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Abstract: With the ongoing efforts for widespread Internet of Things (IoT) adoption, one of the
key factors hindering the wide acceptance of IoT is security. Securing IoT networks such as the
electric power grid or water supply systems has emerged as a major national and global priority.
To address the security issue of IoT, several studies are being carried out that involve the use of,
but are not limited to, blockchain, artificial intelligence, and edge/fog computing. Authentication
and authorization are crucial aspects of the CIA triad to protect the network from malicious parties.
However, existing authorization and authentication schemes are not sufficient for handling security,
due to the scale of the IoT networks and the resource-constrained nature of devices. In order to
overcome challenges due to various constraints of IoT networks, there is a significant interest in
using machine learning techniques to assist in the authentication and authorization process for IoT.
In this paper, recent advances in authentication and authorization techniques for IoT networks are
reviewed. Based on the review, we present a taxonomy of authentication and authorization schemes
in IoT focusing on machine learning-based schemes. Using the presented taxonomy, a thorough
analysis is provided of the authentication and authorization (AA) security threats and challenges for
IoT. Furthermore, various criteria to achieve a high degree of AA resiliency in IoT implementations
to enhance IoT security are evaluated. Lastly, a detailed discussion on open issues, challenges, and
future research directions is presented for enabling secure communication among IoT nodes.

Keywords: Internet of Things; IoT; security; authentication; authorization; machine learning

1. Introduction

It is estimated that there will be over 30 billion devices connected to the Internet
by the end of 2025 [1]. The reason for such growth is the promise that IoT holds to im-
prove business processes and accelerate growth. IoT represents interconnected physical
things that are uniquely identified with any intelligent devices/objects (e.g., sensor) that
are, in turn, connected to the Internet in a heterogeneous environment and can generate
events [2,3]. Therefore, providing security on IoT nodes to protect boot sequence, manage-
ment of keys, data protection, secure sessions on communication establishments, reliable
hardware/software patches, and monitoring and auditing are crucial for exchanging data
among nodes. The sharing of data among IoT nodes directly affects IoT security and is
largely based on the trustworthiness of the data and the standard of service rendered. For
example, a distributed denial of service (DDoS) attack was originated from millions of
IoT devices infected by the Mirai malware. It is a simple program available online, where
many IoT devices like closed-circuit cameras and smart-home devices were hacked by
malware and used against the servers [4]. This attack highlights the need to design a proper
security mechanism for the widespread adoption of IoT and avoid future security breaches
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resulting in personal data leaks and monetary loss. Authentication and authorization (AA)
are the first lines of defence and are intended to restrict actions and operations in IoT
environments [5]. AA aims to prevent breaches by enforcing user restrictions, resulting
in the exposure of essential resources to unwanted opponents. Authentication, including
protection tools to prevent external attacks, such as man in the middle attack [6] and eaves-
dropping attack [7,8] for the application, are generally customized to tackle different threats
at certain network circumstances. However, malicious behaviour is unpredictable and
cannot be dealt with before each attack. AA offers security services to counter internal and
external threats. To counter these threats, machine learning (ML)-based AA is a promising
tool when it comes to building security schemes that learn how to identify and counteract
new and existing complex attacks efficiently by repeatedly analyzing the connectivity
patterns of nodes following efficient initial authentication, such that any behavioural shifts
from valid to suspicious can be observed. Due to resource limitations, it is not feasible to
explicitly implement ML techniques on IoT devices. Therefore, robust ML-based AA with
feature reduction techniques are expected to minimize resource usage with optimizing
accuracy, efficiency, and data availability [9].

1.1. Current Issues and Motivation

To enable the widespread adoption of IoT, various security requirements must be
addressed [10,11]. Authentication and authorization are crucial security provisions that
require an extensive focus from IoT security researchers. At present, most IoT imple-
mentation relies on centralized client-server architecture, connecting to the cloud via the
Internet. All devices are identified, authenticated, and connected by cloud servers that
support vast processing and storage capacities. The communication between IoT devices
will have to go through the cloud, even when they are in the vicinity. Such a model is
prone to bottlenecks, downtime, and coordinated attacks that might affect the operation
of the entire network. The problem is further aggravated due to the resource-constrained
nature of IoT devices. The current best security practices cannot be implemented to secure
the IoT ecosystem, as they were not designed for resource-constrained devices, leaving
billions of devices prone to attack. Traditional approaches work well for different aspects
of IoT (e.g., clustering, protocols, applications, data aggregation, services, architectures,
resource allocation), including security for now. In the near future, there will be a need
for AA schemes that handle access in a distributed manner in a secure and efficient from
a large number of IoT nodes in the future. In various implementations, such as remote
health care services, energy utilization management, traffic control management, and smart
system for parking, home and industry, IoT has become a significant component. In all
such implementations, consumers and service providers require the confidentiality of their
activity, behaviours, and personal details. IoT must guarantee the end-to-end security and
privacy of its users to achieve the confidence of users.

While ML and IoT access management systems are currently significant areas of study,
limited literature exists on IoT security based on ML that focuses on authentication and
authorization [12]. Nevertheless, owing to the characteristics of IoT nodes, the study also
has several limitations in the AA aspect. As we find new IoT threats very frequently, it
is important to explore and address various security issues via the most up-to-date and
thorough analysis of the ML-based security solution.

Authentication and authorization are significant security issues in IoT, and several
research studies have taken place in the domain. In this paper, we focus on general and ML-
based authentication schemes for IoT. A summary of the state-of-the-art research leveraging
ML algorithms for AA of IoT is presented. Furthermore, we provide a discussion of security
concerns related to AA on the supporting layer of IoT.

1.2. Authentication and Authorization in IoT

Authentication and authorization are two key components to protect customers and
devices on the Internet. It makes these components essential to IoT implementation,
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because the IoT is simply a device at its most fundamental level, from simple sensors to
cars and complicated mobile devices, which connect to share data. Authentication is the
device identification process which confirms the validity of the device client ID and makes
sure that the ID belongs to that specific device only. Authorization is a way of assessing
a node (sensor node or user) that has the permission to access resources, such as reading
or writing data, running programs, and controlling actuators. Authorization also covers
access denial or revocation, especially for somebody or something malicious. Furthermore,
authorization provides a mechanism for linking a specific device (or subject membership
group of devices) to individual services.

There are two types of authentication and authorization processes: one for the devices
and another for the users. This review study focuses on device authentication and autho-
rization. An excellent example of this is a sensor. Before the communication session starts
and the sensory data exchange takes place, device identity and authorization level is set
through the AA processes.

1.3. Existing Reviews

Several research papers have covered IoT security-related issues. For example, authors
in [13] presented an overview of “autonomic security” for IoT threat mitigation strategies.
The authors classified these strategies into self-protecting, self-healing, and a hybrid of
self-protecting and self-healing. They described the usage against different threats in three
layers: perception, communication, processing, and analysis (Cloud). Likewise, Ref. [14]
analyzed the procedures used to control Internet access and the confidentiality of IoT. The
work presented challenges, opportunities in IoT security, and future directions. However, it
did not use a systematic approach to investigate authentication and authorization methods
for IoT. Confidentiality and security issues are examined in [15,16]. The limitations of IoT
devices and corresponding security solutions are discussed. Moreover, a classification of
IoT attacks and access control mechanisms is presented. However, it lacks discussion on
IoT AA with the dynamic behavior of nodes.

