
The Journal of Infectious Diseases

Coronavirus Shedding and Viral Evolution • JID 2017:216 (15 July) • 203

The Journal of Infectious Diseases®  2017;216:203–9

Prolonged Shedding of Human Coronavirus in 
Hematopoietic Cell Transplant Recipients: Risk Factors 
and Viral Genome Evolution
Chikara Ogimi,1,2,3 Alexander L. Greninger,1,4 Alpana A. Waghmare,1,2,3 Jane M. Kuypers,1,4 Ryan C. Shean,1,4 Hu Xie,5 Wendy M. Leisenring,5,6  
Terry L. Stevens-Ayers,1 Keith R. Jerome,1,4 Janet A. Englund,2,3 and Michael Boeckh1,5,7

1Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; 2Department of Pediatrics, University of Washington; 3Pediatric Infectious Diseases 
Division, Seattle Children’s Hospital; 4Department of Laboratory Medicine, University of Washington; 5Clinical Research Division, Fred Hutchinson Cancer Research Center; and 
Departments of  6Biostatistics and 7Medicine, University of Washington, Seattle, Washington

Background. Recent data suggest that human coronavirus (HCoV) pneumonia is associated with significant mortality in hema-
topoietic cell transplant (HCT) recipients. Investigation of risk factors for prolonged shedding and intrahost genome evolution may 
provide critical information for development of novel therapeutics.

Methods. We retrospectively reviewed HCT recipients with HCoV detected in nasal samples by polymerase chain reaction 
(PCR). HCoV strains were identified using strain-specific PCR. Shedding duration was defined as time between first positive and first 
negative sample. Logistic regression analyses were performed to evaluate factors for prolonged shedding (≥21 days). Metagenomic 
next-generation sequencing (mNGS) was conducted when ≥4 samples with cycle threshold values of <28 were available.

Results. Seventeen of 44 patients had prolonged shedding. Among 31 available samples, 35% were OC43, 32% were NL63, 19% 
were HKU1, and 13% were 229E; median shedding duration was similar between strains (P = .79). Bivariable logistic regression 
analyses suggested that high viral load, receipt of high-dose steroids, and myeloablative conditioning were associated with prolonged 
shedding. mNGS among 5 subjects showed single-nucleotide polymorphisms from OC43 and NL63 starting 1 month following 
onset of shedding.

Conclusions. High viral load, high-dose steroids, and myeloablative conditioning were associated with prolonged shedding of 
HCoV in HCT recipients. Genome changes were consistent with the expected molecular clock of HCoV.
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Respiratory viruses are associated with prolonged shedding, 
higher rates of lower respiratory tract disease, and mortality in 
hematopoietic cell transplant (HCT) recipients. Development of 
novel therapeutics and effective infection prevention has been 
critically important, especially for well-established respiratory 
viruses such as respiratory syncytial virus, influenza virus, and 
parainfluenza viruses [1–4]. With new molecular diagnostics 
widely available, similar concerns have been raised for other 
respiratory viruses including human coronavirus (HCoV) [5]. 
In addition to the demonstration of frequent prolonged shed-
ding of HCoV after HCT [6], recent data suggest that com-
mon HCoVs (229E, OC43, NL63, and HKU1) are important 
respiratory pathogens related to significant mortality in HCT 
recipients [7]. Data on host and virologic factors associated with 

prolonged shedding, including genome evolution within a host, 
may provide a rationale for the development of antiviral therapy 
at various stages, but are currently lacking. Therefore, we exam-
ined HCT recipients to define viral and host factors associated 
with prolonged HCoV shedding in the upper respiratory tract 
and examine evolution of viral genomic sequences over time by 
metagenomic next-generation sequencing (mNGS).

