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Abstract

Background. Reference life expectancies inform frequently used health metrics, which play an integral role in deter-
mining resource allocation and health policy decision making. Existing reference life expectancies are not able to
account for variation in geographies, populations, and disease states. Using a computer simulation, we developed a
reference life expectancy estimation that considers competing causes of mortality, and is tailored to population char-
acteristics. Methods. We developed a Monte Carlo microsimulation model that explicitly represented the top causes
of US mortality in 2014 and the risk factors associated with their onset. The microsimulation follows a birth cohort
of hypothetical individuals resembling the population of the United States. To estimate a reference life expectancy,
we compared current circumstances with an idealized scenario in which all modifiable risk factors were eliminated
and adherence to evidence-based therapies was perfect. We compared estimations of years of potential years life lost
with alternative approaches. Results. In the idealized scenario, we estimated that overall life expectancy in the United
States would increase by 5.9 years to 84.7 years. Life expectancy for men would increase from 76.4 years to 82.5
years, and life expectancy for women would increase from 81.3 years to 86.8 years. Using age-75 truncation to esti-
mate potential years life lost compared to using the idealized life expectancy underestimated potential health gains
overall (38%), disproportionately underestimated potential health gains for women (by 70%) compared to men (by
40%), and disproportionately underestimated the importance of heart disease for white women and black men.
Conclusion. Mathematical simulations can be used to estimate an idealized reference life expectancy among a popula-
tion to better inform and assess progress toward targets to improve population health.
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The calculation of population health metrics plays an
integral role in decision making for governmental policy
makers and there is increasing demand for incorporating
population health metrics into the decision making of
integrated health systems.1–3 Population health metrics
can serve to identify both successes and opportunities for
targeted improvement; however, current reference life
expectancy metrics do not take into account variation in
geographies, populations, and disease states. We propose
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a new method for calculating a reference life expectancy
metric that will incorporate this variation.

Among population health metrics most commonly
used in policy decision making, including years of life lost
due to premature mortality (PYLL), disability-adjusted
life years (DALY), and health-adjusted life years
(HALY), each use a reference life expectancy in their cal-
culation. For example, PYLL compares observed life
expectancy to a reference life expectancy that reflects a
hypothetical age to which the individual would have lived
had they not died prematurely. Current methods for esti-
mating the reference life expectancy, and therefore for
estimating PYLL, however, rely on assumptions that are
potentially overly simplistic and likely inaccurate. In par-
ticular, common approaches for estimating reference life
expectancy, such as those using current lifetables of mor-
tality,4,5 the lowest death rate among countries,2,5–7 a
fixed age value such as age 75 (age-75 truncation),8 or
creating a composite life expectancy based on the lowest
observed death rate for each age group across coun-
tries,9,10 assume that any population’s life expectancy is,
at most, equal to some life expectancy that is observed
today. In addition, most of these approaches do not
incorporate knowledge about a population’s leading
causes of mortality nor the prevalence of the risk factors
underlying these causes of mortality. Therefore, current
calculation methods are limited in their application to
diverse population types. For example, when determining
PYLL due to a behavior (e.g., smoking) in a relatively
healthy population versus an unhealthy one (e.g., a popu-
lation of people with morbid obesity), it would be inap-
propriate to use the same reference life expectancy for
both populations as the unhealthy population could not
be expected to have the same life expectancy as a healthy
one, regardless of smoking behavior. In this example, the
use of the same reference life expectancy could lead to
the underestimation of the impact of smoking in the
unhealthy population due to competing mortality risks
and may result in undervaluing the benefits of curbing
this risk behavior. Therefore, when estimating popula-
tion health metrics it is crucial to consider the underlying
population characteristics that may act as competing
risks for mortality such as comorbidities or underlying
predispositions.

