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Abstract

Tortuous microvessels alter blood flow and stimulate thrombosis but the physical mechanisms are 

poorly understood. Both tortuous microvessels and abnormally large platelets are seen in diabetic 

patients. Thus, the objective of this study was to determine the physical effects of arteriole 

tortuosity and platelet size on the microscale processes of thrombotic occlusion in microvessels. A 

new lattice-Boltzmann method-based discrete element model was developed to simulate the fluid 

flow field with fluid-platelet coupling, platelet interactions, thrombus formation, and thrombotic 

occlusion in tortuous arterioles. Our results show that vessel tortuosity creates high shear stress 

zones that activate platelets and stimulate thrombus formation. The growth rate depends on the 

level of tortuosity and the pressure and flow boundary conditions. Once thrombi began to form, 

platelet collisions with thrombi and subsequent activations were more important than tortuosity 

level. Thrombus growth narrowed the channel and reduced the flow rate. Larger platelet size leads 

to quicker decrease of flow rate due to larger thrombi that occluded the arteriole. This study 

elucidated the important roles that tortuosity and platelet size play in thrombus formation and 

occlusion in arterioles.
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Introduction

Blood vessel tortuosity is a common occurrence in humans [1]. Tortuous microvessels are 

found throughout the human body, including the heart [2], brain [3,4], and eye [5,6]. 

Compared with a straight path, microvessel tortuosity changes blood flow to alter blood cell 

trajectories and fluid shear stress. For example, in vivo and in silico studies demonstrated 

that tortuosity increased shear stress to activate platelets and initiate thrombus formation [7–
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9]. As a thrombus grows, the flow of blood may be reduced or blocked, which can result in 

myocardial infarction or stroke that may lead to death. Microvascular thrombi have been 

observed in clinical, experimental, and autopsy situations [10,11]. As well, microvascular 

tortuosity and thrombosis are both observed clinically in diabetes mellitus, and diabetic 

patients have a high risk of death due to thrombosis [12,13]. Because of these observations 

and the fact that thrombosis is a major contributor to cardiovascular disease, which is the 

leading cause of death worldwide, the study of thrombus formation and thrombotic 

occlusion in tortuous microvessels is of clinical importance.

Platelets are the main cellular components of microvascular thrombi [14]. Platelets become 

activated under thrombogenic conditions in order to adhere to the endothelial wall and 

aggregate with each other. Adhesion and aggregation occur through glycoproteins that are 

embedded in the platelet surface membrane, various plasma proteins, and networks of fibrin 

[15]. High shear stresses, along with chemical agonists, induce platelet activation. Activated 

platelets activate additional platelets by releasing and catalyzing platelet agonists [15]. Once 

thrombi begin to form, shear stresses within the vessel may be increased to also activate 

additional platelets, possibly resulting in occlusion. Thrombotic occlusion has been 

visualized in vitro in stenoses [16–18] and in vivo in tortuous venules [9]. However, the 

microscale processes involved are difficult to observe in such studies. On the other hand, 

computational models have elucidated some microscale processes in thrombus formation 

through simulation of individual platelets that were either activated due to chemical agonists 

or endothelial injury [19–27], activated due to high shear stress [7,8], or able to aggregate 

without activation [28]. Most of these previous computational studies examined straight 

vessels or channels, though some included geometric features such as stenoses [22,27], 

baffles [28], or tortuosity [7,8]. Polanczyk et al. studied the thrombus formation by 

comparing the blood shear thinning rate of each computational cell with a pre-defined 

critical value [29]. A cell is treated as a thrombus if its shear thinning rate is equal to or less 

than the critical value. Govindarajan et al. recently considered thrombus as porous media 

and used a computational model to study its growth [30]. Zimny et al. proposed a multi-

scale approach to simulate blood flow and thrombus formation in intracranial aneurysms 

[31]. However, most of these studies did not examine activation of platelets by shear stress, 

and none investigated thrombotic occlusion.

In addition to high shear stress, platelet size is also a factor present in conditions associated 

with thrombotic complications, as well as bleeding complications. For normal healthy 

human subjects, an increase in platelet size yielded an increase in platelet aggregation in 

platelet rich plasma [32]. Larger platelet size is observed in pathological conditions, 

including diabetes mellitus [33], hypertrophic cardiomyopathy [34], acute myocardial 

infarction [35], restenosis following coronary angioplasty [35], pulmonary hypertension 

[36], and giant platelet disorders [37]. Smaller platelet size is observed in other pathological 

conditions, such as reactive systemic amyloid A amyloidosis [38] and Wiskott-Aldrich 

syndrome [39]. Hence, platelet size could be an important factor in thrombus formation in 

various pathologies.

