
Discovering Implicit Entity Relation with the Gene-
Citation-Gene Network
Min Song1*, Nam-Gi Han1, Yong-Hwan Kim1, Ying Ding2, Tamy Chambers2

1 Department of Library and Information Science, Yonsei University, Seoul, Republic of Korea, 2 Department of Information and Library Science, Indiana
University, Bloomington, Indiana, United States of America

Abstract

In this paper, we apply the entitymetrics model to our constructed Gene-Citation-Gene (GCG) network. Based on the
premise there is a hidden, but plausible, relationship between an entity in one article and an entity in its citing article,
we constructed a GCG network of gene pairs implicitly connected through citation. We compare the performance of
this GCG network to a gene-gene (GG) network constructed over the same corpus but which uses gene pairs
explicitly connected through traditional co-occurrence. Using 331,411 MEDLINE abstracts collected from 18,323
seed articles and their references, we identify 25 gene pairs. A comparison of these pairs with interactions found in
BioGRID reveal that 96% of the gene pairs in the GCG network have known interactions. We measure network
performance using degree, weighted degree, closeness, betweenness centrality and PageRank. Combining all
measures, we find the GCG network has more gene pairs, but a lower matching rate than the GG network. However,
combining top ranked genes in both networks produces a matching rate of 35.53%. By visualizing both the GG and
GCG networks, we find that cancer is the most dominant disease associated with the genes in both networks.
Overall, the study indicates that the GCG network can be useful for detecting gene interaction in an implicit manner.
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Introduction

The proliferation of digitized biomedical literature and other
resources has opened new avenues for both researchers and
practitioners; yet, the effective use of these multi-
heterogeneous resources remains a fundamental issue [1].
Scientific articles contain various entities, including author,
journal, institute, country, topic, keyword, method, domain, etc.,
which Ding et al. [2] divided into two types: evaluative and
knowledge. Evaluative entities are those traditionally used to
measure scholarly impact [3], such as paper, author, journal,
institution, and country. Knowledge entities are those individual
bits of knowledge extracted from the scientific text, such as
keyword, dataset, key method, key theory, gene, drug, or
disease; the extraction and the subsequent analysis of which
has the potential to lead to new hypothesis and knowledge [2].
However, in an era of big biomedical data, discovery of these
hidden relationships between biomedical knowledge entities
and the resulting generation of new hypotheses is both a goal
and a challenge.

Many studies have sought to detect these hidden
relationships believed buried in large unstructured biomedical

text collections [4] using an entity co-occurrence approach
[5–15], which assumes there exists a relationship between two
entities if both appear within the same document. In fact,
analysis of knowledge entities using co-occurrence, has been
successfully used in the biomedical field for more than a
decade when Strapley et al. [5] first constructed and analyzed
a gene-gene network based on gene pairs extracted from
Medline records indexed with the mesh term ‘Saccharomyces
cerevisiae’. That 2000 study concluded, while gene clusters
rad50, MRE11, and xrs2 belong to DNA double-stranded break
repair and gene clusters RAD27, DHS1, and DIN7 belong to
DNA mismatch repair, they none-the-less have a co-
occurrence relationship.

Subsequent studies have used similar co-occurrence
relationships to build entity networks to examine different
accuracy comparisons and measures [6–11] or different text
mining algorithms and techniques [12–15]. However, the
recently proposed entitymetrics approach [2], based on the
assumption there exists a topical relationship between two
articles when one cites the other, uses an entity network to
discover new knowledge. The entitymetrics model contends
there is a hidden, but plausible, relationship between an entity
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in one article and an entity in its citing article, and that analysis
of the relationship between those entities can leads to
knowledge discovery and a better understanding of knowledge
acquisition.

In this study, we apply the entitymetrics model to a Gene-
Citation-Gene (GCG) network constructed with gene pairs
implicitly connected through citation. The advantage of the
GCG network is its ability to detect implicit relations between
entities, otherwise excluded, but which, none-the-less have an
important interactive relationship. To evaluate this advantage,
we compared the performance of our GCG network to a
traditional Gene-Gene (GG) network using co-occurring entities
from the same paper and covering the same corpus. Based on
previous studies [2,11], our evaluation included the following
network measures: degree, weighted degree, closeness,
betweenness centrality, and PageRank. We calculated the top
25 gene pairs for each measure and compared each against
known gene interactions identified in BioGRID. For gene pairs
not found, we conducted a literature review to identify novel
gene pairs not previously reported in the literature. Additionally,
because of computational complexity, measures for ranking co-
occurrences often use window size, shape, and distance
metrics[16] based on a small (about 100) subset of words,
however in this study we have used all words from the data
collection to ensure dimension selection is based on the data
and not on human judgment or simple word frequencies.

We have organized the rest of this paper as follows: The
Methodology section describes our data collection, gene entity
identification, gene-gene pair and gene-citation-gene pair
network construction, and an analysis of both networks. The
Results and Discussion section describes results for the top 25
gene pairs based on co-occurrence frequency for each
network, the results for the top 25 gene pairs based on network
analysis measures for each network, the results for the top 25
gene pairs based on all measures, and results of a
visualization analysis of each network. The Conclusion section
summarizes our results, offers conclusions of based on the
current work, and proposes future work.