METHODS

Study Design

We reviewed HCT recipients with HCoV detected in nasal 
samples by multiplex respiratory viral polymerase chain reac-
tion (PCR) at the Fred Hutchinson Cancer Research Center. 
Subjects were required to have a negative viral PCR test within 
2 weeks of the last positive virology testing performed. If the 
interval between consecutive positive tests was beyond 2 weeks, 
strain identification was performed using both samples to 
confirm the strains were the same. The subjects were identi-
fied from 2 cohorts (Supplementary Figure). The first cohort 
included patients whose nasal samples were collected and tested 
for clinical purposes when respiratory symptoms were pres-
ent from March 2009 through June 2016. The second cohort 
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came from a prospective surveillance study of HCT recipients 
undergoing transplant from December 2005 and February 2010 
[8]. Standardized respiratory symptom surveys and multiplex 
respiratory PCR tests were performed weekly during the first 
100 days posttransplant, then every 3 months through year 1 
posttransplant and whenever respiratory symptoms occurred 
between days 100 and 365 posttransplant. Only subjects with 
respiratory symptoms were selected for the current study, and 
no duplicated subjects were analyzed. Separately, mNGS was 
conducted when ≥4 positive samples with cycle threshold (Ct) 
values of <28 were available irrespective of presence of respira-
tory symptoms from the above-mentioned prospective surveil-
lance study of HCT recipients. Demographic and clinical data 
were collected from the database and medical chart review. The 
study was approved by the Institutional Board Review at Fred 
Hutchinson Cancer Research Center.

Laboratory Testing and Definitions

HCoV detection and viral load were determined from nasal 
specimens by quantitative reverse-transcription PCR as part 
of a multiplex PCR used to detect 12 respiratory viruses. 
Strain-specific PCR was performed using saved nasal samples 
according to a previously published protocol [9]. mNGS was 
performed on DNAse I-treated RNA extracts from 0.45-uM 
filtered nasal specimens using “tagmented” (transposon-me-
diated fragmentation) cDNA libraries with 15–20 cycles of 
PCR amplification when ≥4 samples with Ct values of <28 
were available [10]. Sequence reads were trimmed using cut-
adapt and aligned to a concatenation of the 4 HCoV refer-
ence genomes (NC_002645, NC_005831, NC_006577, and 
KF530069) using Geneious version 9.1 [11]. The duration of 
shedding was defined as time between the first positive and 
first negative sample. Prolonged shedding was defined as the 
duration of shedding ≥21  days, which was described to be a 
median shedding duration of HCoV during the first 100 days 
after HCT [6]. Highest daily steroid dose and lowest cell count 
in the 2 weeks prior to first HCoV detection were recorded. 
Conditioning regimen was categorized into myeloablative and 
nonmyeloablative/reduced intensity based on the definition 
previously described [12].

Statistical Analysis

Univariable and bivariable logistic regression analyses were 
performed to evaluate associations between virologic and 
host factors and prolonged shedding. Only the first episode of 
HCoV infection per subject was used for the outcome analyses. 
Variables with P ≤ .2 in the univariable models were candidates 
for bivariable models. Kruskal-Wallis test was performed to 
compare continuous values among more than 2 groups. Two-
sided P values <.05 were considered statistically significant. All 
statistical analyses were performed using SAS 9.4 for Windows 
(SAS Institute, Cary, North Carolina).

RESULTS

Host and Virological Characteristics

We identified 20 and 24 HCT recipients with respiratory HCoV 
infection from cohort 1 and cohort 2, respectively (42 adult and 
2 pediatric patients) (Table 1 and Supplementary Figure). The 
median duration of shedding was 14 days (4–60 days), and 17 
patients had prolonged shedding (≥21 days). Among 31 avail-
able nasal samples, 35% were OC43, 32% were NL63, 19% were 
HKU1, and 13% were 229E. The median shedding duration of 
HCoV in nasal samples did not differ between strains (Figure 1; 
P = .79).

Outcome Analyses

Initial high viral load (Ct value below the median) was associ-
ated with prolonged shedding with the lowest P value (<.01) by 
univariable analysis. Univariable and bivariable logistic regres-
sion analyses indicated that initial high viral load was associated 
with prolonged shedding consistently in all models (Table 2). 
High-dose steroid use (≥1 mg/kg/day) prior to HCoV diagnosis 
and myeloablative conditioning regimen were associated with 
prolonged shedding in the bivariable analyses. Four patients 
started viral shedding prior to transplant; therefore, we sepa-
rately analyzed 40 patients who started shedding after trans-
plant, and the results remained similar (data not shown.)