In [17], the authors looked at IoT holistically in terms of device architecture, security,
and privacy. They presented challenges for edge computing and IoT applications. In [18],
the authors addressed the importance of the ML-driven methods for IoT security and
privacy. In another study, Ref. [19] explored the viability of ML-driven schemes to identify
intruders in IoT networks by applying these methods in intrusion detection systems,
either by irregularities or traffic classification. Likewise, the authors [20] discussed the
in-depth protection and privacy analysis of the layers (physical, network, and application).
Moreover, the authors describe the shortcomings of the current ML-driven approaches and
algorithms used for IoT security.

The author [7] presented a systematic review of the intrusion detection system (IDS)
in IoT environments. A discussion on the advantages and disadvantages of the intrusion
detection mechanisms based on anomaly, signature and other specification was provided.
Detection accuracy, scalability, and IDS characteristics are also discussed in the paper.

Table 1 recapitulates the research contributions related to the authentication and
authorization found in the literature.

1.4. Contribution

While several works exist in the literature, they are limited to specific IoT security and
threats. A detailed survey of all existing and future security challenges, especially ML-based
security schemes for authentication and authorization, is required for IoT applications.
Our review will help the readers get a clear idea of the latest AA scheme for considering
ML methods as an alternative solution to the current cryptography-based AA systems and
provide an overview of the field. Specifically, our contributions are stated below:

• An overview of security and privacy issues with a taxonomy related to various
authentication and authorization schemes in IoT.



Sensors 2021, 21, 5122 4 of 34

• An overview of various types of attacks in each layer of IoT architecture leveraging a
specific IoT AA mechanism.

• Recommendations for enhancing IoT authentication scheme for safe communications
based on ML.

• An assessment of countermeasures of IoT security issues with ML for AA.
• Performance evaluation metrics for IoT AA for general and ML-based schemes

are identified.
• Open issues, challenges, and future work recommendations for secure IoT system

and services.

Table 1. Existing Review on AA Schemes.

References Authors Contribution(s) Limitation(s)

Yang et al. [16]

Discussing IoT attacks, surveying the most critical
limitations of IoT devices and their solutions,
analyzing the security issues in different IoT layers,
and exploring IoT access control schemes
and architectures.

The survey mainly focuses on battery life and
computational lightweightness without any
taxonomy, while other essential IoT security
requirements are neglected.

Lin et al. [17]
Overview of the safety and privacy problems, and
challenges of fog/edge computing and
IoT applications.

Available security and privacy control schemes are
neglected in this survey. Moreover, the
requirements are not specified appropriately.

Xiao et al. [18]

Addressing the importance of the ML-driven
methods for IoT security and privacy by showing
the implementation of ML-driven security
solutions for IoT networks.

Lacks taxonomy and little discussion on the attack
detection schemes.

Hajiheidari et al. [7]

Discussing the security issues in the IoT
environment and categorize the types,
characteristics, attacks and respective simulation,
and the theoretical solution by illustrating the
advantages and disadvantages of the
selected mechanisms.

Focuses on IDS in IoT without emphasis on vital
IoT security requirements and a minimal
discussion on AA.

El-hajj et al. [15]

This paper gives a near-complete and up-to-date
view of the IoT authentication field. It provides a
summary of a large range of authentication
protocols proposed in the literature.

A limited number of related works considered.
Moreover, the author covered generic
authentication schemes for the survey.

Preeti et al. [19]

This paper explored the viability of ML-driven
schemes to identify intruders in IoT networks by
applying these methods in intrusion detection
systems, either by irregularities or
traffic classification

The IoT security requirements are not
appropriately considered. The metrics required to
measure ML-based IDS performance are
not presented.

Hussain et al. [20]

Discussing in-depth protection and privacy
analysis of the layers (physical, network, and
application). Extensively describe shortcomings of
the current ML-driven approaches.

IoT attacks are not specified systematically and
metrics needed to measure ML-based security
schemes are not discussed.

1.5. Article Organization

The rest of this article is organized as follows. Section 2 discusses the ML methods
and Section 3 presents the taxonomy of AA for IoT, followed by IoT security require-
ments in Section 3.1. A layered view of attacks and risks in IoT for AA is presented
in Section 3.2. Section 3.3.1 presents the general performance evaluation metrics and
Section 3.3.2, presents the ML-based AA performance evaluation metrics. Section 3.4
presents recent AA techniques with their strengths and weaknesses. In Section 3.4.1, dif-
ferent IoT authentication schemes are described from the general point of view, such as
encrypted schemes, and in Section 3.4.2, different ML-based IoT authentication schemes are
described. In Section 3.4.3, different IoT authorization schemes are being described from
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the view of the attributes, roles and capabilities. Section 3.4.4 presents different ML-based
IoT authorization schemes. AA characteristics are described in Section 3.5 based on the
recent literature. In Section 4, the open issues, challenges, and future research direction are
discussed. Finally, the conclusion is drawn in Section 5.

2. Machine Learning for IoT Security

In this section, we provide a brief overview of various machine learning algorithms
and their use in IoT.

2.1. Supervised Learning

Supervised learning algorithms operate using labelled datasets and are used in IoT
networks to detect spectrum, estimate the channel, adaptive filtration, and determine
locations. This group includes two different process types: regression and classification.
Support vector machine (SVM), naive Bayes, random forest, and decision tree are some of
the most popular classification algorithms. Two widely employed regression methods are
polynomial and logistic regression. Such algorithms are also known as “instance-based”
algorithms that predict output based on the learned model for each new observation.
Supervised learning algorithms, including SVM, DT, and naive Bayes (NB), have been
widely used for IoT security. For instance, the non-linear constraints for a solution model
are in SVMs. However, for massive data sets, SVM is inefficient. It is simpler to apply
random forest algorithms and conform to the massive dataset available compared to SVM.
It offers a greater degree of accuracy, which requires less time for prediction [21]. However,
training requires more time than SVM and NB. Logistic regression and neighbouring
algorithms require a lot of memory and processing of data with many features. Supervised
learning methods have been used to detect intrusion, DDoS attacks for IoT networks in the
communication layer and the cloud.

2.2. Unsupervised Learning

The unsupervised learning algorithms handle unlabelled data and heuristically use
input data to learn patterns in the input data. In particular, unsupervised algorithms
identify irregularities, patterns, anomalies, and cluster classes. Unsupervised learning
makes use of classification algorithms to classify the data. In IoT, unsupervised approaches
may be used without any knowledge of the desired output. Based on the unsupervised ML
algorithms, two standard clustering algorithms are K-means and hierarchical clustering.
Clustering using K-means is the most popular because it is a simple algorithm that forms
clusters according to patterns detected in the data points (e.g., normal traffic or abnormal
traffic). The cluster/edge groups are formed around the centroids, leading to the formation
of same-size clusters. However, during the clusters’ formation, the number of clusters must
be defined, which cannot always be done accurately and efficiently [22]. Unsupervised
learning methods (i.e., K-means) are usually used to detect anomaly and Sybil attacks in
the communication layer.