Methodology

Data Collection
To provide broader coverage than previous studies, we

chose to build a customized citation database using a set of
bioinformatics seed articles and their reference lists instead of
mining based on keywords or over a specific time-period, which
would have confined the results to select journals or subject
fields. We identified seed articles from bioinformatics related
journals, using selection criteria based on a study by Huang et
al. [17]. Although we used most of the journals identified in their
research, we also added journals identified from the
International Society of Computational Biology publications list
(http://www.iscb.org/iscb-publications-journals), Wikipedia’s
bioinformatics journal list (http://en.wikipedia.org/wiki/
List_of_bioinformatics_journals), and the Web of Science’s
Science Journal Citation Reports (SJCR). After excluding
journals with less than 200 citations, our dataset included
18,323 seed articles from 48 journals.

After which, we parsed the full-text of each article and their
reference lists stored in XML format using an automatic
procedure written in JAVA. Using the reference lists of each
article, we then queried PubMed to collect abstract information
for each reference based on title and stored this data in a
MySQL database. Figure 1 shows an example title and the
references used in our dataset. This procedure (see Figure 2)
resulted in the collection of 313,088 additional abstracts.
Combined with the original 18,323 seed articles, our 1DCR (1-
Depth Citation Relationship) DB contained bibliographic
information for 331,411 abstracts based on 1-depth citation
data between an article and its reference list.

Gene Entity Identification
We extracted gene pairs from the 331,411 abstracts using

the Conditional Random Field (CRF)-based Named Entity
Recognition (NER) technique developed by McCallum and Wei
[18] and filtered the extracted entities based on comparison
with Unified Medical Language System (UMLS). As UMLS
classifies entities by semantic type, our study extracted entities
only if the semantic type was gene or genome. We used the
UMLS Concept Unique Identifiers (CUI), to identify a preferred
term for each extracted entity, which allowed for the merger of
similar terms and synonyms. Using GO (gene ontology) we
further filtered terms pertinent to genes such as genes,
genomes, or alleles but not gene itself. Out of 331,411 articles,
118,151 had matching GO terms resulting in 9,940 uniquely
identified genes (Table 1).

Gene-Gene Pair and Gene-Citation-Gene Pair
Based on the identified genes, we constructed two types of

gene pairs: gene-gene pairs and gene-citation-gene pairs. We
constructed gene-gene pairs based on co-occurrence within
the same article and calculated a co-occurrence frequency for
each. We constructed the gene-citation-gene pairs based on
the implicit linkage between genes in one article and genes in a
cited article and calculated a co-occurrence frequency for each
pair. Despite the directional nature of a citation, we did not
consider directionality when identifying the gene-citation-gene
pairs for this study. Given our focus on identifying a relationship
between genes, the directionality of citation provided no
additional understanding as it might not reflect gene-to-gene
directionality. By repeating this pairing procedure (Figure 3), we
built both a gene-gene network and a gene-citation-gene
network.

Network Analysis
We used Gephi [19], an open source social network analysis

tool, to analyze and visualize the created networks. To
understand the core relationships in each network, we selected
gene pairs using co-occurrence frequency and identified core
nodes using centrality, similar to previous studies [4,11,20,21].
In those studies, Estrada [20] identified factors influencing node
centrality, such as, node degree of directly interacting nodes
(genes), node closeness, and the quantity of node pairs
requiring a specific intermediary node for communications, Goh
et al. [4] and Hahn and Kern [21] both identified an association
between betweenness centrality and the essentiality of a gene,
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and Ozgur et al. [11] found that genes centrally located in the
disease-specific network were related to the disease.

To understand specifically which genes play a major role in
the field of bioinformatics, we identified the important nodes
(top-ranked genes) in both the GCG and GG network using the
network measures degree centrality, weighted degree
centrality, closeness centrality, betweenness centrality, and
PageRank. After which, we confirmed that each top-ranked
gene pair existed in the Biological General Repository for
Interaction Datasets (BioGRID) database [22] and then queried
BioGRID to identify a gene interaction list of gene for
comparison.

We identified the characteristics of individual genes using the
NCBI Gene DB (http://www.ncbi.nlm.nih.gov/gene/) and
GeneCards (http://www.genecards.org/). The NCBI Gene DB
includes primarily genomes related data, such as gene
products and their attributes (e.g., protein interactions),
associated markers, phenotypes, interactions, and links to
citations. GeneCards focuses on human genes data such as,
gene related transcriptomic, genetic, proteomic, functional, and
disease information.

Results and Discussion

Top 25 Gene Pairs Based on Co-Occurrence Frequency
Using co-occurrence frequency, we can identify frequently

co-occurring genes in bioinformatics. Assuming that frequently
occurring genes represent the core genes in bioinformatics, we
can then use network analysis to gain insight into how these
genes interact with each other.