The imprecise estimation of PYLLs and DALYs is
especially significant because these metrics are often used
to determine resource allocation and health policy deci-
sion making. For example, the DALY, which combines
PYLL with years lived with disability (YLD) to quantify
the burden of disease, has served as the prominent mea-
sure in the World Health Organization’s Global Burden

of Disease, since its introduction,11–13 and PYLL have
been calculated employing age-75 truncation by Robert
Wood Johnson’s County Health Rankings.8,14 Due to its
use in high-impact public health projects, population
health metrics, and consequently the methods for the cal-
culation of a reference life expectancy, can have a signifi-
cant impact on decision making and resource allocation.

By creating estimates that are statistically replicable,
consider competing causes of mortality, and can be tai-
lored to a population’s particular characteristics, mathe-
matical simulations hold the potential to improve the
estimation of reference life expectancies, and therefore
PYLL and other population health metrics. In this way,
a mathematical model can ultimately be a useful tool in
setting health target priorities. To this end, our objective
is to address the question: What could be the reference
life expectancy in the United States in the idealized sce-
nario in which modifiable risk factors (e.g., smoking,
unhealthy diet) were eliminated and adherence to
evidence-based therapies was perfect?

Methods

We sought to develop a mathematical model that could
be used to estimate a reference life expectancy that can
be used calculate population health metrics across vari-
ous populations. This proposed reference life expectancy
for the United States is reflected in an idealized scenario
where public health goals are achieved by eliminating
modifiable risk factors (e.g., smoking, unhealthy diet)
and maximizing adherence to evidence-based therapies.
We developed a Monte Carlo microsimulation model
that simulates a cohort of hypothetical individuals where
each individual is generated at initiation with an age, a
gender, a set of mortality causing conditions (Table 1),
and a set of risk factors (Table 2). He or she then goes
through a virtual life in the model, developing new risk
factors and/or new conditions, or having existing risk
factors or conditions resolve, until he or she dies.

With 19 conditions, 27 risk factors, and the potential
for treatment and screening, the model includes over
20,000 input values. To address this large quantity of
data the model inputs are organized into arrays by con-
dition, risk factor, screening/treatment, age, and sex
(Figure 1). The number of parameters was chosen to
ensure that the model was granular enough to have util-
ity to measure the impact of top mortality causing
conditions and changes in population epidemiologic
characteristics, while maintaining model tractability. The
simulation structure has been designed with flexibility in
mind so that additional risk factors and/or mortality
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driving conditions can be added or removed as necessary
based on a population’s characteristics. To assess
the quality of a body of evidence regarding inputs, we
used a synthesis of the Grading of Recommendations
Assessment, Development and Evaluation (GRADE)
guidelines for rating the quality of evidence15 and the
Agency for Healthcare Research and Quality level of evi-
dence guidelines16 to estimate the likelihood of causality
regarding each risk factor/mortality and provided each
with a grade of A, B, or C, with A representing the high-
est quality of evidence and C lowest quality of evidence
used. When epidemiological or effect data were unavail-
able for specific age category, linear extrapolation from
the nearest age group was used to determine the age-
specific parameter. A complete explanation of the model
and complete input tables are available in the Online
Technical Appendix.

Mortality-Causing Conditions

The model includes 19 conditions representing the top
causes of mortality across age deciles that individuals
could develop during their virtual life. Each condition
has a probability of development, as well as an associ-
ated likelihood of mortality. The top causes of mortality

were compiled from Centers for Disease Control and
Prevention (CDC) tables of the top 10 causes of mortal-
ity by sex in each 10-year age group in the United
States.17 The final list of conditions was selected by mer-
ging the top 10 conditions for each age/sex group and
identifying a superset that included all of these top con-
ditions. That list was then narrowed down to exclude
conditions that could not be readily simulated based on
patient risk characteristics (i.e., septicemia and congeni-
tal malformations). These excluded conditions were
accounted for in ‘‘other mortality.’’‘‘Other mortality’’
was defined as mortality resulting from anything other
than the 19 conditions. As some mortality-causing condi-
tions were difficult to distinguish from one another due
to similar pathophysiology, and others were reported
together but were distinguishable because of distinct
pathophysiology and/or risk factors, the mortality-
causing conditions represented in the simulation differed
slightly from the CDC top causes of mortality (Table 1).