2.3. Reinforcement Learning

The reinforcement learning (RL) methods learn by exploring various actions in a given
environment and find the optimal set of actions to maximize the reward. This reward
arrangement is beneficial in overcoming various security issues in IoT [23]. RL requires no
prior knowledge of the environment and learns based on experience by interacting with
the environment to find the best action in a given state. RL approaches are simple, but
determining optimal policy takes a long time. This slow convergence and an optimal state
transition function or policy are the major issues in dynamic IoT network environments.

Reinforcement machine learning may respond to changes over time and adapt, as
opposed to standard approaches such as linear aggregation. RL illustrates a significant
aspect of developing an autonomous communications system that can efficiently secure IoT
devices without external interference, intelligent enough to anticipate potential malfunc-
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tions. The reinforcement learning methods (i.e., Q-learning) can be used for IoT devices
authentication, detecting jamming and malware attack by learning from the environment
in the cloud or any high-computational edge devices without requiring a prior training
dataset [24,25].

3. Taxonomy of Ml-Based AA for IoT

This section presents the proposed taxonomy for AA in IoT. The proposed taxonomy
is based on the review of various research studies considering various aspects, while
designing AA schemes for IoT security. Based on the analysis of existing literature, the
research on AA can be categorized using the following classifications:

1. AA-based IoT Security Requirements
2. Attacks and Risks for AA in IoT
3. Performance Evaluation Metrics
4. Techniques used for AA
5. Characteristics of the AA schemes

Figure 1, illustrate the detailed taxonomy of ML-based AA for IoT.

Figure 1. Taxonomy of ML-based AA for IoT.

3.1. AA-Based IoT Security Requirements

Due to the constrained nature of IoT devices and the heterogeneity, there are a wide
array of requirements to secure IoT networks. IoT security requirements that need to be
fulfilled for any AA systems are the following:

• Lightweightness: The first and foremost requirement is that the AA schemes must
be required to be lightweight for IoT, such that, regardless of energy constraints, they
work well for several IoT nodes [26–28].

• Privacy Profiling and Tracking: Combining an identification with a specific person is
a vulnerability, which may escalate to privacy profiling and tracking [29]. Therefore,
one of the critical problems is the dis-allowance of IoT operation, and the security
system must be responsible for protecting the clients’ privacy.
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• Heterogeneity: Within IoT, nodes and networks are heterogeneous. An essential
requirement for the AA scheme must have heterogeneity because of end device
characteristics. Heterogeneity in AA schemes will solve issues in multiple types
of devices.

• High Availability: The high availability of the AA Scheme confirms that all network
services are available to the greatest possible extent, even though threats are occurring
within the IoT network [30].

• High Accuracy: A high degree of accuracy level of any AA scheme is required for ac-
cessing any IoT node and the network itself [31]. A high degree of accuracy level during
authentication and authorization will ensure that the whole system is highly secure.

• High Reliability: One of the key requirements of any authentication and authorization
schemes is high reliability. The method relies on its success rate. It confirms that all
functions in the IoT network are operating correctly during the specified duration [32].

• Registration of IoT Nodes Dynamically: IoT requires networks with shorter life
cycles than general computing networks, while IoT devices can dynamically be added
and removed from systems [33].

• Scalability: A range of network scalability approaches is available to provide support
to IoT devices, including the publish-subscribe protocols such as MQTT [34]. These
scalability features should be combined with the security architecture.

• Fault Tolerance: Fault tolerance is the ability to continue working, even after one or
more devices are compromised. If an end-device of the group such as edge node cannot
authenticate with the group’s distributor such as cloud, the group loses its identity. This
loss of identity causes the authentication failure of the other group devices. Therefore,
suitable fault tolerant system architectures should be implemented [35].

• Early Detection of Attacks: The IoT network requires schemes and protocols after an
attack is performed to guarantee that the attack is identified as quickly and efficiently
before an attack does significant harm and spreads across the network. Moreover, the
schemes are also needed to be tolerant to intrusions and various hostile attacks.

• Resilience and Robustness: Due to agility, IoT node faults and the rise in the number
of attack vectors, the IoT AA system should be resilient to attacks and must be robust.
Security networks should also be able to discover and repair faultiness by immediately
taking the necessary steps.

• Energy Efficiency: Energy efficiency is an important metric to assess the lightweight-
ness aspect of an AA system, as it is proportionate to the distance for the communi-
cating nodes [36]. Besides that, lightweight programs with little code or less memory
consumption are preferred in an AA system implementation.

3.2. Attacks and Risks for AA in IoT

Recently, AA in IoT has become a significant issue, as specified in the considerable
amount of recent research works. AA is a critical issue for vendors in order to secure the IoT
networks. Furthermore, the majority of IoT devices are expected to operate without human
intervention. Therefore, it is required to have a method to authenticate and authorize
devices and services without these human interactions.

The IoT networks can be divided into four important layers to simplify the develop-
ment security mechanism. In the first layer, which is called the perception layer, specific
sensors and actuators interpret data or knowledge and execute different functions. A coor-
dination network for the transfer of aggregated data is included in the second layer called
the communication layer. The data processing and analysis layer, known as the middleware
layer, connects the network and the application layer in many evolving IoT applications.
Finally, there is a range of end-to-end solutions in the fourth layer, the application layer,
including smart grids, smart highways, smart industries, etc. All four layers have specific
security problems. In addition to these, different gateways link these layers and help the
transmission of information. These gateways also have certain security risks. Furthermore,
each layer of the architecture of the IoT system has certain security requirements. Figure 2
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described a possible architecture of IoT for authentication and authorization. The attacks
for each layer for AA are discussed below based on IoT architecture.

Figure 2. Layered view of IoT for AA and Security Risks.

3.2.1. Perception Layer

The key objective of the perception layer is the detection of any event in the peripheral
devices and the collection of real-world data. Such a layer comprises several sensors and
can be called the sensing layer for the IoT architecture. One of the key advantages of IoT
systems is that many sensors are used for applications. Sensors are typically embedded
into IoT devices through sensor hubs. A sensor hub is a connecting point for many sensors
that capture and reroute sensor data to the processing unit. For data flow between sensors
and devices, a sensor centre uses various transport mechanisms, e.g., inter-integrated
circuit (I2C) and serial peripheral interface (SPI). The transportation mechanisms rely on
IoT devices and establish a channel of interaction between the sensors and the sensor data
extraction applications. The security risks related to this layer are as follows:

• Node Capturing: IoT systems consist of many limited resource sensor and actuator
nodes that are vulnerable to node capture attack. In such an attack, the attacker gains
full control over the key node, such as the gateway. The attacker will then leak all
information between sender and receiver, exposing the whole network [37].