Table 2 shows the top 25 gene pairs by co-occurrence
frequency for both the GG network and the GCG network.
There is a clear difference in gene rank order between two
networks. Of the 38 gene pairs identified across the two
networks, only 12 appear in both networks. We examined the
correlation between top 25 pairs from the GG network and the
GCG network by spearman rho and did not find a significant
correlation (p value = 0.402. p < 0.01). In general, gene pairs
tend to have higher co-occurrence frequency in the GCG
network; of the 12 overlapping gene pairs, seven have a higher
frequency in the GCG network.

When we compared our results against known interactions
from BioGRID, we identified 22 of 25 gene pairs from the GG
network were reported and 20 of 25 gene pairs from the GCG
network were reported. Of the eight gene pairs not reported in
BioGRID, four (CTCF-CTCFL, DIO2-LMOD1, MXD1-MXI1,
NEDD4-NEDD4L) were not found because they belonged to
the same gene family and therefore tend to co-occur frequently

Figure 1.  Overall procedure for creating the Gene-Citation-Gene Network.  
doi: 10.1371/journal.pone.0084639.g001
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and three (CTCF-H19, ECT2-PLK1DISC1-NDE1) were
confirmed to have interactions based on literature review using
PubMed. In the literature review we identified papers, which
reported an interaction between the two genes, though explicit
co-occurrence in the title or the abstract. Table 3 lists articles
reporting interactions for the three gene pairs.

Excluding the same family gene pairs, we confirmed that
88% of the gene pairs identified in the GG network have a
known interaction and that 80% of pairs identified in the GCG

Table 1. Article and Entity Statistics.

Articles

Articles that contain
Gene or Genome
Entity  

Gene or Genome
Entities

Gene or Genome
Entities Filtered by CUI
and GO

331,411 118,151 558,705 9,940

doi: 10.1371/journal.pone.0084639.t001

Figure 2.  Example of title and reference list used in creation of 1DCR database.  
doi: 10.1371/journal.pone.0084639.g002
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network have a known interaction. Including, the same family
genes pairs (which are in fact interaction pairs), we confirmed
that all top 25 gene pairs identified in the GG network have a
known interaction whereas 96% of the top 25 gene pairs
identified in the GCG network have a known interaction. In the
GG network, top 1.19% of pairs co-occurring 100 times or more
(663 pairs) represent 30% of the total number of pair
frequencies. In the GCG network, top 0.81% of pairs co-
occurring 100 times or more (632 pairs) represent 23% of the
total number of pair frequencies. Analyzing all pairs of both
networks reveal 13,749 pairs common to both networks, which
represents about 11.5% of all pairs. In terms of frequency,
pairs commonly appearing in both networks represent 55% of
the GG network and 49% of the GCG network. The fact that
top gene pairs by frequency represent a high proportion in all
gene pairs indicates that the highly ranked gene pairs by
frequency in both networks are those gene pairs commonly
appearing in both networks. This observation is confirmed
using the Spearman rho test which identifies a significant
correlation (correlation coefficient = 0.364, p< 0.01) between
the rank of pairs commonly appearing in both networks. This
implies that top gene pairs commonly appearing in both
networks are significant in bioinformatics.

Top 25 Genes Based on Network Analysis Measures
We calculated the top 25 nodes using each of the following

measures: degree centrality, weighted degree centrality,

closeness centrality, betweenness centrality, and PageRank.
Except for closeness centrality and PageRank, we included
only top 25 nodes with a weight of 10 or higher because of the
high number of nodes with tie weights.

The degree centrality of a node denotes the number of links
that node has with other nodes. Betweenness centrality is the
number of shortest paths passing through a node. Nodes with
a high betweenness centrality serve as bridges connecting
different sub-groups. PageRank measures the importance of a
node based on the sum of the rank of its backlinks (the number
of nodes that link to that particular node). Since these three
network measures resulted in the identification of similar
nodes, we focus on weighted degree for analysis and
closeness to show unique results. Tables A-C in the Appendix
S1 show results for degree centrality, betweenness centrality
and PageRank..

We display all results with the associated disease categories
based on the Genetic Association Database (GAD). In GAD
there may be several diseases associated with a given gene
[23], however, for this study, we used only the most dominant
disease and used the GAD taxonomy to simplify identification
to a specific disease category. The disease categories
provided by GAD include AGING, CANCER,
CARDIOVASCULAR, CHEMDEPENDENCY,
DEVELOPMENTAL, HEMATOLOGICAL, IMMUNE,
INFECTION, METABOLIC, MITOCHONDRIAL,
NEUROLOGICAL, NORMAL VARIATION, OTHER,

Figure 3.  Two types of pairs: Gene-Gene pair and Gene-Citation-Gene pair.  
doi: 10.1371/journal.pone.0084639.g003
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PHARMACOGENOMIC, PSYCHIATRIC, RENAL,
REPRODUCTION, UNKNOWN, and VISION.

Table 2. Top 25 gene pairs by frequency.