The lattice-Boltzmann method (LBM) has been extensively used in blood flow simulations 

with or without red blood cells and platelets. Ouared and Chopard studied blood flow, non-

Feng et al. Page 2

J Cardiol Cardiovasc Med. Author manuscript; available in PMC 2018 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Newtonian rheology, and clotting processes with the LBM [40]. Zhang et al. applied the 

LBM to study red blood cell aggregation and dissociation in shear flows [41]. As well, Sun 

et al. used the LBM to investigate the effect of red blood cells on leukocyte rolling [42]. The 

state-of-the-art on the use of LBM in modeling complex flow can be found in a recent 

review paper [43]. The LBM has been shown to provide an excellent platform to simulate 

cells in blood flow.

Accordingly, the objective of this study was to determine the physical effects of vessel 

tortuosity and platelet size on the microscale processes of thrombotic occlusion in 

microvessels. In this study, a new lattice-Boltzmann method based discrete element model 

(DEM), i.e. LBM-DEM, has been developed to simulate the fluid-particle interactions, 

platelet-platelet interactions, and thrombus formation. The thrombus initiation, growth and 

possible occlusion in arterioles were simulated. We also investigated the effect of platelet 

size, which is often larger in diabetic patients, on thrombus formation.

Numerical simulation methods

The study of transport, collision, activation, and adhesion of platelets involved in thrombus 

formation and the effect of thrombus development on the flow fields in tortuous venules and 

arterioles requires solving the fluid fields and platelet dynamics simultaneously. In this 

section we will briefly describe both the numerical method used for solving the flow field 

and the discrete element model used for modeling platelet activation, transport, and 

adhesion. To simplify the computation, fluid flow is assumed to be two-dimensional (2D) 

and platelets are modeled as spherical particles whose movements are restricted within the 

plane [8]. Red blood cells and white blood cells are neglected throughout the simulations.

LBM simulation of fluid velocity

The fluid fields are simulated by lattice Boltzmann method, in which fluid motion is 

modeled by the transport of fluid particles on the lattice sites of a uniform Cartesian grid. 

These fluid particles move along a limited number of specified directions from one lattice 

site to a neighboring site. They move at a discrete velocity per time-step in two steps: they 

first stream to neighboring sites, and then they collide with fluid particles there. A 

distribution function, fi(x⃗,t), is used for representing the populations of particles residing at 

node x⃗ at time t and moving in the i-th direction. The evolution of the fluid particle 

distributions resulting from the collision and streaming processes are modeled using the 

single-relaxation BGK (Bhatnagar-Gross-Krook) model [44],

(1)

where c⃗i is the fluid particle velocity along the i-th direction,  is the distribution function 

at equilibrium, and τ is the relaxation time. The fluid density ρ and velocity field u⃗ are 

obtained from fi(x⃗,t) as follows:
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(2)

and

(3)

The equilibrium distribution function, , can be determined by the local velocity u⃗ using 

the following equation:

(4)

where wi are the values of the weights. For a D2Q9 LBM model [45], these weights are 

chosen to be:

(5)

The relaxation time, τ, is related to the kinematic viscosity of the fluid, v, by the following 

equation,

(6)

To simulate the interactions between platelets and fluid, an unresolved discrete element 

model is used to keep computational cost manageable [46]. The coupling between platelets 

and fluid is achieved by adding the fluid-platelet interaction force or drag force into the 

collision step of LBM [47]:

(7)

Tortuous segments of vessels are modeled as 2D channels in the shape of cosine curves of 

two periods. The diameter of the channels is D. The centerline curve of the channel is a 

cosine curve defined by
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(8)

where A is amplitude and λ is wavelength. Following the study by Chesnutt and Han [8], we 

introduce a tortuosity index TI as the ratio of amplitude to the wavelength of the centerline 

curve, that is,

(9)

In LBM simulation, a lattice domain with uniform grid spacing is used to cover a rectangular 

region of 0 ≤ x ≤ 2λ and 0 ≤ y ≤ 2A + D. Two types of lattice nodes, fluid nodes and solid 

nodes, are defined based on the tortuosity of the channel. Flow is driven by a net positive 

pressure at the inlet. Periodic boundary conditions are applied at the inlet and outlet. A 

detailed implementation of LBM can be found in an earlier study by Feng and Michaelides 

[47].