• Malware Injection: The risks involve the injection of malware into the memory of the
node by an external user. In general, IoT node firmware or software is modified to
enable adversaries to insert malware to execute such unintended functions or even
attempting to access the entire IoT network [38].

• Side-Channel Risk: In addition to direct node attack risks, separate side-channel
risks may contribute to sensitive data leakage. These risks may depend on power use,
laser attacks, time attacks, or electromagnetic attacks, which are also conceivable [39].
Modern chips take charge of numerous countermeasure steps in the cryptographic
modules to avoid risks from this side channel.

• Eavesdropping and Interference: Many IoT systems consist of specific nodes dis-
tributed in open environments. An external party may secretly overhear information
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exchanged via different channels, such as a communication network, or authentication,
in certain IoT applications, which might not be allowed [40].

• Sleep Deprivation: The attackers attempt to drain the battery from the low-powered
IoT-edge devices during an attack. This can be accomplished by using infinite loops
in the edge devices or deliberately increasing the device power consumption by using
more power for data transmission [41].

3.2.2. Communication Layer

The communication layer is a contact medium for transmitting data to other inter-
connected devices obtained in the perception layer. The communication layer allows data
flow between devices within the same network using a wide range of communication
technologies, such as Wi-Fi, Bluetooth, Zigbee, Z-Wave, LoRa, and mobile networks. This
layer of an IoT architecture is also known as the network layer.

• DDoS/DoS: Many IoT devices in the IoT network can be used to launch DDoS attacks.
This is used to exploit or breach the security of target servers. The Mirai botnet
used this attack from numerous distributed nodes to flood the system by persistent
transmission [4].

• Sybil Attack: This attack offers many separate identities for an individual node. For
example, if there are many Sybil nodes in the same network, several requests from the
legitimate nodes are rejected due to Sybil nodes in the same network [13]. Moreover,
Sybil attack is possible from every layer of the IoT architecture.

• Secure Onboarding: In case of the installation of a new device in an IoT system, encryp-
tion keys must be protected. The gateways can be attacked and searched by the human
being, especially during the embedded phase, to catch the encryption keys [42].

• End-to-End Encryption: To ensure the confidentiality of the data, end-to-end protec-
tion is required. For example, Zigbee and Zwave protocols allow encryption, but it
is not end-to-end encryption. The gateways are needed to decrypt and re-encrypt
messages to convert the details from one protocol to another [43]. This gateway stage
decryption renders data prone to privacy infringement.

• Firmware Updates: Most IoT devices are resource-limited, so they are unable to access
and install software updates with the user interface or computing resources [42]. In
this circumstance, gateways are used to download and apply firmware updates by
gaining access through authenticating and authorizing.

3.2.3. Data Processing and Analysis Layer

The data processing and analysis layer comprises the data processing unit of IoT
architecture. The collected data from the perception layer are processed and analyzed
for deriving insights and making decisions. The data processing and analysis layer often
preserves the output of the previous layer to enhance the security based on the device
experiences. The outcomes from this layer are also able to be shared among the connected
devices if necessary.

• Signature Wrapping: XML signatures are included in the cloud servers to maintain
service integrity [44]. The intruder breaks the signature algorithm during a signature
wrapping attack and may execute or change the eavesdropped information, utilizing
the Simple Object Access Protocol (SOAP) vulnerabilities.

• Man-in-the-Middle (MiTM): The MQTT protocol employs the MQTT Broker as a
publishing subscriber communication model for customers and effectively acts as a
proxy. In MITM, the attacker may gain control of the MQTT broker by becoming an
intermediary node in the middle and trying to tap the information of other nodes
without knowing the potential client nodes [13]. Similarly, many IoT message queue-
ing protocols, such as SMQTT, AMQP, CoAP, M3DA, and XMPP [45], can be exploited
using MITM attack.
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• Flooding: This flooding is fundamentally the same as the cloud DoS attack, impacting
service efficiency (QoS) by submitting numerous queries [13]. The strain on the cloud
servers will have a significant effect on cloud-based systems.

3.2.4. Application Layer

In the cloud application layer, the data processing layer schemes are implemented
to achieve different IoT device security levels. The IoT device application layer is a user-
centred layer that handles specific user tasks. Possible IoT application layer attacks are:

• Data Stealing: Many sensitive and private details are protected by IoT applications.
Transit data are even more vulnerable to attacks than data at rest. A lot of data
movement occurs in IoT applications. When such systems are vulnerable to data
stealing threats, individuals would be hesitant to disclose their private data in IoT
systems [46].

• False Data Injection: If the node has been captured, the intruder can insert erroneous
information into the IoT application that can generate false results and cause IoT
application to fail. DDoS attacks may use this critical approach too [47].

• Service Interruption: Such threats are often classified in current literature as unautho-
rized disruption activities or DDoS attacks. There have been many cases in which IoT
systems have been targeted. These threats temporarily blocked legitimate customers
from accessing services on IoT infrastructure by deliberately exploiting servers or
the network.

• Malicious Code Injection and Reprogram: Attackers are typically used to hacking
through an IoT device or network utilizing the fastest or shortest route. An effective
XSS attack can cause the device to hijack an IoT account and paralyze the IoT system
if it is prone to malicious scripts. Still, the attackers may try to reprogram IoT objects
remotely using flaws in the logic of the program [48].

• Sniffing: To access sensitive user data, an intruder can use a sniffer system to monitor
network traffic in IoT applications when protection protocols are not enough to
prevent it [49].

3.3. Evaluation Metrics for Authentication and Authorization (AA)

In this section, we discuss commonly used metrics to evaluate the various AA schemes.

3.3.1. General AA Evaluation Metric

1. Average Response Time: The time required to reply to the client request is the
response time for a server node or gateway node (GWN). Several variables influence
this, such as server architecture, the number of clients, the bandwidth of the network,
volume of requests, request types and calculation time. Equation (1) can be used to
measure first response time.

Timeres = time f ir−res − timereq (1)

Here, Timeres indicates the total time taken for the response, time f ir−res indicates
the first response time, and timereq indicates the client’s time of request. The average
response time will be determined by the mean of all response times, as seen in
Equation (2).

Timeavg−res =
nuser

req
− Timethink (2)

where the average response time is Timeavg−res, the number of simultaneous users
is denoted by nuser. The volume of requests that a server gets is req. Timethink is the
average time of thought (in milliseconds). It is necessary to use think time in the
equation to achieve exact response time.

2. Handshake Duration: Handshaking is a negotiating mechanism between two parties
(e.g., client, actuator, sensor node, server or other nodes) in an IoT network. Hand-
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shaking occurs by finishing a two-round trip message. The server identification of the
client and the server request recognize [50]. The handshake duration can be denoted
by Timehandshake and shall be calculated by Equation (3) at the client-end.

Timehandshake = Timesession + Timeres + Timeprocessing (3)

where the time taken from a complete session request is denoted by Timesession, the
response time of the client is indicated by Timeres and server processing time denoted
as Timeprocessing. Random handshakes between the client node and server node are
performed to determine the duration of the handshake. Based on the handshake
duration, the standard deviation is calculated to observe the variability.