Gene-Gene Network Gene-Citation-Gene Network

Gene Freq Remarks Gene Freq Remarks

MDM2-TP53* 6684 Interaction MDM2-TP53* 7264 Interaction

POU5F1-
SOX2*

3116 Interaction TP53-TP63* 2799 Interaction

NANOG-
POU5F1*

2805 Interaction TP53-TP73* 2686 Interaction

NANOG-SOX2 1912 Interaction PARK2-PINK1* 2521 Interaction

PARK2-PINK1* 1726 Interaction CDC20-MXI1* 2507 Interaction

DMC1-RAD51* 1671 Interaction
CDKN2A-
TP53*

1963 Interaction

HRAS-TP53* 1649 Interaction MDM4-TP53 1845 Interaction

TP53-TP73* 1604 Interaction DISC1-NDEL1 1778 Interaction

TP53-TP63* 1555 Interaction MDM2-MDM4* 1553 Interaction
DNMT3A-
DNMT3B

1471 Interaction
NEDD4-
NEDD4L

1461
Same gene
family

CDC20-MXI1* 1392 Interaction CTCF-CTCFL 1389
Same gene
family

RAD51-RAD52 1301 Interaction
POU5F1-
SOX2*

1320 Interaction

CDKN2A-
TP53*

1225 Interaction TP53-USP7 1283 Interaction

DNMT3A-
DNMT3L

1139 Interaction BCL2-BCL2L1 1199 Interaction

ARNTL-
CLOCK*

1069 Interaction BCL2-SOD1 1112 Interaction

SMN1-SMN2 868 Interaction DMC1-RAD51* 1074 Interaction

MDM2-MDM4* 840 Interaction TP63-TP73 907 Interaction
RAG1-RAG2 816 Interaction HRAS-TP53* 904 Interaction

MRE11A-
RAD50

814 Interaction ECT2-PLK1 884

Confirm
interaction with
literature
review

MXD1-MXI1 763
Same gene
family

DISC1-NDE1 858

Confirm
interaction with
literature
review

ATR-CHEK2 751 Interaction
NANOG-
POU5F1*

851 Interaction

BCL2-TP53 727 Interaction
ARNTL-
CLOCK*

850 Interaction

BUB1-BUB1B 702 Interaction MDM2-USP7 822 Interaction

CTCF-H19 676

Confirm
interaction
with literature
review

FXR1-FXR2 815 Interaction

DIO2-LMOD1 669
Same gene
family

SOX9-WNT4 810 No interaction

Gene pairs in bold print appear in both networks.
doi: 10.1371/journal.pone.0084639.t002

Weighted Degree Centrality
Weighted degree centrality is a variation of degree centrality

calculated by summing the frequency of every node pair for a
given node. Table 4 shows the top 25 gene pairs by weighted
degree centrality and GAD disease category. We note that 16
of the top 25 genes (64%) in the GG network and 14 (56%) in
the GCG network are related to cancer. Of the top 25 genes,
64% occur in both networks.

Important genes, actively researched in the biomedical
domain, identified in Table 3 includeTP53, MDM2, POU5F1,
SOX2, CLOCK, RAD51, and PINK. Review of these genes
using the NCBI Gene DB and GeneCards reveals that the
TP53 gene encodes the tumor suppressor protein reported in
cancer related papers and is in the same family as TP63, the
MDM2 gene encodes proteins to promote tumor formation and
is associated with cancer, the POU5F1 gene relates to
embryonic stem cells, the SOX2 gene sustains stem cells
associated with embryonic development and cell fate, the
CLOCK gene plays a role in circadian rhythm and metabolism,
RAD51 gene provides homologous recombination and repair of
DNA, and the PINK1 gene relates to mitochondria.

Closeness Centrality
Closeness centrality, unlike degree centrality, focuses on the

nodes extensibility of influence over the entire network. Table 5
shows the closeness value of nodes, calculated using the
Brandes’ algorithm [24]. The top 25 genes, identified by
closeness centrality, differ from those identified using the other
measures. In the GG network, many of the identified genes
relate to metabolic disease (32%), whereas in the GCG
network most genes relate to a variety of diseases.

Important genes, actively researched in the biomedical
domain, identified in Table 4 include MC4R, EIF4G1,
TRAF3IP1, MAP1A, PIF1, SH2B3, OLIG2, BLCAP, BMP4, and
RPGRIP1L. Review of these genes using the NCBI Gene DB
and GeneCards reveals the MC4R gene produces membrane-
bound receptors and relates to melanin cells, the EIF4G1 gene
produces multi-subunit proteins, which constructs complex
EIF4F related to mRNA activities, the TRAF3IP1 gene plays a
secondary role in binding DNA and activates other genes, the
MAP1A gene relates to neurogenesis, the PIF1 gene is a DNA
helicase, the SH2B3 gene encodes proteins that play an
important role in hematopoiesis, OLIG2 gene relates to

Table 3. Articles reporting findings for gene pairs confirmed
through literature review.

CTCF-H191 DISC1-NDE12 ECT2-PLK12

Grbesa et al.[34]. Bradshaw et al.[37]. Li et al.[40]
Tost et al.[35]. Moens et al.[38]. Wolfe et al.[41].