Whole-Genome Sequencing

Whole genomes of OC43, NL63, and HKU1 were consecutively 
sequenced in samples from 4 HCT adult subjects and 1 pediat-
ric subject where samples were available for 19 to 132 days fol-
lowing the first positive sample (Table 3). Engraftment occurred 
in 4 patients prior to the start of shedding. No majority consen-
sus variants were recovered for any patient <30 days after onset 
of shedding. Single-nucleotide variants accumulated at a rate of 
approximately 1 variant per 3–4 weeks, consistent with previous 
estimates of the HCoV molecular clock (Figure 2) [13, 14]. No 
single-nucleotide polymorphisms (SNPs) of OC43 and HKU1 
were recovered in patients 4 and 5, respectively. One adult 
patient (patient 3) developed lower respiratory tract disease in 
the setting of high-dose steroid use for acute graft-vs-host dis-
ease during prolonged shedding. Bronchoalveolar lavage was 
performed at day 73 after starting the shedding, from which 
Aspergillus fumigatus was detected in addition to HCoV OC43. 
One 18-year-old pediatric patient (patient 4)  had 3 different 
HCoV strains detected in succession over a period of 5 months.

DISCUSSION

In this study, we demonstrated a significant association between 
prolonged shedding of HCoV and initial high viral load in 
transplant recipients. In addition, prior high-dose steroid use 
and myeloablative conditioning regimen appear to be asso-
ciated with prolonged shedding. The duration of shedding 
appeared to be similar across all 4 HCoV strains. No drastic 
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intrahost evolution of viral genomes occurred in this immuno-
compromised population with prolonged shedding.

Severe acute respiratory syndrome and Middle East respira-
tory syndrome (MERS) coronaviruses are recognized as highly 
human-pathogenic coronaviruses causing fatal lower respira-
tory tract disease [15–17]; however, there are no established 
antiviral therapies [18, 19]. Recent data suggest that lower 
respiratory tract disease caused by 4 other HCoV strains (229E, 
OC43, NL63, and HKU1) was also associated with significant 
respiratory support and mortality in immunocompromised 
hosts [7]. The unmet need for the development of antiviral ther-
apy against HCoV is expected to expand as immunocompro-
mised populations grow. We found that initial high viral load, 
prior high-dose steroid use, and myeloablative conditioning 
were important factors associated with prolonged HCoV shed-
ding in HCT recipients. Duration of viral shedding is often used 

Table 1. Clinical Features of Patients With Human Coronavirus Upper Respiratory Tract Disease

Characteristic Total (N = 44) Patients With Prolonged Shedding (n = 17) Patients With Short-term Shedding (n = 27)

Female sex 18 (41) 7 (41) 11 (41)

Age, y, median (range) 54 (7–73) 54 (7–67) 55 (14–73)

Transplant number ≥2 12 (27) 6 (35) 6 (22)

Cell source

 Cord 3 (7) 2 (12) 1 (4)

 Bone marrow 4 (9) 2 (12) 2 (7)

 PBSC 37 (84) 13 (76) 24 (89)

Donor type

 Autologous 3 (7) 1 (6) 2 (7)

 Related 21 (48) 6 (35) 15 (56)

 Unrelated 20 (45) 10 (59) 10 (37)

Conditioning regimen

 Myeloablative 18 (41)  10 (59) 8 (30)

 NMA or RIC 26 (59) 7 (41)  19 (70)

Onset of shedding relative to transplant

 Pretransplant 4 (9) 4 (23) 0

 0–100 days posttransplant 22 (50) 6 (35) 16 (59)

 >100 days posttransplant 18 (41) 7 (41) 11 (41)

Human coronavirus strains

 OC43 11 (25) 3 (18) 8 (30)

 NL63 10 (23) 5 (29) 5 (19)

 229E 4 (9) 2 (12) 2 (7)

 HKU1 6 (14) 2 (12) 4 (15)

 Unknown 13 (30) 5 (29) 8 (30)

Ct value, median (range) 28.3 (19.2–39.4) 26.1 (19.2–39.4) 28.8 (19.6–39.4)

Lowest WBC count <1000 × 106 cells/La 14/36 (39) 3/15 (20) 11 /21 (52)

Lowest lymphocyte count <300 × 106 cells/La 18/36 (50) 6 /15 (40)  12/21 (57)

Lowest neutrophil count <500 × 106 cells/La 13/36 (36) 3/15 (20) 10 /21 (48)

Lowest monocyte count <100 × 106 cells/La 16/36 (44)  5/15 (33)  11/21 (52)

Highest daily steroid dosea

 None 26 (59) 8 (47) 18 (67)

 ≤1 mg/kg 12 (27) 5 (29) 7 (26)

 >1 mg/kg 6 (14) 4 (24) 2 (7)

Data are presented as No. (%) unless otherwise indicated.