3. Average Memory Consumption: IoT is a network of primarily wireless sensors,
which are constrained in memory and other resources. Therefore, in specialised and
autonomous sensor networks, memory usage optimization is critical [51]. The usage
of memory varies at different levels in IoT applications, including the user, sensor,
gateway, etc.

4. End-to-End Delay: The average time for delivering packets from sending node to
the receiving node is defined as an end-to-end delay and denoted by E2ED. Using
Equation (4), the E2ED can be computed.

E2ED =
∑

nreceived−pkt
k=1 (Timestampr

i − Timestampsent
i )

nrcvd−pkt
(4)

Here, packet number is denoted as i and the number of received packets is de-
noted as nrcvd−pkt. Similarly, Timestamprcvd

i denotes the received timestamp and
Timstamptsent

i denotes the sent timestamp for i-th packet. E2ED is directly propor-
tional to the number of nodes in an IoT network.

5. Impact on Throughput: The throughput can be defined as the amount of data passing
in a unit of time through a node. In [36], the authors demonstrated that the output
could be represented by Equation (5).

IMPACTTP =
∑(Qntyrcvd

i × lngthi)

Timewhole
(5)

Here, the impact on throughput is denoted as IMPACTTP, while Qntyrcvd
i denotes

the received quantity and lngthi denotes the length of the i-th packet, and Timewhole
denotes the duration to complete the simulation.

6. Ratio of Packet Delivery: Packet delivery ratio denotes the number of packets trans-
mitted by the sending node and the number of packets successfully received at the
receiving node. It depends on several variables, such as network setup, system
capacity and bandwidth. Equation (6) can be used in the calculation of the packet
delivery ratio.

RATIOPD =
Numberpkt−rcvd

Numberpkt−sent
(6)

where RATIOPD is the packet delivery ratio. The total number sent by the sending
node is denoted as Numberpkt−sent and the number of packets received by the receiv-
ing node is Numberpkt−rcvd. When a message is transmitted through the networks,
energy is consumed. When more packets are transferred across the nodes, the energy
consumption will increase accordingly [36]. So, if the energy level is below a threshold
or reaches the node constraints, the packet can be discarded at the edge or cloud.

7. Cost of Communication: As stated in the literature, the number of interactions dur-
ing authentication will differ and depends on the protocols in use. Moreover, it will
require different phases and a specific number of messages to establish communi-
cation. Furthermore, the scheme involved in the AA process required at least four
messages to complete authentication, such as messages transfer between the sensor,
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GWN, and the user or the central node to establish a secure communication through
authentication [36,52–56]. Therefore, the number of messages varies, and different
communicating messages carry different information. Due to this, there must be a
consideration for communication costs, since multiple standards are subject to vary-
ing threshold values. For example, the networking protocol of IEEE 802.15.4 accepts
127 bytes. In comparison, the standards IEEE 802.15.6 carry a limit of 255 bytes of
frame length.

8. Cost of Computation: Computation also relies on protocols within the IoT network.
As most network devices are computationally limited, computing large data or in-
formation of IoT networks is not feasible. Therefore, protocol architects aim to build
lightweight IoT network authentication protocols. In this regard, the principle of hash,
XOR, and concatenation has been used by researchers to protect the message across
the network [51,57]. In IoT, authentication schemes, such as ECC-based and Fuzzy
extractor, are also enforced for authenticating the identity of IoT devices [58].

9. Cost of Storage/Memory: Protocols employ various kinds of schemes to implement
IoT authentication. One of the common strategies is a smart card. A smart card can
store some data, such as sensor information, login credentials, and gateway node
information [59,60]. To accomplish authentication, multiple protocols use various
functions for improving efficiency, and among them, one of the significant perfor-
mance metrics is the cost of storage/memory.

3.3.2. ML-Based AA Evaluation Metric

There are several performance metrics used to evaluate ML-based AA schemes, in-
cluding the metrics mentioned above. The following metrics can be used to evaluate ML
algorithms for enhancing the performance of ML-based AA schemes.

1. False Acceptance Rate (FAR): The ML-based AA technique may incorrectly recognize
the characteristic of deceivers based on the classification threshold preference. The
FAR is the threshold, which depends on falsely accepted characteristics, divided by
the number of all deceiver characteristics. It is also known as the false alarm rate. The
value will be between 0 and 1. When all the false characteristics are accepted as valid,
then the value will be “1”, and the value will be “0” if none of the wrong features are
considered valid [61]. Equation (7) presents the formula to calculate FAR.

FAR =
NFA
N

(7)

where NFA is the number of false acceptance cases and N is the number of attempts.
2. False Rejection Rate (FRR): If an overly high classification criterion is used for the

ratings, certain trends for individual characteristics are wrongly denied. Depending
on the threshold value, none or all characteristics are denied falsely. The false rejection
rate (FRR) is the number of rejected characteristics divided by the total number of
individual characteristics [62,63]. Equation (8) presents the formula to calculate FAR.

FAR =
NFR
N

(8)

where NFR is the number of false rejection cases and N is the number of attempts.
3. Equal Error Rate (EER): When the distribution of the similarity and dissimilarity

value of a pattern converges, FAR and FRR overlap. Picking an accurate threshold
value becomes an issue. The EER is named at this point, which will be the same for
all other characteristics [61,64].

4. False/True Positive: An actual result under which the model accurately forecasts the
positive feature vector is truly positive. Likewise, an actual result in which the model
wrongly forecasts the positive feature vector is a false positive [24].
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5. False/True Negative:: An actual result under which the algorithm forecasts the nega-
tive feature vector accurately is a true negative. On the other hand, false negative is a
concept in which the negative feature vector is falsely predicted as an outcome [24,64].

3.4. Techniques for AA

Authentication is a crucial prerequisite for IoT security. For accessing any IoT applica-
tions or entities, the receiver node must authenticate the participants. IoT applications and
utilities are typically focused on data interactions through different networks. The data
obtained from IoT systems are analyzed and then transferred through a decision-making
mechanism. Such mechanisms may differ based on IoT design, and the data flow in such
applications may be similar. For example, an application or a user needs some data from an
IoT device without loss of generality. In that case, The IoT device should authenticate the
sender node to the IoT network. The requester should be guaranteed access rights for the
data or the node required. The request for accessing such data or node is otherwise refused.
AA’s is of utmost importance in IoT networks due to their roles in controlling the trust
management level in the network and in preventing impostors claiming to be legitimate
IoT devices. Additionally, the exposure of sensitive information to IoT applications or
nodes must be revoked for all users after a specific inactivity duration. In this section, we
discuss various authentication mechanisms. Before discussing ML-based AA schemes, we
present various categories of AA found in the literature.