De Castro Valente

Esteves et al [36].
Burdick et al.[39]. Niiya et al [42].

1 CTCF-H19 was identified only by the gene-gene network.
2 ECT2-PLK1 and DISC1-NDE1 were identified only by the gene-citation-gene
network.
doi: 10.1371/journal.pone.0084639.t003
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oligodendroglial tumors of the brain, BLCAP gene encodes a
tumor suppressor protein, the BMP4 gene encodes a bone
morphogenetic protein, and the RPGRIP1L gene relates to
genetic diseases. Defects in the RPGRIP1L gene causes
Joubert syndrome type 7 (JBTS7) and Meckel syndrome type 5
(MKS5).

Top 25 Genes Based on All Measures
When we combined the top 25 ranked nodes by all

measures for each network, we identified 239 gene pairs in the
GG network and 303 gene pairs in the GCG network.
Comparison of these networks against BioGRID revealed 67
pairs (28.03%) in the GG network and 55 pairs (18.15%) in the
GCG network matched known interactions. The GCG network,
while identifying more gene pairs, none-the-less had a lower
matching rate than the GG network. To examine the accuracy
of combined pairs of genes from both networks, we identified
gene pairs appearing in both networks and compared them
against BioGRID. Of the 76 gene pairs appearing in both
networks, 27 matched with BioGRID (35.53%). Using the same
process, we analyzed gene pairs appearing in both networks
based on the top 5, 10, 50, and 100 ranked genes to reveal
accuracy rates of 21.43%, 28.57%, 31.28%, 25.26%
respectively (Figure 4).

Visualization Analysis of Network
A visual analysis of the GG network (Figure 5) shows 15

clusters grouped by the modularity algorithm[25] . The
modularity algorithm identifies groups of nodes in a network,
which are more similar to each other than to other groups and
optimizes the detection the community structure in networks.
Each cluster identifies dominant diseases and representative
genes belonging to that cluster. The Figure 5 caption identifies
the disease associated with each cluster. In general, the GG
network shows broadly spread genes associated first with
cancer and then with neurology related diseases. Cluster 1, 9,
and 13 are small clusters that have common diseases
associated with most of representative genes. Cluster 10 has
genes associated with eye related diseases, and cluster 6 has
genes related to cancer. In the other clusters, there is no one
single dominant disease but rather a mixture of various
diseases.

A visualization of the GCG network (Figure 6) shows eight
major clusters grouped by the modularity algorithm. The Figure
6 caption identifies the disease associated with each cluster. In
the GCG network, there are fewer diseases commonly
appearing in clusters than in the GG network. The small size
clusters such as cluster 1, 5, 6, and 8, display a small number
of common diseases. Frequently appearing diseases in these

Table 4. Top 25 genes by weighted degree centrality and associated GAD disease category.

Gene-Gene Network Gene-Citation-Gene Network

Gene Degree Disease Category Gene Degree Disease Category
TP53 23090 CANCER ( 360 ) TP53 29859 CANCER ( 360 )
MDM2 8451 CANCER ( 126 ) MDM2 11413 CANCER ( 126 )
POU5F1 7187 IMMUNE ( 10 ) RAD51 4991 CANCER ( 68 )
SOX2 6278 VISION ( 5 ) PINK1 4974 NEUROLOGICAL ( 39 )
CLOCK 5145 PSYCH ( 16 ) TP63 4717 CANCER ( 11 )
NANOG 4808 CARDIOVASCULAR ( 1 ) CLOCK 4536 PSYCH ( 16 )
RAD51 4584 CANCER ( 68 ) SOX2 4244 VISION ( 5 )
MXI1 3397 IMMUNE ( 2 ) MXI1 4099 IMMUNE ( 2 )
MYC 3275 CANCER ( 27 ) CDC20 3882 CANCER ( 2 )
DNMT3A 3063 CANCER ( 7 ) TP73 3786 CANCER ( 28 )
CDC20 2810 CANCER ( 68 ) PARK2 3735 NEUROLOGICAL ( 82 )
PINK1 2569 NEUROLOGICAL ( 39 ) MDM4 3630 CANCER ( 6 )
DMC1 2476 REPRODUCTION ( 2 ) CTCF 3475 METABOLIC ( 3 )
HRAS 2420 CANCER ( 25 ) MYC 3466 CANCER ( 27 )
CDKN2A 2393 CANCER ( 131 ) BCL2 3203 CANCER ( 33 )
DNMT3B 2357 CANCER ( 27 ) DISC1 3133 PSYCH ( 38 )
E2F1 2340 CANCER ( 2 ) NDEL1 3121 PSYCH ( 3 )
TP73 2323 CANCER ( 28 ) CDKN2A 3048 CANCER ( 131 )
TP63 2252 CANCER ( 11 ) POU5F1 2998 IMMUNE ( 10 )
BCL2 2197 CANCER ( 33 ) DMC1 2549 REPRODUCTION ( 2 )
BUB1B 2045 CANCER ( 3 ) PLK1 2505 CANCER ( 6 )
PARK2 2041 NEUROLOGICAL ( 82 ) CTCFL 2463 CANCER ( 1 )
ATR 2021 CARDIOVASCULAR ( 2 ) BCL2L1 2373 CANCER ( 7 )
CHEK2 1992 CANCER ( 105 ) USP7 2309 CARDIOVASCULAR ( 2 )
RAD52 1808 CANCER ( 19 ) RAD9A 2306 CANCER ( 1 )