These equations for fluid flow are combined with equations for the motion of platelets 

described below.

Discrete element method of platelet dynamics

To model the transport, collision, aggregation, and adhesion of platelets in tortuous venules 

and arterioles, the forces and torques acting on the platelets are computed at every 

simulation time step. In the remainder of this subsection, the term adhesion refers to both 

adhesion of platelets to the wall that form thrombi and to aggregation of platelets with each 

other, which may occur in the bulk flow. The following equations of motion are solved to 

obtain platelet translational and rotational velocities,

(10)

and

(11)

Here, drag force F⃗d, platelet-platelet or platelet-wall collision force F⃗coll, and adhesion force 

F⃗adh are the forces considered that act over a platelet. The buoyancy force and gravity force 

are neglected because the density of a platelet is very close to the density of fluid. The 

torques acting over a platelet include fluid induced torque Md,z and collision induced torque 
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Mcoll,z. Note that as per equation (10), two platelets that are adhering will detach if drag and 

collision forces overcome the adhesion force. The movements of platelets are primarily 

caused by fluid motion; platelets move along the blood stream with low relative velocity, 

resulting in very low particle Reynolds numbers (in the order of 0.01 for most cases). Thus, 

the drag force acting on platelets can be computed accurately using the Stokes law:

(12)

where a is the platelet radius, μ is the fluid dynamic viscosity, and (V⃗p – V⃗f) is the relative 

velocity of the platelet. The fluid viscosity is a constant property of fluid; it has a significant 

effect on the drag force of platelets in flows of low Reynolds numbers. The fluid velocity 

and platelet velocity are updated at each simulation time step.

The collision force is computed when platelets hit each other or the wall. This force is 

modeled using a soft sphere collision model [47], in which the normal and tangential 

components of the collision force are described as a combination of elastic and damping 

forces:

(13)

where δ⃗ is the overlap displacement of the platelets, kcoll is the elastic coefficient, v⃗rel is the 

relative velocity of the platelets, and ηcoll is the damping coefficient. The elastic and 

damping coefficients used are: kcoll = 0.005 N/m and ηcoll = 0.005 N/m. The selection of 

these parameters is to ensure that the collision force is able to prevent significant 

overlapping between platelets.

There are a few platelet adhesion models existing in the literature. For example, Wu et al. 

[48], recently introduced a 3D platelet-vessel wall adhesion model in which they modeled 

platelet-wall adhesion at the single receptor level. In our model, platelet adhesion is modeled 

by a spring model proposed by Kamada et al. [21]. The adhesion force is computed only if 

activated platelets collide with other platelets or the wall. The direction of this force is the 

normal direction to the point of contact. This force was computed using the following 

equation.

(14)

In the present study the elastic coefficient used to compute this force is kadh =0.008 N/m. In 

addition to providing computational efficiency, this elastic coefficient was chosen because it 

yields an adhesion force on the order of 102 pN, assuming a displacement δn on the order of 

10 nm. This adhesion force value falls within the range of in vitro estimates that are on the 

order of 100 to 104 pN [49–51], and the value is within one order of magnitude of that (32 

pN) used by another computational model related to thrombectomy [52].
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The fluid moment on a platelet due to local fluid vorticity is calculated as [8],

(15)

where ωxy is the local fluid vorticity. For simplicity, the period of hesitation due to 

resistance of rolling of one platelet over another is neglected in the simulations.

The activation and aggregation of platelets, i.e., the formulation of thrombus, is simulated 

using the shear-induced activation model developed by Chesnutt and Han, in which a 

platelet becomes activated if it experiences a shear stress above a critical shear stress [8]. 

With this assumption, physiological shear stress does not activate a platelet, irrespective of 

the amount of time a platelet is subjected to the physiological shear stress. A justification for 

neglecting time dependency of activation is given in the Discussion and Conclusions section. 

To account for the presence of chemical agonists released by activated platelets, we assume 

a platelet becomes activated if it contacts another activated platelet. Furthermore, only 

activated platelets are subject to adhesion with each other and the endothelium to form a 

thrombus, and activation is considered irreversible. To make the computational cost feasible, 

the lower platelet adhesive strength at initial attachment is neglected, and the higher 

adhesive strength after platelet spreading and stabilization is modeled by the chosen elastic 

coefficient in equation (14).