Risk factors

The model includes 27 risk factors that each modify the
likelihood of developing associated conditions. Risk fac-
tors were selected if they had an effect size of less than

Table 1 Top Mortality-Causing Conditions and Corresponding Model Mortality-Causing Conditionsa

CDC Top Causes of Mortality (ICD-10 Code Definition) Model Mortality-Causing Condition Categories

Accidents (unintentional injuries) (V01–X59, Y85–Y86) Accidents (unintentional injuries)
Alzheimer’s disease (G30) Alzheimer’s disease
Assault (homicide) (*U01–*U02, X85–Y09, Y87.1) Assault (homicide)
Cerebrovascular diseases (I60–I69) Cerebrovascular diseases
Chronic liver disease and cirrhosis (K70, K73–K74) Chronic liver disease and cirrhosis, viral hepatitis
Viral hepatitis (B15–B19)
Chronic lower respiratory diseases (J40–J47) Chronic lower respiratory diseases
Diabetes mellitus (E10–E14) Diabetes mellitus
Diseases of heart (I00–I09, I11, I13, I20–I51) Diseases of heart
Essential hypertension and hypertensive
renal disease (I10, I12, I15)

Essential hypertension and hypertensive renal
disease, nephritis, nephrotic syndrome, and nephrosis

Nephritis, nephrotic syndrome, and
nephrosis (N00–N07, N17–N19, N25–N27)

Influenza and pneumonia (J09–J18) Influenza and pneumonia
Intentional self-harm (suicide) (*U03, X60–X84, Y87.0) Intentional self-harm (suicide)
Malignant neoplasms (C00–C97) Malignant neoplasms (cervical)

Malignant neoplasms (colorectal)
Malignant neoplasms (breast)
Malignant neoplasms (lung)
Malignant neoplasms (prostate)
Malignant neoplasms (other)

Parkinson’s disease (G20–G21) Parkinson’s disease
Pregnancy, childbirth, and the puerperium (O00–O99) Pregnancy, childbirth, and the puerperium

CDC, Centers for Disease Control and Prevention; ICD-10, International Classification of Diseases, 10th Revision.
aICD-10 codes represent the causes of mortality definitions used by the CDC.
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RR 0.9 or at least RR 1.2 for at least one mortality-
causing condition. These cutoffs were selected because it
is widely regarded that associations of clinical signifi-
cance in the range of 0.9 to 1.2 are too weak to be
detected by epidemiologic study.18 If a risk factor was
included under this criterion, the association between
that risk factor and all conditions was evaluated. The
included risk factors were chosen if they had consistent
direction of effect as well as clinical and statistical signifi-
cance. Twenty-seven risk factors associated with the
onset of the mortality-causing conditions are included in
the model (Table 2). A low socioeconomic status risk
factor was included that acted by considering the impact
of socioeconomic status on mortality that is not a direct
consequence of more prevalent unhealthful behaviors in
lower socioeconomic populations. To avoid double
counting, the variable was designed to account for the
portion of low socioeconomic strata–associated mortal-
ity that is attenuated in more egalitarian countries, above
and beyond what would be explained by the behavioral
changes.19

These risk factors do not necessarily represent an
exhaustive list and in specific populations, or as addi-
tional evidence is found, additional risk factors may need

to be added to the model. The model design has been
developed specifically to allow for the incorporation of
additional risk factors and condition as needed.
Individuals were capable of developing any number of
risk factors. Although in real individuals risk factors are
often correlated, this simulation currently makes the sim-
plification that risk factor development is not linked to
other risk factors. A full description of the risk factor to
condition pathways is available in the Online Technical
Appendix.