Abbreviations: Ct, cycle threshold; NMA, nonmyeloablative; PBSC, peripheral blood stem cell; RIC, reduced intensity; WBC, white blood cell.
aIn the 2 weeks prior to first human coronavirus detection.
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Figure 1. Duration of shedding according to human coronavirus strain. The bars 
indicate median values and first and third quartiles (P = .79 by Kruskal-Wallis test).



206 • JID 2017:216 (15 July) • Ogimi et al

as an endpoint at early stages of clinical trials for new antiviral 
drugs [20, 21]. Stratification based on risk factors is critical to 
avoid imbalances due to host and viral factors in randomized 
trials, which might otherwise mask true differences of experi-
mental agents.

Genetic variability of HCoV OC43 at the community level 
and intrahost heterogeneity of MERS coronavirus have been 
reported [22–25]. Such variability might have important impli-
cations in viral disease pathogenesis, and the study of viral 
genome evolution within a host can provide vital information 

Table 3. Specimens Sequenced in this Study

Patient Strain Species Daya Ct Values HCoV Reads Total Reads Accession

1 N07-196B NL63 –10 26.1 291 765 465 084 KY554969

N07-262B NL63 4 25.9 72 640 249 121 KY829118

N07-468B NL63 42 26.2 59 658 191 697 KY554971

2 N06-1144B NL63 48 25.7 341 740 428 487 KY554967

N07-6B NL63 64 27.7 67 223 342 554 KY674915

N07-64B NL63 79 24.5 136 330 239 866 KY674916

N07-185B NL63 107 24.1 30 368 79 584 KY554968

N07-324B NL63 135 25 56 685 542 950 KY554970

3 N09-33B OC43 9 21.5 128 622 213 882 KY554974

N09-382B OC43 77 27.1 8063 137 198 KY554975

N09-595B OC43 118 27.6 6297 1 044 785 KY674920

4 N07-1541B OC43 116 23.8 160 033 580 450 KY554972

N07-1609B OC43 130 24.7 43 692 221 874 KY674917

N07-1647B OC43 137 22.7 107 905 147 986 KY674918

N08-87B HKU1 174 27 23 772 737 630 KY674921

N08-434B 229E 248 27.2 12 019 2 981 384 KY674919

5 N09-1605B HKU1 29 20.8 1 636 757 2 936 518 KY674943

N09-1627B HKU1 36 23.5 491 949 877 155 KY674942

N09-1663B HKU1 47 27.8 9164 266 311 KY674941

The number of HCoV reads, total reads, Ct values, and accession number are depicted for each of the specimens for which whole genomes were recovered.

Abbreviations: Ct, cycle threshold; HCoV, human coronavirus.
aDay is relative to engraftment.

Table 2. Univariable and Bivariable Logistic Regression Analyses for Prolonged Shedding (n = 44)a

Covariates Categories

Univariable Model Bivariable Model 1 Bivariable Model 2 Bivariable Model 3 Bivariable Model 4

OR   
(95% CI) P Value

Adjusted OR 
(95% CI) P Value

Adjusted OR 
(95% CI) P Value

Adjusted OR 
(95% CI) P Value

Adjusted OR 
(95% CI) P Value

Ct value <28.3 vs ≥28.3 6.5 (1.6–26) <.01 11.6 (2.1–64.7) <.01 11.0 (2.1–58.8) <.01 5.1 (1.0–25.2) .05 5.5 (1.1–26.8) .03

Conditioning 
regimen

MA vs NMA/RIC 3.4 (.95–12) .06 6.9 (1.3–38) .03

Highest steroid 
doseb (mg/kg/ 
day)