3.4.1. General IoT Authentication Schemes

IoT authentication security aims to identify and remove malicious nodes from the
network [5,65]. The authentication process is a primary phase to validate the identity of
the participating nodes in the IoT network. Even though only a few are considered to be
ML-based, most studies in the literature emphasize detecting malicious nodes. Due to
the scalability issue and the large number of things involved in exchanging sensitive data,
intelligent AA security management is needed to enable multiple authorization factors to
specific nodes.

Device-based authentication and authorization use client-side certificates stored on
the machine. Verification occurs during the TLS handshake. As part of the handshake,
the device sends its certificate, signed by a pre-configured signing authority. It sends the
signed information with its private key. At the end of the handshake, the device is verified,
and the client ID is removed from the certificate. For a machine, the customer ID may be
the machine identification number (MIN) which is vital for verification from the server.

Once the machine has been verified, the customer ID is known. The next step is to
determine the correct authorization groups. When connecting, a device can be part of a
permission group. For example, a device is a machine, so all connecting machines are
given the “machine” authorization group. It is possible to extract additional groups from
the certificate and client ID. For example, it is possible to extract different groups of MIN
from the machine. The mutual authentication of IoT systems is introduced in [66], which
is established for client–server communication using the lightweight Application Layer
Protocol CoAP (Constrained Application Protocol). Advanced encryption standard (AES)
benefits are used as a secure communication channel. Authentication takes place on client
and server challenges by encrypting the maximum payload size and interacting with the
control loads. Authentication is performed during a messaging interaction without using an
additional layer (DTLS), which increases communication and computing costs. The author
also considered the robustness of the authentication scheme and dynamic registration of
IoT nodes. Furthermore, average response time, handshake duration, and average memory
consumption are discussed to benchmark the performance of the scheme. Additionally,
the author showed attack tolerance to combat DoS-type attacks. The authors have not
considered privacy and have not discussed the pre-shared key at the provisioning stage.

In [67], researchers proposed a lightweight multi-factor authentication strategy. The
researchers utilized digital signature and device capacity for multi-factor authentication.
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The device capacity is similar to the resolved computational functionality of the device,
which can be a mathematical problem-solving challenge or even a primitive puzzle based
on cryptography. Moreover, authentication can utilize a strategy to authenticate both the
end node and the server node. It can ensure security for both the application layer and
physical layer. The end node sends a transmission request to the server through a protected
TLS channel. The server node then transmits a private key and an encrypted timestamp
message, which would prevent repetitive attack attempts. The end node decrypts the
signature, addresses the ciphertext by functional procedure, registers the result with its
personal key and returns them to the server node. The researchers also have explored
MITM attacks and replay attacks tolerance. Eventually, the server node validates the
signatures and the outcomes from the function during device authentication.

In [68], an Internet of Medical Things (IMT) authentication is proposed for devices
that use human physical capabilities to communicate securely. Biometric techniques have
been used for environments, while the analysis shows compatibility and safety, especially
smart health. The authors presented the requirements for an intelligent health environment
and discussed some of the open problems and challenges of biometric authentication.

A new authentication scheme for IoT systems has been proposed Bubbles-of-Trust by
the authors of [69] which is based on blockchain. This mechanism aims to create bubbles by
dividing devices into virtual zones to identify and trust each other through grouping. An
Ethereum public blockchain is then applied to control and approve the transaction between
devices. However, to validate a transaction, this consensus protocol takes a considerable
amount of time, which is not feasible for real-time applications. Moreover, the transaction
fee in the public blockchain is considered inefficient.

In [70], the lightweight two-factor authentication scheme is proposed to enable the
authentication of Internet systems integrated with the one-way hashing and XOR-ing in
the cloud computing environment. Registering, verifying, and updating the password are
steps in the authentication process. Moreover, costs and computational efficiency are also
considered and demonstrated in an environment where resources are minimal. However,
the cost of communication and the computation cost at the cloud are also higher and have
not considered the attacks, e.g., DoS and DDoS.

In [71], researchers proposed a rigorous assessment of WSN-supported IoT trust
models focused on various elements, such as interoperability and resource optimization.
The analysis found that neither of these models had (1) attempted to bring together data
fusion trust (DFT), communication trust (CT), and data perception trust (DPT) and (2)
met IoT security requirements. Therefore, it is essential to provide integrated trust pro-
tection to the platform. This model aims to evolve the resources as per IoT applications
authentication requirements.

In [72], the researchers proposed a method to manage the firewall rule that takes all
firewalls on the network route into account. As every network firewall is implemented,
anomalies between rules of the various firewalls may arise. The authors of [73] discover
and correct these erroneous configurations using a formal data structure method. The
process also allows optimization of simple firewall rule sets by elimination rules which
are no required anymore. Although the initial objectives are to detect the wrong internal
firewall configurations, it did not focus on resolving incorrect configurations in a dis-
tributed environment during the analysis and verification of other network components
security configurations. The researchers of [74] identified attack patterns and ML for IoT
security techniques, including IoT user authentication, malware detection, role-based ac-
cess control, and secure downloading. It addresses several challenges in implementing
security techniques for real IoT systems using ML, such as partial observation of the states,
computational overhead and communication overhead, and backup security solutions.

Although only 20% of access control methods currently use trust assessments, ac-
cording to the researchers of [75], it is still a promising security mechanism because of its
ability to calculate node dynamic trust value. The process helps the trust rating of each
node to be measured gradually. Moreover, the authors of [76] proposed using ML as an
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intelligent trust assessment to mitigate an on-off attack during authentication that would
threaten the node’s trust value. Additionally, security protection should introduce apparent
authentication vulnerability, such as compromised node attacks. The researchers claim
in [77] that TBAC (trust-based access control) reliable access-control computing on IoT
networks is still relatively recent but widely deployed in commercial applications. The
authors of [78] also suggested a control scheme that supports multidimensional reliability
properties utilizing trust and IoT reputations. The trust assessment is centralized just as in
other work owing to the resource constraints of the devices.

In [79], the researchers used PKI benefits by using X.509 digital certificates To ensure
secure authentication among devices within IoT systems. For device identification and
device integrity, such a certificate can be used. But analysis of security and the requirements
of scalability for PKI-based IoT systems are not considered. The authors of [80] implied a
new easy authentication protocol that uses physically unclonable function (PUF)-based
RFID tags, where the steps consist of tag recognition, validation, and updating. Mostly,
the tag is recognized by the reader. Second, the reader and the label mutually verify
authenticity. Finally, the most recently used password is updated for the next confirmation.
However, the authors have not considered it in various environments.

Datagram Transport Layer Security (DTLS) protocol allows the client-server appli-
cation to communicate securely over Transport Layer Security (TLS) protocol [81], while
TLS deals with the information forging, altering, and fragmentation [82]. DTLS deals with
re-ordering packets, loss, and size of the datagram without considering Denial of Service
(DoS) attacks. Authors in [50] proposed Enhanced Lightweight DTLS for the Internet of
Things (E-Lithe). The communication starts with sharing a pre-shared key between the
server and the trusted third party (TTP). In the next step, the TTP shared a mutual key
with the client, which allows the client to communicate securely with the server. After
this phase, a handshake request from the client takes place with the server. The server
validates the mutual authentication key. In the last phase of authentication, the server trans-
mits a Hello message to continue communication securely if the key matches. Otherwise,
the communication has been terminated by the server for further communication. The
E-Lithe scheme uses NHC (next header compression) and IPHC (IP header compression)
as compression schemes. Despite the benefits of decreasing DoS attacks and computational
overhead compared to other Lithe and DTLS methods, the multiple create requests and
multiple handshake requests from multiple requesters can cause drainage problems as it
needs to control numerous computations.