Model Validation and Calibration

Prespecified validation tests were 1) ability of the simula-
tion to predict life expectancy at age 15 for men, women,
and all persons in the United States; 2) survival curves
for men, women, and all persons as compared to the
2014 US life tables20; and 3) and age-specific attributable
mortality of each mortality causing condition for men,
women, and all persons.17 Validation was performed
using visual inspection and through analysis of sum of
squared errors (SSE), while acknowledging with regard
to SSE that statistically significant deviations are not
always clinically significant deviations.21 To calibrate the

Table 2 Risk Factors Associated With Mortality-Causing Conditions

Risk Factor Definition Risk Factor Definition

Alcohol abuse AUDIT-8 or greater Family history—Dementia Second-degree relative
Anxiety DSM-IV–Anxiety Family history—Parkinson’s Second-degree relative
Bipolar DSM-IV–Bipolar Family history—Diabetes Second-degree relative
Depression DSM-IV–Major depressive disorder Family history—Hypertension Second-degree relative
Cardiovascular disease Maternal congenital heart

disease, ischemic
heart disease, heart failure, or
pulmonary hypertension

Immunocompromised Recipient of solid-organ
transplant, bone marrow
transplant, chemotherapy,
systemic corticosteroids

Diabetes Type 2 diabetes HIV/AIDS \200 CD4 count
High cholesterol Total cholesterol .200 mg/dL HPV High-risk HPV types
Hypertension Stage 1 or greater Smoking/tobacco Smoke every day or some days
Head trauma Traumatic brain injury–related

emergency department visit
TCE (trichloroethylene)
exposure

Long-term exposure
.0.005 mg/L

Low socioeconomic status Education less than high School
and/or income 5th quintile

Particulates exposure WHO medium/high
exposure (industries—mining,
manufacturing, construction)

Obesity BMI �30 Positive behavioral factors
BRCA1/2 BRCA1 or BRCA2 gene Physical activity CDC aerobic and

muscle-strengthening
guidelines

Viral hepatitis Hepatitis B and/or C Flu vaccination Annual flu vaccination
IV drug use IV drug use in past month Healthy diet DASH and/or

Mediterranean Diet

AUDIT-8, Alcohol Use Disorders Identification Test, Eighth Edition; BMI, body mass index; DSM-IV, Diagnostic and Statistical Manual of

Mental Disorders, Fourth Edition; HPV, human papilloma virus; IV, intravenous; WHO, World Health Organization.
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model to the average life expectancy, a general mortality
dial was implemented for individuals over age 35. This
dial decreased the overall mortality rate in the popula-
tion and affected all conditions proportionally.

Hypothetical Population

We constructed hypothetical populations using the
2014 US national prevalences of age, gender,

mortality-causing conditions, and risk factors. When
specific 2014 estimates were not available (which was the
case for most conditions and risk factors), the most
recent prevalence was used. All simulation life expectan-
cies reported are a life expectancy at birth; however, the
simulation focused on individuals aged 15 years or older
because risk factor and condition data were typically not
available for persons below this age, and because the
contribution of mortality at ages 1 to 14 years to life

Figure 1 Excerpt from model input array.
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expectancy in developed countries is extremely small
(\0.5%).22,23 Details of model inputs have been pro-
vided in the Online Technical Appendix.

Idealized Health Scenario

In order to determine an upper bound for life expectancy
that could be interpreted as a maximum for possible pop-
ulation health in an idealized scenario, we simulated a
birth cohort at age 15 of one million patients with char-
acteristics resembling the population of the United
States. Unlike baseline simulations, however, modifiable
risk factors were eliminated and adherence to evidence-
based therapies and cancer screenings was assumed to be
perfect. Modifiable risk factors were defined as those that
an individual and/or health system has potential to
attenuate or eradicate (e.g., high cholesterol, smoking,
and obesity), and nonmodifiable risk factors were defined
as those that may not be attenuated or eradicated within
the scope of patient behaviors or health systems (e.g.,
family history and BRCA1/2).

