments, and pulsed electric
field lies is their advantageous toxicological safety properties [141,142]. However, mean-
while, thermal treatments, sorting, and dehulling may decrease other food risks including
microbiological contaminations, pesticide residues, and toxic elements [143–145], they
can also result in significant losses in nutrients [91,143]. Therefore, holistic approaches
should be used to test the toxicological and nutritional consequences of treatments and the
effects of sample matrices, since the efficiencies of physical methods are strongly depen-
dent on the materials to be decontaminated and the application conditions [34,41,49,58].
Modern mathematical methods are available for multi-purpose optimization of processing
parameters, taking into account the relationships existing between structure, composition,
shelf-life, and safety [146,147]. All these evaluations should rely on a sufficient amount
of high-quality data coming from carefully planned and reliable research. Furthermore,
although a tested treatment may exhibit a promising mitigation effect in a laboratory
experiment, numerous additional studies are likely to be performed when it is scaled up to
a pilot or manufacturing scales to reveal limitations and impracticality and demonstrate
the industrial applicability [148–150]. This means that the transition of a new mycotoxin de-
contamination technology from laboratory to manufacturing scale always needs a number
of additional quality tests to be performed until a reliable and stable technological setup
has been reached, which provides the consumers with the expected quality and safety of
the food product [151].
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Table 5. Nutritional and food safety effects of physical and chemical processes in feed and food.

Method Principle Method Effect

Washing Changes in enzyme activity [152]

Removal of external grain parts
(dehulling, polishing

Losses in nutritional value (e.g., fibers, minerals
vitamins) [143]

Removal of contaminants (pesticide residues, toxic
elements, microbes, other toxins) [143,144]

Carbon filtration Reduction in organic micropollutants [153]

Reduction,
destruction

Thermal treatment, high moisture
thermal treatment (roasting, extrusion,
cooking, high-pressure cooking, instant

catapult steam explosion)

Losses in nutritional value (e.g., proteins, bioactive
compounds) [91]

Inactivation of microorganisms [145]

High hydrostatic pressure
Inactivation of microorganisms and enzymes [142]

Retention of organoleptic and nutritional
properties [49,142]

UV light, near-infrared radiation Reduction in allergenicity of food proteins [154]

Gamma irradiation
Reduce the allergenicity of food proteins, denature

and agglomerate the proteins [155]
Lipid and vitamin oxidization [151]

Pulsed electric field

Inactivation of enzymes and microorganisms, safe for
humans, because no dangerous chemical

reactions have been detected [141]
Low effect on nutritional and organoleptic

properties [49]
Structure of macromolecules (e.g., starch, protein)

changes [156]

Ultrasound

Reduce the allergenicity of food proteins [154]
High-frequency low-power ultrasound has minimal

physical and/or chemical effects on food
constituents [157,158]

Cold or nonthermal plasma treatment
Inactivation of microorganisms [159,160]
No effect on nutritional properties [161]
Improve technological properties [162]

Electrolyzed water Reduce the natural microbiota, no effect on
nutritional properties [163]

Chemical

Liquid chemical agents (acids) Changes in nutrient status and sensory properties,
food safety concerns [10,164]

Enzymes Enzyme specific effects on quality, reduction in safety
risks [165]

Gaseous chemicals (ammonia, ozone)
Reduction in organic micropollutants [153]

No hazard on treated materials [163]
Oxidization of lipids and phenolic compounds [151]

4. Conclusions and Future Trends

Physical and chemical AF mitigation methods have been reviewed in this paper.
Besides the widely used pre-harvest biocontrol methods, more recent research work per-
formed in this field focuses more on the development and improvement of post-harvest
processes as well including microwave heating, gamma irradiation, pulsed light and UV
light, cold plasma, inorganic and organic acids, alkalis, gases, and mycotoxin-binding
absorbents. The combination of these methods is expected to increase the efficiency of AF
decontamination, which is also influenced by the nature of the products and the level of
their AF contamination. One of the main future challenges is to develop new procedures
that may achieve comparable detoxification efficiencies in a broad spectrum of feed and



Toxins 2021, 13, 204 11 of 17

food matrices, because there are no such general all-purpose decontamination methods,
which could be broadly employed. Notably, the novel emerging decontamination tech-
nologies should not change the physical–chemical properties of the treated feed and food
products significantly, and no toxic residues of the mycotoxins should be left over in the
decontaminated products. Future research should focus on the elaboration of these novel
technologies and their extensive testing in as versatile feed and food matrices as possible.
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