In [83], the researchers proposed a hardware-driven authentication scheme for clas-
sical RFID tags for anonymous authentication of RFID systems. They then provided an
improved scheme for a noisy physical unclonable function environment. The main dis-
advantage of this scheme is that it did not consider the challenge-response pair (CRP)
server comments when an existing group is empty. New mutual authentication and key
management for WSN systems based on a biometric and symmetric cryptographic system
in presented in [84]. The authors used BAN logic for the exactness of the mutual authenti-
cation and AVISPA tools to validate computational and communication costs. Moreover,
the security risks, requirements, and functional attributes are compared with the other
system considered in the literature.

Table 2 represents the benefits and limitations of the selected authentication schemes
and Table 3 summarizes the recent studies on authentication model obtained in the litera-
ture. Moreover, Table 4 summarizes the performance metrics and attacks considered in the
literature. It can be observed that all the authentication schemes for IoT are implemented
across the layers are not hybrid and triple-way procedural. However, less research has been
done for the single-way procedural method, while most authentication schemes focused
only on the encryption-based schemes.
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Table 2. Benefit(s) and Limitations of General Authentication schemes.

References Benefit(s) Limitation(s)

Jan et al. [66]
A centralized lightweight key-based
Authentication scheme over CoAP. Able to detect
DoS and eavesdropping attack.

Require more than four message exchange before
establishing communication. Moreover, the
end-to-end delay is not considered for
benchmarking the performance, and it is not
sufficient to tackle Sybil, MiTM, node capturing,
and flooding attack.

Hamidi et al. [68]
A heterogeneous biometric authentication
system that considered privacy profiling and
tracking over the application layer.

Attacks are not considered, and performance
metrics have not been properly considered for
benchmarking. Moreover, the analysis of results
is not adequately shown.

Zhou et al. [70]

A lightweight two-factor authentication scheme
using RFID tag with the one-way hashing and
XOR-ing in the cloud computing environment.
Moreover, costs and computational efficiency are
also considered and demonstrated for the
low-resource environment.

The cost of communication and the computation
cost at the cloud are higher. Moreover, the
attacks are not considered during authentication.

Karthikeyan et al. [79]
A lightweight, energy-efficient authentication
scheme for a centralized IoT environment using
X.509 PKI certificates is presented.

The practical analysis of security and scalability
requirements for PKI-based IoT authentication
systems are not considered. Moreover, attacks
are not considered, and performance metrics
have not considered properly for benchmarking.

Gope et al. [83]

A scalable, lightweight Authentication scheme
with privacy profiling and tracking for IoT
application layer is presented. A PUF key is
shared as security credentials and provide
tolerance against DoS and eavesdropping attacks.
Moreover, the cost of communication and
storage is minimal.

The end-to-end delay is not considered for
benchmarking the performance, and it is not
sufficient to tackle Sybil, MiTM, node capturing,
and flooding attack.

Alizai et al. [67]

A lightweight multi-factor authentication using
digital signature and device capacity is
presented. It can be utilized to authenticate both
the end node and the server node from the
application layer and physical layer perspective.
Able to defence against MITM attacks and
replay attacks.

The server node validates the signatures and the
outcomes from the function during device
authentication. At the same time, DoS/DDoS,
Sybil attacks can take advantage, and
considerable performance metrics are not
discussed.

Hammi et al. [69]

A blockchain-driven new authentication scheme
for IoT systems aims to create bubbles by
dividing devices into virtual zones to identify
and trust each other through grouping.

To validate a transaction, this consensus protocol
takes a considerable amount of time which is not
feasible for real-time applications. Moreover, the
transaction fee in the public blockchain is
considered to be inefficient.

Haroon et al. [50]

An enhanced lightweight authentication scheme
over DTLS by sharing a pre-shared key between
the server and the trusted third party (TTP) is
discussed. It uses NHC and IPHC as
compression schemes. As a result, it decreases
DoS attack and computational overhead.

Despite the benefits of reducing DoS attacks and
computational overhead compared to other Lithe
and DTLS methods, the multiple create requests
and multiple handshake requests from various
requesters can cause drainage problems, as it
needs to control numerous computations.
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Table 3. Summary of Recent Studies on General IoT Authentication Schemes.

Reference [66] [68] [70] [79] [83] [67] [69] [50]

Requirement

Lightweightness X X X X X X
Privacy Profiling and Tracking X X X
Heterogeneity X X
High Availability X
Dynamic Registration X X
Scalability X X
Fault Tolerance X X X X X
Early Detection of Attacks X
Resilience and robustness X X X X
Energy-Efficiency X X X
Deployment Flexibility

Layer

Application X X X X X X
Network X
Physical X X
Perception

Token
User Credentials X X
Key X X X X X

Procedural

Single X
Dual X X X X
Triple

Characteristics
Centralized X X X X X X
Distributed X X

HW-driven X X
Certificate-driven X
Blockchain-driven X

Table 4. Summary of Recent Studies on General IoT Authentication Schemes Performance metrics and Attacks.

Reference [66] [68] [70] [79] [83] [67] [69] [50]

Evaluation metrics

Average Response Time X X X
Handshake duration X X
Average memory consumption X
End-to-End delay
Impact on Throughput
Ratio of Packet delivery X
Cost of communication X X
Cost of computation X
Cost of storage/memory X X
Energy-Consumption X X X

Attacks

DoS/DDoS X X X X
MiTM X
Spoofing X
Sybil X
Off-Line Guessing X X
Forgery X X
On-Off X
Eavesdropping X X

3.4.2. Ml Based Authentication Schemes

Available security techniques cannot be used in the IoT physical (PHY)-layer due to
the resource and scalability constraint. Intelligent AA schemes must be flexible and robust
enough to manage the large number of nodes involved in the IoT network. The techniques
for PHY-layer authentication using spatial correlation of wireless channel characteristics,
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such as received signal strength indicators (RSSI), channel impulsion response (CIR),
channel state information (CSI), and media access control (MAC) address, can provide
lightweight security mechanism for IoT devices. However, due to the dynamic nature of
the wireless channel, the first three parameters are characterized by spatial and temporal
distributions, making them hard to track. Intelligent ML-based AAs can continuously
learn and validate the ever-changing PHY-identity of the wireless node. For example,
in [62], hypotheses tests to equate the PHY-layer characteristics of the received data under
evaluation with the transmitted data is presented. The performance of authentication
depends on the threshold value of the hypothesis analysis. However, it is challenging for
an IoT system to select an acceptable threshold for the authentication evaluation model
because of the wireless environment and the uncertain spoofing structure. IoT systems
may often use RL techniques to determine major authentication parameters without being
aware of the network layer model by treating authentication like the Markov decision
process (MDP). Usually, authorization for IoT systems has been complex in heterogeneous
networks with a large number of nodes and multi-source data. The authors in [85] discussed
intrusion detection by different ML techniques such as SVM, K-NN, and neural networks.
In [86], the authors proposed a multi-variate analysis of correlations to extract geometric
correlations between network traffic elements for DoS attack detection. In contrast to
the closest triangular-zone neighbour solution utilizing the KDDCup99 datasets [87], this
scheme raises the detection accuracy by 3%.