Assessing Performance Compared to Established
Reference Life Expectancies

After determining the average US life expectancy based
on what could be achieved in an idealized scenario, we
sought to compare the model-generated life expectancy
to commonly used reference life expectancies (Table 3).
To do this, as an example we selected three of most com-
mon causes of mortality in the United States among all
peoples age 15 to 80 years in 2014 according to the CDC
(accidents, cancers, and diseases of the heart). We then
calculated PYLL stratified by race and sex using the 2014
CDC mortality statistics of the number of individuals
that died at each age from each of the three conditions.24

We calculated the total number of PYLL using the model
generated reference life expectancy estimate, age-75

truncation, maximum observed life expectancy, and
World Health Organization (WHO) guidelines.

Results

Model Validation

The model predicted a life expectancy of 78.83 years
(81.30 years for females, 76.49 years for males) for the
general US population. These estimates closely mirror
the 2014 life expectancy observed in the United States
(78.74 years for the general population, 81.20 years for
females, and 76.40 years for males). The survival curves
generated by the model also closely reflect the current
survival curve observed in the United States (Figure 2).
Condition-specific mortality estimations also performed
well upon visual inspection and with SSE mortality was
a good fit; however, condition prevalence performed less
well. Fit is described further in the Online Technical
Appendix.

Estimated Life Expectancy

In the idealized scenario, in which modifiable risk factors
were eliminated and adherence to evidence-based thera-
pies was perfect, the average life expectancy in the
United States would be 84.7 years (an increase of 5.9
years over 78.8 years from USA life tables) (Table 3).
While the estimated life expectancy for women remained
higher overall than for men, the life expectancy for men
increased more than for women, increasing from 76.5
years to 82.5 years (a 6-year increase), while the life
expectancy for women increased from 81.3 years to 86.8
years (a 5.5-year increase) (Table 3).

Population Survival

Under the idealized scenario, the change in the propor-
tion of individuals living past a particular age compared

Table 3 Simulation Output and Commonly Used Reference Life Expectancy Measures

Cohort

Method

Idealized Life
Expectancy

(Simulation)

USA Country
Specific

Lifetable
4

Lowest Death
Rate Across Countries

(Japan)
2,5–7

Global Burden
of Disease Reference

Life Table
9,10

County Health

Rankings
14

Maximum life expectancy used (years)
Male 82.5 76.5 80.2 86.0 75.0
Female 86.8 81.3 86.6 86.0 75.0
Total 84.7 78.8 83.3 86.0 75.0
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to baseline was greatest in the highest age range of sur-
vival over age 85 years. In the idealized scenario, the pro-
portion of men surviving past ages 65, 75, and 85
increased from 79.7%, 63.1%, and 34.8% to 87.2%,
76.0%, and 52.8%, respectively. The proportion of
women surviving past ages 65, 75, and 85 increased from
86.9%, 74.1%, and 48.3% to 91.9%, 83.8%, and 64.9%,
respectively.

PYLL by Reference Life Expectancy

The idealized reference life expectancy measure affected
the total number of PYLL attributable to each condition
(Figure 3a). When examining the proportion of total
PYLL from these three example conditions, the model
LE and the commonly used reference life expectancies
each estimate a different proportion of PYLL for each
condition, as well as predict different proportions of
PYLL within populations (Figure 3b). The difference in
the proportion of PYLL attributable to accidents
between the WHO reference life expectancy and the age-
75 truncation proportions ranged from 10.9% in White
to 7.1% in Native Americas males and from 10.0% in
Native American to 6.4% in Asian women. The differ-
ences in the proportion of PYLL attributable to cancer
between the WHO reference life expectancy and the age-
75 truncation proportions ranged from 4.3% in Native
American to 7.1% in White males and from 2.3% in
Asian to 6.3% in Native American women. The

differences in the proportion of PYLL attributable to
diseases of the heart between the WHO reference life
expectancy and the age-75 truncation proportions ran-
ged from 2.8% in Native American to 3.9% in White
males and from 6.3% in Black to 4.0% in Asian women
(Figure 3b).