Numbers displayed in parenthesis showing the number of papers that report association between the given gene and a disease.
doi: 10.1371/journal.pone.0084639.t004
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clusters are pre-eclampsia and spondylitis diseases (cluster 1),
brain (cluster 5), blood related disease and heart failure (cluster
6), and schizophrenia (cluster 8).

Table D and E in the Appendix S1 identifies the
representative genes and diseases associated with each
cluster in both the GG and GCG networks. Using GAD, we
identified the appropriate disease associated with each cluster

Table 5. Top 25 genes by closeness centrality and associated GAD disease category.

Gene-Gene Network Gene-Citation-Gene Network

Gene Closeness Disease Category Gene Closeness Disease Category
MC4R 10.22680412 METABOLIC ( 95 ) SH2B3 9.095982143 IMMUNE ( 18 )
EIF4G1 10.1443299  OLIG2 9.095982143 PSYCH ( 3 )
TRAF3IP1 9.664948454  BLCAP 9.080357143  
MAP1A 9.664948454 PSYCH ( 2 ) BMP4 8.631696429 CANCER ( 7 )
PIF1 9.412371134  RPGRIP1L 8.595982143 PSYCH ( 1 )
FEN1 9.412371134 CANCER ( 5 ) RCC1 8.595982143  
CDKAL1 9.231958763 IMMUNE ( 13 ) RAB3IP 8.595982143  
SLC30A8 9.231958763 METABOLIC ( 88 ) RAB8A 8.59375  
IGF2BP2 9.231958763 METABOLIC ( 78 ) CEP290 8.59375  
FTO 9.229381443 METABOLIC ( 197 ) ALKBH1 8.495535714  
NPAT 9.146907216  KDM5A 8.495535714  
NDE1 8.677835052 PSYCH ( 3 ) KDM4A 8.495535714 CARDIOVASCULAR ( 1 )
NDEL1 8.670103093  KDM4C 8.495535714  
DISC1 8.667525773 PSYCH ( 38 ) JARID2 8.495535714  
CYBB 8.590206186  RPH3A 8.457589286  
OTX1 8.50257732  RPS6KB1 8.354910714 CANCER ( 2 )
CHL1 8.425257732 HEMATOLOGICAL ( 2 ) NPR1 8.354910714 CARDIOVASCULAR ( 12 )
  PSYCH ( 3 )    
DNA2 8.414948454 CHEMDEPENDENCY ( 1 ) RICTOR 8.354910714 CANCER ( 1 )
KCNE1 8.270618557 CARDIOVASCULAR ( 37 ) NPRL2 8.354910714  
HHEX 8.244845361 METABOLIC ( 92 ) NPR2 8.354910714 CARDIOVASCULAR ( 2 )
MSX2 8.18814433 METABOLIC ( 5 ) SPSB1 8.332589286  
NEUROG1 8.167525773 PSYCH ( 4 ) SPSB2 8.332589286  
MEF2C 8.164948454 METABOLIC ( 7 ) SPSB4 8.332589286  
MYOG 8.164948454 METABOLIC ( 1 ) KDM6A 8.207589286 IMMUNE ( 1 )
ELSPBP1 8.154639175  IRS2 8.178571429 METABOLIC ( 29 )
doi: 10.1371/journal.pone.0084639.t005

Figure 4.  Matching rate with BioGRID according to top ranked node.  
doi: 10.1371/journal.pone.0084639.g004
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based on the majority of genes in each cluster. GAD collects,
standardizes, and archives genetic associated data [23]. We
selected salient diseases by the number of genes studied for a
particular disease over the number of total genes in the cluster.
For example, in cluster 1 in Table D, we chose Lymphoma
(Non-Hodgkin) disease because there are two genes in cluster
1 and both genes mentioned the disease. Among the selected

diseases, we label each cluster with the commonly mentioned
diseases.

Using GAD, we can also confirm that there are articles
studying the relationship between the genes in a specific
cluster and a certain disease. In particular, we observed that
cancer is a dominant disease that is associated with a wide
range of genes in both the GG and GCG networks, 15 clusters
in the GG and eight in the GCG network.