Simulation parameters and conditions

To investigate the effect of vessel tortuosity, three tortuosity levels (TI = 0.08, 0.16 and 0.24) 

were simulated. The amplitude A and wavelength λ were varied to obtain vessels with these 

TI. However, all cases have the same vessel arc length. Most simulations used a platelet size 

of 2.4 μm unless specified otherwise. A diameter of 2.4 μm is the average value for normal 

human platelets [33]. To study the effect of platelet size on the microscale processes of 

thrombotic occlusion in microvessels, we chose three platelet sizes of diameter 1.9 μm, 2.4 

μm, and 3.1 μm for a vessel with medium tortuosity of TI = 0.16 at a constant pressure drop 

[7].

The vessel curvature could have an impact on fluid dynamics in 3D and Dean number can be 

used to assess curvature effects. The Dean number is defined as:

(16)

Here, Rc is the radius of curvature. In the case of A=D=25 μm and TI=0.24, the maximum 

radius of curvature for the cosine curve defined in Eqn. 8 is found to be 

. For all the cases considered in the present study, it is found that the 

Dean number is in the order of 0.1, such that secondary flow is negligible. Therefore, the 
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lack of secondary flow associated with vessel curvature in our 2D simulations would be 

similar to that in 3D.

In human and animal circulations, small alterations such as stenosis or tortuosity in a vessel 

branch will not have much effect on pressure and flow in the vessel due to the physiological 

compensation mechanisms. However, severe stenosis and tortuosity may significantly reduce 

the flow. Since the microvasculature is often composed of vessel networks with collateral 

flow, it is reasonable to assume that the pressure drop in a given arteriole remains constant 

during the narrowing of vessel lumen. In computational simulations, the effects of stenosis 

and aneurysm etc. are often simulated at either a constant flow rate or constant pressure drop 

[7,8,53]. Therefore, we considered these two types of flow conditions for the thrombosis 

simulation in this study.

First, we simulated the thrombus formation and growth process by assuming that the initial 

flow rate was the same for three different levels of TI. The pressure drops were determined 

accordingly and were then assumed to remain unchanged during the thrombus formation and 

growth process. Secondly, we simulated the thrombus formation and growth by assuming 

that the pressure drop remains constant for three different levels of TI.

Simulation Results

For all simulations, the diameter of the vessel is D=25 μm. The length of the channel is 

L=314 μm. The properties of the fluid are selected to be similar to plasma properties: the 

fluid density ρ is 1030 kg/m3 and the kinematic viscosity v is chosen to be 1.2×10−6 m2/s.

Flows in a straight channel: model validation

In order to validate the lattice Boltzmann method used for solving fluid velocity field, we 

simulate the flow rate and the shear stress for a plane Poiseuille flow in a straight channel 

and compare the simulation results with the analytical solutions. The LBM simulation uses 

600 lattices in the direction of the channel and 48 lattices in the direction perpendicular to 

the channel. This results in a uniform grid spacing of Δx = 0.523 μm. A constant time step of 

Δt = 2×10−7 s is used for the simulation. A constant pressure drop between the inlet and 

outlet is prescribed; high pressure drop induces high fluid velocity. We have tested five cases 

with the pressure drops Δp being 5 Pa, 10 Pa, 15 Pa, 20 Pa, and 30 Pa. No-slip boundary 

conditions are assumed at the wall of the channel.

The flow rate Q and the shear stress at the wall τw are computed at steady state and they are 

compared with the following exact solutions of plane Poiseuille flows:

(17)

and
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(18)

Both the simulation results and analytical results are listed in table 1. It is seen that the LBM 

simulation results agree very well with the exact solutions for all of the five cases studied 

here. The difference between the simulation value and exact solution is less than 4%. This 

indicates that the LBM with the chosen simulation parameters can produce accurate results. 

We also tested the use of a coarse grid of 300 × 24 and found the differences between the 

LBM and exact solutions to be generally within 8%.

Simulation of platelets in a tortuous vessel

The motion and aggregation of platelets were simulated in channels of different TI under 

different boundary conditions to determine the effects of vessel tortuosity and platelet size 

on the formation and growth of thrombus and possible occlusion in tortuous arterioles. To 

lower the simulation cost, we used 320 lattices in the channel direction. Initially, 50 platelets 

are placed randomly in the channel. New platelets enter the channel randomly from the inlet 

at a rate that gave a time-averaged physiological concentration of 3 × 105 platelets/mm3 in 

the absence of adhesion. Based on the normal shear stress in the straight microvessel, the 

critical shear stress for platelet activation is chosen to be 0.65 Pa for all tortuous vessel 

simulations, which is corresponding to a scaling factor of 1.07 [8].