Discussion

A reference life expectancy is a key component in the cal-
culation of metrics that are often used to assess disease
burden and target resource allocation. Using a Monte
Carlo microsimulation model we were able to replicate
life expectancy and condition mortality rates, as well as
predict the life expectancy achievable in the United States
under current population characteristics in an idealized
scenario. Our model predicts that the idealized average
life expectancy in the United States given current state of
health science and technology is 84.7 years, an increase of
5.9 years above current life expectancy. This simulation-
based, idealized life expectancy estimate can be used as a
reference life expectancy in the calculation of population
health metrics such as PYLL. This method of calculating
a reference life expectancy can be particularly useful when
examining health metrics between different populations
that have varying underlying risk profiles as this simula-
tion takes into account competing mortality risks.

The selection of a reference life expectancy can be
very important as different reference life expectancy

Figure 2 2014 US and model survival curves.
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measures can lead to different conclusions. Estimates of
PYLL based on the simulation’s idealized reference life
expectancy contrast substantially with estimates of
PYLL based on commonly used reference life expectancy

approaches. Women have 70% greater PYLL using the
idealized reference life expectancy compared to age-75
truncation, whereas men have 40% greater PYLL using
the idealized reference life expectancy compared to age-

Figure 3 Years life lost from three top causes of mortality using various life expectancy standards by sex and race, United States
2014. (A) Number of PYLL per 100,000 people and (B) as a proportion of total PYLL
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75 truncation. Accordingly, the age-75 truncated method
used to estimate PYLL may vastly underestimate the
quantity of PYLL for many conditions overall, as well
as may underestimate the relative PYLL of women com-
pared to men (Figure 3a). Consequently, the selection of
a reference life expectancy can have a large impact on
resource allocation decision making because the relative
health impact of a condition and thus its prioritization
will change depending on the reference life expectancy
used. For example, using the age-75 truncation method
places a greater emphasis on accidents as a contributor
to PYLL because accident deaths can and do occur at
younger ages, while longer reference life expectancies
place a greater emphasis toward more late occurring
causes of mortality such as cancer or diseases of the
heart (Figure 3b). While this artifact could potentially be
adjusted for, the presence of a differential magnitude of
impact between different subgroups indicates that with-
out incorporating population specific characteristics and
competing mortality risks, we cannot accurately deter-
mine a reference life expectancy.

PYLL are not only applied to a general US popula-
tion, but are often applied to subpopulations for which
the 75-year or an even longer life expectancy is not possi-
ble or true, as the fixed value does not take into consider-
ation the comorbidities and risk factors associated with
that subpopulation, such as in opioid drug users who
often have associated risk factors (e.g., smoking, drinking,
hepatitis) that significantly reduce baseline life expec-
tancy. Similarly, our estimate is higher than the life expec-
tancy from the lowest death rate country, Japan (83.3
years),2,5–7,25 indicating that using the life expectancy
from other countries may also underestimate the reference
life expectancy. Assuming the model output represents
the true potential life expectancy in the United States,
using the Global Burden of Disease reference life expec-
tancy would underestimate the female life expectancy, but
overestimate the male life expectancy. Conversely, using
the country with the greatest life expectancy would over-
estimate the female life expectancy and underestimate the
male life expectancy. Furthermore, using the country-
specific life table would underestimate the reference life
expectancy for both sexes. These discrepancies influence
not only the number of PYLL attributable to a condition
(Figure 3a) but also alters the proportion of PYLL attri-
butable to a condition relative to other causes of mortality
(Figure 3b). Additionally, the differences between the life
expectancies do not affect all subgroups equally (Figure
3a and b).24 These differences can have serious indications
for policy making and emphasize the importance of devel-
oping a population-specific measure of life expectancy.