Figure 5.  Visualization of Gene-Gene Network.  Cluster 1: Immunologic deficiency and Lymphoma diseases; Cluster 2: Various
diseases including tobacco use disorder, amyotrophic lateral sclerosis, and schizophrenia; Cluster 3: Breast and epithelial ovarian
cancers; Cluster 4: Kidney, oral, and esophageal diseases; Cluster 5: Various diseases including breast and lung cancers and
neoplasms; Cluster 6: Brain or nerve related disease including meningioma and cancer; Cluster 7: Cancer and neurological disease;
Cluster 8: Prostate cancer and neurological diseases including depression, schizophrenia; Cluster 9: Calcinosis, HIV, obesity, and
diabetes diseases; Cluster 10: Eye; Cluster 11: Various diseases including tobacco use disorder and schizophrenia; Cluster 12:
Rheumatoid arthritis disease; Cluster 13: Muscular atrophy disease; Cluster 14: Clubfoot and bone mineral density diseases;
Cluster 15: Autoimmune disease.
doi: 10.1371/journal.pone.0084639.g005
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Overall the GG network consists of various sized clusters,
while the GCG network contains two major and six minor
clusters. Each network displays diseases differently as well; in
the GG network five clusters relate to cancer, whereas in the
GCG network cancer related genes form two large clusters with
other disease related genes appearing in small clusters. In
other words, the GG network shows that a set of genes with
similar properties tend to form a fragmented cluster, while the
GCG network shows that genes with similar properties form a
large cluster and genes with different properties form a
fragmented cluster.

Discussion

To identify the characteristics of the GCG network we
compared it with a similar GG network based on extracted
gene entities from 331,411 articles in the field of bioinformatics.
The constructed GG network consisted of 9,550 nodes and

55,610 edges, while the constructed GCG network consisted of
7,947 nodes, and 77,110 edges. Of the top 25 ranked genes in
the GG network, all were also found in BioGRID. Within the
GCG network, 96% of the top 25 ranked genes were found in
BioGRID. This compares favorably with the accuracy
measurement of other co-occurrence studies. Stephens et al.
[7] evaluated their network against a Molecular Biology
textbook [26], and ER transport pathway related genes for
Golgi to achieve 67% and 50% accuracy respectively. Jensen
et al. [6] used randomly selected pairs to evaluate their network
against DIP and OMIM to find a 51% accuracy rate against DIP
and 45% accuracy rate against OMIM.

We analyzed both the GG network and the GCG network
using the following measures: degree, weighted degree,
closeness, betweenness, and PageRank. We observed that
the top ranked genes are similar in both networks for each
measure. The percent of genes identified in both networks by
degree, weighted degree, closeness, betweenness, and

Figure 6.  Visualization of Gene-Citation-Gene Network.  Cluster 1: Pre-eclampsia and spondylitis diseases; Cluster 2: Various
diseases including tuberculosis, abortion, and spontaneous; Cluster 3: Cancer and neoplasms diseases; Cluster 4: Obesity and
various cancers; Cluster 5: Brain related diseases including Creutzfeld-Jakob and Alzheimer's disease; Cluster 6: Blood related
diseases and heart failure; Cluster 7: Various cancers; Cluster 8: Schizophrenia.
doi: 10.1371/journal.pone.0084639.g006
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PageRank is 33%, 64%, 0%, 36%, and 56% respectively.
Combining all genes by these measures, results in 33% of
genes appearing both networks. We identified disease clusters
based on genes by consulting with the GAD DB and found the
majority of genes relate to the cancer.

Overall, we observed no significant difference between the
GG network and the GCG network, which indicates gene
interaction through citation analysis, could be a novel approach
to extracting gene-gene interaction from scientific literature.
The basic assumption of citation analysis is that there is a
subject relationship between two papers; since the GCG
network utilizes citation relation to find gene interaction, it
assumes that gene-gene pairs have topical, implicit
relationships. Therefore, the GCG network can be used as a
tool to analyze gene interaction in an implicit manner, which is
particularly useful for a study that aims to extract novel gene
relations.

We examined whether top ranked gene pairs had known
interactions by matching with BioGRID; revealing a matching
rate of 28.03% in the GG network and 18.15% in the GCG
network. This indicates that the GCG network may be less
effective alone for detecting gene interactions. If we combine
top ranked genes in both networks, the matching rate
increases to 35.53%, indicating the GCG network can augment
the existing the GG networks.

There were 1,344 gene pairs identified in the GCG network,
but not in the GG network, and which have known gene
interactions in BioGRID. Among these pairs, there were five
gene pairs with the number of co-occurrences over 100. These
pairs are HYOU1-SIL1, EWSR1-TDRD3, DDX3X-TDRD3,
CDK7-GTF2H5, and AXIN1-LRP5. We then examined these
pairs against four well-known bio-entity databases: BioGraph
(http://biograph.be), CTD (http://ctdbase.org), pharmGKB
(http://www.pharmgkb.org), and GeneCards (http://
www.genecards.org). PharmGKB, revealed no interaction
information among these pairs. However, BioGraph, showed a
high interaction between CDK7 and GTF2H5. According to the
BioGraph knowledge base (http://biograph.be/project/project),
the GTF2H5 gene is ranked first out of 18180 gene concepts
(top 0.01%), in relation to the CDK7 gene, the LRP5 gene is
ranked 18th in relation to AXIN1, the SIL1 gene is ranked 37th
in relation to HYOU1, the TDRD3 gene is ranked 6492nd in
relation to EWSR1 and 5235th in relation to DDX3X.