Effect of the channel tortuosity

Thrombus formation was simulated in channels of three tortuosity levels (TI=0.08, 0.16, and 

0.24). The diameter of platelets was chosen to be 2.4 μm, which is the average value for 

normal human platelets [33].

For the cases of given initial flow rate, higher pressure drops were applied for channels of 

higher TI to achieve the same given initial flow rate (Table 2). It is seen that an increase of 

TI from 0.16 to 0.25 requires an increase of 20% in pressure drop to yield the same initial 

flow rate.

Under these conditions, the simulations showed that high shear stress zones occur near the 

vessel walls at the turning points, as shown in figure 1. Platelet activation and thrombus 

formation in a tortuous channel could initiate at these locations [8]. As tortuosity increases, 

the extent of the size of regions with high shear stress expands. That is, the critical shear 

stress region protrudes farther into the flow. The maximum shear stress in the channel also 

increases with the tortuosity index. It is also noted that the shear stress is higher at the 

curved bends of the wall, especially for the inner walls (inner side of the bend), for all the 

cases. The maximum shear stress values for TI = 0.16 and TI = 0.24 are within 10% 

difference of each other. It is also noted that the shear stress values for both of these cases 

are higher than the maximum shear stress for TI = 0.08 on the first and third bends of the 

channel. For the second bend, interestingly the value of shear stress for TI=0.08 is higher 

than the values obtained for TI = 0.16 and TI = 0.24. Note that the fluid shear stress 

constantly changes with time due to its interactions with platelets; this becomes more 
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significant in regions near a platelet thrombus, where the formation of thrombus can change 

the surrounding flow fields significantly.

Figure 2 shows snapshots of the aggregation of platelets in the channels of 3 levels of TI at 

t=0.5 s and t=1.0 s. For the case of TI=0.08, platelet activation does not occur during 

simulation as we expected because the maximum shear stress in the channel where platelets 

experienced a shear stress that is below the threshold value used for activation. Collisions 

between non-activated platelets are observed, but these colliding platelets do not form any 

thrombi. In the case where TI=0.16, there is a thrombus formation along the second and 

third curved bends of the channel. Both thrombi are increased in size by virtue of the 

activation and adhesion of the platelets that collide with them. In the case where TI=0.24, 

thrombus is formed similarly but at the first and third bends of the channel. It is seen that 

platelets are more likely adhered to the wall because of the higher shear stress near the wall. 

However, the collision of those initially non-activated platelets with the activated platelets or 

small thrombi contributes to the growth of thrombi, as seen in the cases of TI = 0.16 and TI 

= 0.24. This indicates that the channel tortuosity plays an important role in the activation and 

adhesion of platelets to the wall, but once the thrombus starts forming, platelet collisions 

become the dominant factor for platelet activation and thrombus growth.

The influence of the channel tortuosity on the flow rate is illustrated in figure 3. Before the 

initiation of thrombus, flow rates for these three cases are the same. As platelets occlude the 

vessel, the flow rate starts to decrease since the pressure drop over the vessel is kept 

constant. At time t=0.3s, the flow rates for TI=0.16 and TI=0.24 start to drop because of the 

formation of thrombus in the channels. After t=0.4s, the flow rate drops more drastically for 

TI=0.24 than for TI=0.16; this indicates that larger thrombi are blocking the channel and 

causing occlusion. Also, it is noticed that the formed thrombus is sometimes not stable and 

may be broken up by surrounding fluid as it grows, causing fluctuations of flow rate in the 

channels.

The influence of the channel tortuosity on the flow field during the formation and growth of 

thrombus is illustrated in figure 4. It is seen that, as the thrombus grows, it narrows the 

channel. This decreases the overall flow rate in the channels. Though thrombus can also 

increase velocity and shear stress in the narrow section of the channel, the increase will 

activate and capture more platelets that eventually reduce the flow rate. Since the pressure 

gradient will not keep increasing to break up the thrombus, occlusion will occur and 

eventually block the channel.

Simulations for tortuous microvessels under a given constant pressure drop of 20 Pa 

demonstrated similar patterns. Under these conditions, vessel tortuosity creates high shear 

stress zones near the wall around the turning points as well. The formations of the thrombus 

are depicted in figure 5 for the three levels of tortuosity. Occlusions are observed for 

TI=0.08 and 0.16, which completely block the flow in the channels.