Our predicted idealized reference life expectancy is
higher than other methods, with the exception of the
WHO Global Burden of Disease approach. Additionally,
the predicted idealized reference life expectancy far
exceeds the 75-year-old default estimate commonly used
in the United States, thus reinforcing that using the use
of arbitrary numbers (e.g., 75 years-old) or life tables to
estimate a reference life expectancy likely underestimates
the average burden of disease in the United States.

Other investigators have sought to determine the
potential life expectancy for developed countries, and
notably, our prediction of an idealized US life expec-
tancy is very similar to the cohort-based projection life
expectancy of 85.5 years (male 82.5 years, female 88.6
years) for Germany in 2050 performed by Bomsdorf26

and the probabilistic projection for developed countries
developed by Olshansky and colleagues (overall 85 years,
male 82 years, female 88 years).27 The similarity between
our simulation’s estimate and the estimates of others
provides support for the validity of the simulation’s esti-
mation. The unique feature of our simulation, which
takes into account competing risks for mortality, how-
ever, sets our method apart from others as it can observe
in a dynamic way the impact of decreasing the preva-
lence of a mortality-causing condition or associated risk
factor. The model structure, which incorporates the
impact of a risk factor on multiple mortality causing
conditions and accounts for the competing risks resulting
from other risk factors and conditions creates a more
precise estimate of what occurs in real life than previous
models that look at risk factors and treatment effects on
overall mortality. While it is important not to overgener-
alize the estimates generated by this analysis beyond the
United States because population differences and risk
factors for mortality-causing conditions may be distinct,
the simulation modeling approach described here is
likely to yield comparably accurate country-specific esti-
mates when incorporating country-specific data.

Our work has several applications. First, it not only
has the potential to distinguish between geographic
regions or health systems with better and worse health,
but can be used to assess how far away a particular geo-
graphic region or health system is from perfect health. It
can address the question, ‘‘How far do we still have to
go?’’ in addition to the question, ‘‘How are we doing
compared to others?’’ In this respect, it offers what we
view as a methodological advance beyond commonly
employed approaches, such as used by Institute for
Health Metrics and Evaluation (IHME), which chooses
arbitrary anchor points for maximum population health.
IHME calculates PYLL using the lowest observed age-
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specific mortality rates by location and sex across all esti-
mation years from locations with total populations
greater than 5 million in 2016 to establish a theoretical
minimum risk reference life table, which are self-evidently
not maxima since they are empirically observed in con-
texts where no maximization has occurred.28 Second,
extensions of our approach may be used within large
integrated health systems to assess whether the health of
their clients is improving over time, and whether that
health is converging toward maximum population health
or, while improving, remains distant from that goal.
Third, because our work seeks to quantify distinctions in
absolute health, it could potentially be used as the basis
for a health-based criterion for reimbursement for health
systems (e.g., based on changes in QALY expectations
over time in a cohort of patients) rather than a volume-
based reimbursement. In the US and UK contexts, value-
based purchasing efforts (e.g., attempting to add quality
of care, and by inference, health; into the reimbursement
algorithms) have largely failed.29 As a result, any new
ideas that may advance the movement toward a health-
based rather than volume-based reimbursement schedule
may have transformative potential (say, e.g., a ‘‘Health
Value Unit’’ rather than a ‘‘Resource-Based Relative
Value Unit’’). Finally, our approach may facilitate allo-
cative efficiency analyses among health systems, where
budget constraints may be considered explicitly and alter-
native resource allocations may be evaluated for their
health impact.