In the CTD the interaction type between HYOU1 and SIL1 is
marked as genetic and their throughput is low. This interaction
is described by Zhao et al. [27] with the findings that the
overexpression of HYOU1 with SIL1 reduces ER stress and
rescues neuro-degeneration in Sil1(-/-) mice. Goulet et al. [28]
reports the interaction between TDRD3 and EWSR1 as well as
TDRD3 and DDX3X is physical and their throughput is low.
Giglia-Mari et al. [29] reports the interaction between CDK7
and GTF2H5 is also physical with a low throughput. Four
papers [30-33] reported the interaction between AXIN1 and
LRP5 as physical with a low throughput. Table 6 summarizes
these results, which shows that various diseases associated
with gene-gene pairs identified only in the GCG network are
worthy of investigation as to whether there exists direct, explicit
interaction between genes. The implicit relationship among

genes using the GCG network may thus provide a potential
research direction in bioinformatics.

In addition, we conducted another experiment to investigate
whether the GCG network revealed novel gene-gene
interaction compared to the GG network. We selected gene-
gene pairs that do not appear in the GG network but do appear
in the GCG network only within a certain time-period. If those
gene-gene pairs appear in the GG network after the given time-
period, it indicates that researchers have studied direct gene-
gene interaction between these two genes. Since the articles
used to build networks were published between 2000 and
2011, we divided the data into two sets; 2000-2005 and
2006-2011. Then, we built the GG and the GCG networks with
data set from 2000 to 2005; we found 37,658 gene pairs that
appear only in the GCG network. Among these pairs, 1,149
pairs had confirmed gene-gene interaction based on BioGRID.
A total of 164 pairs out of 1,149 were found in the GG network
that was built using the entire data collection. This means that
the 164 gene pairs that were not found in the GG network
before 2005 were newly studied since then. In particular, the
PARK2 and PINK1 gene pair ranks fifth by co-occurrence
frequency in the GG network, implying the gene pair has highly
been studied since 2005. Table 7 lists the gene-gene pairs with
more than 100 co-occurrence frequencies appearing in the
GCG network before 2005.

Conclusion

In the present study, we explored implicit gene interaction
through a GCG network. Unlike the GG network, which

Table 6. Top 20 gene pairs detected only in GCG network.

Gene-Gene
Pair

Pair
Occurrence

Gene object
ranking in
BioGraph
(top %) CTD interaction information

   
Interaction
Type Throughput  Article

HYOU1-
SIL1

350 37 (0.20%) Genetic low
Zhao L, et
al. (2010)

EWSR1-
TDRD3

176
6,492
(35.71%)

Physical low
Goulet I, et
al. (2008)

DDX3X-
TDRD3

168
5,235
(28.80%)

Physical low
Goulet I, et
al. (2008)

CDK7-
GTF2H5

152 1 (0.01%) Physical low
Giglia-Mari
G, et al.
(2004)

AXIN1-
LRP5

124 18 (0.10%) Physical low
Kim MJ, et al.
(2008).

   Physical low
Haÿ E, et al.
(2009)

   Physical low
Mao J, et al.
(2001)

   Physical low
Ding Y, et al.
(2008)

doi: 10.1371/journal.pone.0084639.t006
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identifies direct gene relation based on gene co-occurrence,
the GCG network identifies indirect relation based on citation.
The results show that the GCG network shares many genes
with the GG network and as a result is a competitive
complement to the GG network, despite having slightly less
accuracy that GG network in comparison with BioGRID.

We have demonstrated that using gene relationships based
on citation relation extends the assumption of gene interaction
being limited to the same article and opens up a new
opportunity to analyze gene interaction from a wider spectrum
of datasets. In the present study, we examined only one link of
citation relation, however in future work we intend to examine

Table 7. Gene-gene pairs with more than 100 co-
occurrence frequencies in the GCG network by year 2005.

Gene-Gene Pair
2005_GCG Pair
Occurrence

ALL_GG Pair
Occurrence
frequency (Rank)

Gene object ranking
in BioGraph (top %)

PARK2 - PINK1 352 1726 ( 5 ) 164 (0.23%)
ARF1 - RAB5A 167 18 ( 6092) 155 (0.22%)
DVL1 - LRRK2 126 24 ( 4425 ) 386 (0.54%)
DLX5 - TP63 125 33 ( 3023) 242 (0.34%)
MDM2 - SENP2 122 12 ( 9111 ) 5459 (7.69%)
MCPH1 - RAD51 117 60 ( 1320 ) 15 (0.02%)
EP300 - SIRT1 114 52 ( 1668 ) 306 (0.43%)

doi: 10.1371/journal.pone.0084639.t007

the chain of citation relation and apply co-citation analysis to
the GCG network.

The GCG network is proven useful for detecting gene
interaction in an implicit manner, thus, confirming that the
entitymetrics model proposed by Ding et al. [2] can be used to
analyze gene relationships and other bio types such as disease
or protein, and possibly applied to a heterogeneous network
such as gene-disease or protein-organ.
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