Figure 6 shows the flow rates obtained for the three tortuosity indexes. It is observed that 

initially the flow rate is higher for the cases with low tortuosity index under the same 

pressure drop. This higher flow rate leads to a higher wall shear stress and thus a high rate of 
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platelet activation. It facilitates the formation and growth of thrombus. Thus, the flow rate in 

channels of low TI drops faster because of the formation of the thrombus, which blocks the 

flow. In the cases of TI=0.08 and 0.16, the growing thrombus eventually blocks the channels 

and causes occlusion.

Effect of platelet diameter

The platelet size affects the thrombus formation and growth as well. Figure 7 shows 

snapshots of platelets in a channel of TI=0.16 at t=0.5 s and t=1.0 s. The same critical shear 

stress for platelet activation (0.65 Pa) is chosen for each case. In all three cases studied here, 

the thrombus begins forming where the highest shear stress is, which is on the inner wall of 

the first bend of the channel. In the case of the platelet with a diameter of 1.9 μm, a small 

thrombus is formed on the inner wall of the first bend of the channel at t=0.5s, and more 

platelets start to adhere to this thrombus after colliding with it. However, for small platelets 

with diameter 1.9 μm, small thrombi that formed due to the collision between activated 

platelets flow downstream without adhering to the wall, and the channel flow rate is not 

considerably affected. In the case of normal platelets with diameter 2.4 μm, there are also 

thrombus formations on the inner wall of the first bend and the outer wall of the second 

bend. The formation of these thrombi occurred at an earlier time than the preceding cases. 

Also, the size of the thrombus and the number of activated platelets are significantly larger 

than the case in which platelets have a diameter 1.9 μm. Occlusion is observed for the case 

with normal platelets, and the channel was completely blocked by the thrombus that formed 

at the first bend. As the platelet diameter is further increased, the size and the number of 

activated platelets of the thrombus located at the first bend increase. This fact is evident after 

observing the results obtained in the case where platelet diameter is 3.1 μm. The thrombus 

formation for this case occurs earlier than the previous cases for normal platelets 

(diameter=2.4μm). In addition, more thrombi begin forming at the inner and outer walls of 

the second bend. As a result of an increment in the size of the platelet, the total blockage of 

the channels also occurs earlier than in the case of normal platelets. In all of the three cases, 

thrombus formation and posterior blockage of the channel modify the velocity profile and 

change flow rate over time. This effect is illustrated in figures 8,9 where flow rate is 

observed to diminish over time in all the cases. For the case of small sized platelets with a 

diameter of 1.9 μm, it takes longer to both form a significant thrombus and partially block 

the channel. Even then, the formed thrombus is less stable. The reduction of flow rate is 

more severe in the cases where platelet diameters are 2.4μm or 3.1μm, and the channel was 

completely blocked by the thrombus; for the case of diameter 1.9 μm, the flow rate 

decreases, but not as drastically as in the previous cases.

Figure 9 shows the channel velocity contours and actual thrombi for all three cases where 

platelet size varies at t=0.5 s and t=1.0 s. Clearly, the size of platelets plays a significant role 

in platelet occlusions. The increase of platelet size facilitates the formation of thrombi and 

increases the chance of occlusions.
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Discussion and Conclusions

We have developed a lattice Boltzmann method based approach to simulate the platelet 

activation and thrombus formation process in tortuous channels. The advantage of this 

approach is that it allows the coupling of fluid and platelets, giving a more realistic 

representation of platelet aggregation and thrombus formation. Our results demonstrated that 

arteriole tortuosity can trigger thrombosis due to higher shear zones and can stimulate 

thrombus growth due to increased platelet collisions. Larger platelet size, as is seen in 

diabetic patients, would enhance the thrombosis and occlusion.

The effects of the arteriole tortuosity were studied for several levels of tortuosity. When the 

same pressure drop was used for different tortuous channels, the flow rate increased for 

vessels with lower TI. This resulted in a higher shear stress in vessels with a lower TI, hence 

an increment in the number of activated platelets in corresponding cases. For cases where 

the initial flow rate was the same, the shear stress increased as the tortuosity index increased. 

Additionally, the zone where shear stress values rise above the critical shear stress threshold 

expands. All of these factors raise the probability of platelet activation; therefore, the 

initiation of thrombi is faster for more tortuous channels. However, once the thrombus began 

to form, the effect of the tortuosity of the channel reduced, and the main cause for the 

activation of platelet and evolution of thrombi is the adhesion between non-activated 

platelets and the thrombus they collided with. Combined, the simulation results are 

consistent with previous ones shown in the literature and in vitro experiments [9]. Since 

tortuous arterioles are widely observed in various tissues and organ in humans, especially in 

human hearts and brains [1–3], these results have wide applications in understanding the 

mechanism of thrombus formation in human organs.