≥1 vs <1 3.85 (.6–24) .15 10.1 (1.1–96) .05

Lowest WBC 
countb (×106 
cells/L)

<1.0 vs ≥1.0 0.23 (.05–1.05) .06 0.33 (.06–1.7) .18

Lowest neutrophil 
countb (×106 
cells/L)

<0.5 vs ≥0.5 0.28 (.06–1.3) .10 0.37 (.07–1.9) .23

Lowest lympho-
cyte countb 
(×106 cells/L)

<0.3 vs ≥0.3 0.5 (.13–1.9) .31

Lowest monocyte 
countb (×106 
cells/L)

<0.1 vs ≥0.1 0.45 (.12–1.8) .26

Transplant number ≥2 vs ≤1 1.91 (.5–7.3) .35

Age at diagnosis As continuous 0.98 (.94–1.03) .48

Abbreviations: CI, confidence interval; Ct, cycle threshold; MA, myeloablative; NMA, nonmyeloablative; OR, odds ratio; RIC, reduced intensity; WBC, white blood cell.
aVariables with P ≤ .2 in the univariable models were candidates for bivariable models where data only support inclusion of 2 factors per model.
bIn the 2 weeks prior to first human coronavirus detection.
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important in developing and assessing antiviral agents [26]. For 
example, development of antiviral drug resistance during indi-
vidualized therapy that is associated with poor outcome has been 
described extensively with influenza virus [27–29]. Grad et al 
reported intrahost genome evolution of respiratory syncytial 
virus over time in an infant with severe combined immune defi-
ciency who underwent a bone marrow transplant [30]. The viral 
population diversity dramatically increased after engraftment, 
which appeared to reflect dynamic response to immune pres-
sure from host immunity. To our knowledge, no previous data 
exist describing how the HCoV genome evolves within a host 
over time. In the current study, engraftment occurred in 4 of 5 
patients sequenced prior to the onset of shedding. Interestingly, 

no SNPs were recovered <30 days after the onset of shedding 
even after immune reconstitution. Variants accumulated start-
ing at 1 month after the onset of shedding (1–6 changes over 
time), consistent with the previously estimated evolution rates 
of HCoV [13, 14]. Given the relatively slow evolution rate of 
coronaviruses, these observations could be promising from the 
standpoint of antiviral resistance and therapeutic development 
[13, 14]. Due to their exceptionally large RNA genomes, corona-
viruses are known to encode highly processive polymerases as 
well as proofreading exoribonucleases that temper viral genome 
evolution relative to other RNA viruses [31–33]. Further epide-
miological and biochemical work is required to characterize the 
functional impact of the variants recovered here.
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The main limitation of this study was the relatively small 
sample size; thus, bivariable logistic regression analyses were 
performed instead of multivariable analyses to evaluate risk 
factors for prolonged shedding. Similarly, although no partic-
ular strain appeared to be associated with prolonged shedding, 
strain identification using saved samples was successful in only 
70% of the patients, which limited our ability to detect small 
difference of shedding duration among each HCoV strain. 
Further studies with larger sample sizes will help to clarify 
the distinct association between particular HCoV strains and 
prolonged shedding. Finally, our cohort included 4 patients 
who had documented HCoV shedding prior to transplant. 
Considering the unmeasured influence of their different back-
grounds on our analyses, we separately analyzed 40 patients 
who started shedding after transplant. Only univariable logistic 
regression analysis could be performed due to the small sample 
size, with similar results.

This is the first study to evaluate risk factors associated with 
prolonged shedding of HCoV by quantitative and strain-specific 
reverse transcription PCR as well as intrahost genomic evolu-
tions by metagenomic RNA sequencing in transplant recipients. 
Our study provides critical information to develop antiviral 
therapies and design randomized trials with viral load end-
points. In addition, as the duration of shedding is an important 
determinant of viral infectivity and transmissibility, predictive 
factors for prolonged shedding may provide useful information 
for effective infection control, such as the expected duration of 
isolation. Further studies are needed to validate the risk factors 
including particular HCoV strain for prolonged shedding.

Supplementary Data
Supplementary materials are available at The Journal of Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, the 
posted materials are not copyedited and are the sole responsibility of the 
authors, so questions or comments should be addressed to the correspond-
ing author.
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