The use of population-specific reference idealized life
expectancy estimates has the potential to disaggregate
the burden of a disease from the impact of underdevelop-
ment that cannot be attenuated or eradicated within the
scope of patient behaviors or health system performance.
Anand and Hanson have argued that metrics, such as
DALYs, being derived from measurements from wealthy
countries, consequently measure the ‘‘burden of disease
and underdevelopment, and not that of disease alone’’ in
developing countries.30 The use of a population-specific
idealized life expectancy simulation can isolate the
impact of risk factor and condition reduction in the con-
text of other population characteristics. In addition, this
approach can be modified as new knowledge is discov-
ered regarding modifiable risk factors and treatments for
leading causes of mortality.

Limitations

Our study has several limitations. First, this model only
considered the top causes of mortality and may therefore
underestimate the impact of risk factor reduction on life

expectancy. Second, a limited number of risk factors
were included in the model. Therefore, the presented
simulation estimates do not to apply to persons with
conditions or risk factors that confer substantial mortal-
ity above and beyond background mortality and mortal-
ity from mortality-causing conditions (e.g., Huntington’s
disease carriers). However, the structure of the model is
designed so that it is flexible and capable of accommo-
dating additional risk factors or conditions if found to
have a significant influence on mortality in a population.
Additionally, risk factors are represented independently
in the model; however, in real individuals, risk factors
are often correlated (e.g., obesity with hyperlipidemia
and hypertension) and future model iterations will incor-
porate correlation data from real patient populations.
Not including correlation between risk factors likely dis-
tributes risk factors more evenly throughout the popula-
tion than would otherwise be observed. Therefore, there
are likely to be fewer very unhealthy individuals resulting
in fewer deaths at younger ages, which may result in an
underestimation of overall life gained in the idealized
health scenario. This underestimation may also result in
diminished impact when removing or acquiring an indi-
vidual risk factor. Third, it is likely not coincidental that
the life expectancy estimates generated by this model for
the United States are approached by US counties with
the highest life expectancies, including Marin County,
California, where women have a life expectancy of 85.5
years,31 and Fairfax County, Virginia, where men have a
life expectancy of 82.4 years.32 While this simulation
takes into account a socioeconomic status variable that
affects baseline mortality, as socioeconomic status is rep-
resented by a single risk factor, the simulation does not
distinguish between health improvements that can be
achieved through better health care and health improve-
ments that are downstream effects of social circum-
stances that are more favorable for health. Fourth, the
simulation does not consider the impact of perinatal and
childhood mortality on life expectancy; however, the
contribution of this mortality to life expectancy in devel-
oped countries is extremely small (\0.5%).22,23 Fifth, as
elucidated by Christensen et al., in aging populations
improving quality of life and the prevalence of disability
can begin to have a greater impact than extending life by
years alone.33 Therefore, when examining population
health metrics, the ability to calculate items such as
QALYs is necessary. As with all reference life expectan-
cies used to calculate PYLL, quality of life and disability
are not currently incorporated into this particular analy-
sis; however, the structure of the model allows for the
use of health utilities and can be used in future analyses
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to assess QALYs gained. Finally, similar to other estima-
tion approaches for health metrics, this model is only as
good as the data that go into it. Finally, not all para-
meters had equally high quality of evidence and avail-
ability of epidemiological and effect data were
occasionally inconsistent, particularly in regard to spe-
cific age groups and year of data collection. The direc-
tion of the bias introduced based on data availability is
uncertain; however, sensitivity analyses demonstrated
that narrowing the inputs to those with only the highest
quality evidence resulted in a decrease in the overall
health gain in the idealized scenario.

Conclusion

This mathematical model is able to accurately predict the
life expectancy of the US population and an idealized life
expectancy in which modifiable risks are eliminated and
adherence to therapies is perfect given the current state
of health science and technology. The use of mathemati-
cal simulations such as this one can be used to estimate a
more accurate reference life expectancy among a popula-
tion that can be used to better inform the estimation of
population-specific health metrics and improve efforts to
target population health priorities.
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