Large platelets that are observed in diabetes likely produce more thrombotic factors, 

stimulate thrombopoiesis, are more sensitive to platelet agonists, and are associated with 

vascular damage [33,54,55]. Our results demonstrate that a larger platelet size increases the 

formation and development of the thrombus. Large platelet size increases the thrombus 

initiation by increased platelet activation and increased collision. Larger platelets also 

increase the size of the thrombus. Eventually, the thrombus blocks the flow and reduces the 

flow rate dramatically. Hence, in addition to biochemical factors associated with large 

platelets, as well as hypercoagulability in diabetes [56], our results suggest that the enhanced 

physical interactions due to large platelet size could also contribute to the high prevalence of 

thrombus formation in type II diabetic patients.

The assumption of 2D flow was made for computational efficiency and was in accord with 

most previous computational studies with large numbers of individual platelets in thrombus 

formation [19,20,28]. Additionally, our previous work showed that aggregates of cells in 2D 

flows were quantitatively similar in size and shape to those in three-dimensional (3D) flows 

[57]. Hence, we expected that platelet aggregates and thrombi in 2D flow simulations would 

be similar to 3D.

For computational feasibility, our model did not resolve the increase in adhesion propensity 

that occurs from the time of initial attachment to platelet spreading and thrombus 
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stabilization [58,59]. To our knowledge, no computational studies that include activation of 

individual platelets in thrombosis model the increase in adhesion due to platelet spreading, 

likely due to computational cost. However, a computational study by Flamm et al. [26] has 

utilized a time-dependent model of platelet adhesion/aggregation rate that was a function of 

four different platelet agonists that were tracked throughout the simulations. Similarly in our 

future work, we will include a model of the time-dependent effects of platelet spreading on 

adhesion propensity. Because we assumed activated platelets were subjected to the higher 

adhesive strength present after platelet spreading and stabilization, our model may have 

produced thrombi that formed more quickly, though the relative effects of tortuosity (or 

platelet size) involved in thrombosis were expected to be similar.

Red blood cells were excluded from simulations because they are generally not present in 

microvascular thrombi [14]. However, red blood cells are known to push platelets toward 

vessel walls in straight vessels, and this effect greatly increases the concentration of platelets 

near walls [60,61]. Hence, we would expect that red blood cells would cause thrombosis to 

be initiated more quickly than in our simulations. Additionally, after the onset of thrombosis, 

thrombi and occlusions might form more slowly due to collisions of red blood cells that may 

detach platelets from thrombi, as seen in our previous work on initial thrombus formation in 

tortuous microvessels [61]. As well, another computational study of thrombus formation due 

to an injured section of a plane wall in a simple shear flow showed that although the 

presence of red blood cells resulted in shorter thrombi containing more platelets, the process 

of thrombus formation in general was not significantly affected by the presence of red blood 

cells [62]. Though we would expect our results to give differences between a specific 

simulation case with red blood cells compared to that same simulation case without red 

blood cells, we would expect a qualitatively similar relationship between tortuosity index 

and thrombotic occlusion in either the presence or absence of red blood cells. Likewise, we 

would expect a qualitatively similar relationship between platelet size and thrombotic 

occlusion. Red blood cells in whole blood also contribute to the decrease of the apparent 

viscosity as the diameter of a straight tube decreases, for diameters less than 300 μm (known 

as the Fåhræus-Lindqvist effect) [63]. A computational study showed that in a straight tube 

with diameter of 20 μm and hematocrit of 20% (as may be expected in a microvessel), 

viscosity was reduced, and the maximum velocity was about 20% lower than that of 

Poiseuille flow, while the velocity profile near the wall was the same [64]. Because the effect 

of vessel diameter on apparent viscosity in tortuous vessels is unknown, the straight tube 

results [64] suggest that exclusion of red blood cells and use of the viscosity of plasma 

would not greatly affect our conclusions because the velocity near the wall (where 

thrombosis occurs) was not greatly affected in straight tubes. Further studies are needed to 

determine the specific effects of red blood cells on thrombotic occlusion in tortuous vessels.

Our platelet activation model did not consider the amount of time a platelet was subjected to 

shear stress, which has been shown to affect shear-induced platelet activation in vitro [65–

67]. Other existing models of shear-induced platelet activation have utilized an activation 

index as a measure of shear stress history to account for magnitude and exposure time 

[65,66,68,69]. With some of these models, depending on selection of adjustable parameters 

and amount of time examined, the activation index could continually increase under 

physiological conditions. In some cases, the activation index could even become larger under 
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physiological conditions compared with pathological conditions, rather than being smaller as 

expected. Our previous work using DEM to simulate thrombosis in tortuous arterioles [7] 

compared our activation model to an activation model that considered shear history [68]. For 

certain parameters of this shear history model, the two models gave quantitatively similar 

results for the amount of thrombus in regions of high shear stress, thrombus size, number of 

platelets in contact with the wall, and number of activated platelets. For other parameters of 

the shear history model, platelet activation and thrombus formation first occurred at the 

second encountered region (2nd bend of the vessel) of high shear stress with the shear history 

model, rather than the first region with our activation model. In this case, results of our 

model still agreed with those of the shear history model, except that the location of thrombus 

formation was shifted downstream by one wavelength (bend) with the shear history model. 

Note that for simplicity, both of these models focus on shear-activation without considering 

the many other factors involved in platelet activation, such as production and convection of 

platelet agonists. Our future work will include experimental tests to validate and enhance our 

shear-induced platelet activation model.

One innovative aspect of this study is the development of a new approach combining LBM 

and DEM to simulate the formation and growth of thrombus. It incorporates the fluid-

platelet coupling. While the effects of tortuosity and platelet size on thrombus formation are 

similar to previous results [7,8], which validated our results, the novelty of this study lies in 

the capability to account for the effect of thrombus on the fluid field. These results shed new 

light on the growth of thrombus and occlusion process in microvasculature.

In conclusion, we developed a new approach which combines the LBM and DEM to 

simulate the formation and growth of thrombus in tortuous microvessels. Our simulation 

results demonstrate that vessel tortuosity can trigger the formation of thrombus that could 

lead to occlusion, agreeing with previous experimental observation. The use of LBM allows 

us to compute flow fields in complex microvessels more efficiently, which is critical in fluid-

platelet coupling modeling. Furthermore, the use of a four-way coupling (fluid-platelet and 

platelet-platelet) DEM enables us to uncover the influence of the thrombus formation and 

growth on the flow velocity, shear stress, and flow rate. The current approach can serve as a 

tool for further studies of thrombosis in other pathological conditions such as in stenotic or 

stented arteries and may lead to better treatment selection and therapy development.
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Figure 1. 
Initial shear stress distribution at the same flow rate in channels of three different tortuosity 

levels before platelet activations. From top to bottom, TI = 0.08, 0.16, and 0.24.

Feng et al. Page 19

J Cardiol Cardiovasc Med. Author manuscript; available in PMC 2018 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Growth of platelet thrombus over time for different tortuosity. From top to bottom: TI = 

0.08, 0.16, and 0.24. Left: t = 0.5 s; right: t = 1 s.
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Figure 3. 
Flow rate over time for different tortuosity indexes.
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Figure 4. 
Comparison of flow velocity contour for three different tortuosity levels at two time points. 

Top to bottom: TI = 0.8, 0.16, and 0.24. Left: t = 0.5 s; right: t = 1 s.
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Figure 5. 
Platelet thrombus and occlusion at three levels of TI: 0.08 (top), 0.16 (middle), and 0.24 

(bottom). Yellow spheres denote activated platelets and red spheres for non-activated 

platelets.
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Figure 6. 
Flow rate plotted as a function of time for three TI values at a constant pressure drop of 20 

Pa.

Feng et al. Page 24

J Cardiol Cardiovasc Med. Author manuscript; available in PMC 2018 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Agglomeration of platelets over time. From top to bottom: platelet diameter =1.9 μm, 2.4 

μm, and 3.1 μm. Left: t=0.5 s; right: t=1.0 s.
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Figure 8. 
Flow rate plotted as a function of time during thrombus development for three platelet 

diameters.
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Figure 9. 
Comparison of flow velocity contour over time for three platelet sizes. From top to bottom: 

platelet diameter =1.9 μm, 2.4 μm, and 3.1 μm. Left: t = 0.5 s; right: t = 1.0 s. TI=0.16.
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Table 2

Prescribed constant pressure drop in microvessels at three tortuosity levels when the initial flow rate is the 

same.

TI Δp (Pa) Flow rate (10−8×m2/s)

0.08 17.30 5.394

0.16 20.00 5.393

0.24 24.47 5.394
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