In [62], the authors proposed a Q-learning authentication model with a constant
threshold by considering the RSSI signals. The proposed method allows an IoT device to
achieve an optimum experimental threshold and improve the utility and the authentication
accuracy. However, IoT nodes such as outdoor sensors have limited resources and compu-
tational limitations, which usually degrades IoT system performance for network security
anomalies. ML algorithms aim to develop lightweight authorization protocols to save
resources and improve IoT system lifespan. In [88], the authors developed a deviational
detection system based on a K-NN to address the unmonitored deviation detection prob-
lem in wireless sensor networks and provide flexibility with reduced power consumption.
In comparison to the centralized frameworks, the proposed framework results in 61.4%
of energy.

In [61], the authors demonstrated better resistance to spoofing in IoT systems using
supervised ML techniques like DFW (Frank–Wolfe) and IAG (incremental aggregated
gradient). To simulate the scenario, the authors considered multiple sites, and each site
consists of multiple antennas. The RSSI received from multiple site marks utilized to reduce
the overall overhead of communication, improve the spoofing detection accuracy and the
average error rate of IAG authentication. The DFW saves communication overhead by
37.4%, while the IAG saves the computational overhead by 71.3% compared to the other
authentication schemes.

In [89], the authors implemented an unsupervised learning authentication approach
for nearby IoT devices without leaking location information from their devices. The
technique is based on a Bayesian non-parametric procedure IGMM (infinite Gaussian
mixture model) to calculate the RSSI and the duration between packets to identify spoofers
beyond the vicinity of low-frequency wireless signals. The proposed method improves the
rate of error detection in spoofing tests on Euclidean distance-based indoor authentication.
This scheme requires IoT devices to transmit the low-frequency signal features such as RSSI,
time of arrival of a packet, and MAC addresses internally to the low-frequency signals
received during a particular time frame. The nodes extract and transmit the low-frequency
signal characteristics to the legitimate recipient. When such authentication responses are
received, the recipient applies IGMM to start comparing the signal elements reported with
the actual signal features identified in the proximity-based experiments. The recipient
replies to IoT nodes with connectivity to IoT resources when authenticated.

IoT offloading must address PHY or MAC layer attacks such as jamming, fake edge
nodes, fake IoT nodes, eavesdropping, man-in-the-middle attacks, and smart attacks before
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deploying in any environment is necessary. Since the current status and offloading policy in
an IoT system is independent of the previous status and actions, the offloading strategy for
portable devices used by IoT nodes in repetitive games with interceptors and interference
sources can be perceived as a finite status. In diverse wireless settings, AA may use RL
strategies for the optimization of updating procedures. The node analyzes the signal to
interference plus noise ratio (SINR) of the frequencies received, the secrecy capability,
the residual offloading, and the offloading technique’s energy usage and forecasts the
usefulness. IoT node uses the greedy mechanism to select the offloading strategy to maxi-
mize Q-function and other policies, thereby ensuring reconciliation between exploration
and exploitation. This procedure limits the risk of spoofing and decreases the impact of
jamming relative benchmark as illustrated in [25]. The authors of [25] also illustrate a
model-free RL Q-learning technique for offloading, which is easy to implement and re-
quires less computational resources. It is also possible to choose its offloading throughput
to avoid jamming and spoofing attacks. With this approach, the IoT device estimates
the significance of the job, the obtained jamming force, the maximum throughput of the
wireless channel, the channel gain from the channel to construct its current status, and the
necessity for choosing a Q-function offloading strategy. The Q-function is the assumed
long-term discount rate reward for every execution-state pair and the previous offloading
information against jamming. The Q-function is modified in each time slot through the
iterative Bellman function to the current offloading strategy, the network status, and the
jamming tool obtained by IoT nodes.

In [90], the authors proposed a Q-learning-based anti-jamming approach, where a
node can choose a wireless channel to access the cloud or edge device without knowing
IoT systems interference or jamming framework. IoT node monitors the center frequency
and wireless bandwidth of each channel. It selects the optimal offload channel according
to its current state, Q-function and perceived state. When the IoT node receives the compu-
tational assessment, the usefulness is calculated, and the Q-function values are modified.
The average cumulative reward is higher than the other random channel selection strategy.
The Q-learning method also allows IoT systems to achieve the best wireless spectrum
frequency sub-band for jamming and other network equipment disturbance. As shown
in [91], the IoT device monitors the spectrum occupancy to represent the status and selects
it as a selection policy.

In [92], the authors proposed a smart user authentication technique illustrated by
the simulation result that the enhancement of authentication accuracy using deep neural
networks (DNN). The main limitation of such kind of application requires more compu-
tational and memory resources. The process starts with extracting CSI features from the
requester’s signals and then uses DNN to detect spoofing type attacks. Furthermore, the
DNN-based spoofing detection scheme accuracy is above 94.5%, while the accuracy for
user identification is approximately 93%. The authors of [93] proposed a DQN based
two-dimensional anti-jamming transmission, which would allow the specified frequency
channel to be selected, speed of learning for IoT devices with sufficient calculation and
memory resources. This scheme uses the convolution neural network to suppress the
space in a dynamic IoT system with large-scale networks, thus enhancing the SINRs of
received signals with many IoT nodes and jamming strategies. However, in contrast to the
Q-Learning method for offloading across jamming, this system saves more than half of
the time. In [94], the authors proposed a Q-learning game-theoretic method to detect DoS
attacks in IoT using SINR. The outcome shows that the learning and detection accuracy
against the powerful attacker are higher.

IoT nodes may use supervised ML techniques such as KNN to evaluate runtime
behaviours for malware detection. As defined by [88], and IoT node uses KNN and
random forest classification tools to create malware features extractor. The IoT devices
filter the TCP packets, select features from a number and length of the frame, and store
them in the database, among various networking features. IoT nodes may also move code
monitors to a protected server or edge systems for malware perception with repositories of
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software, higher processing rates, increased memory, and better protection services. But
the authors [24] have suggested RL techniques that can be used to ensure the optimum
offloading strategy for an IoT node without knowing about the malware framework and
app generation framework in the dynamic malware detection game. It makes use of Q-
learning for the optimum offloading rate for mobile devices without understanding the
trace generation of the adjacent IoT nodes and their wireless bandwidth models. IoT nodes
divide the environment into several zones in real-time and monitor the user density and
the bandwidth of the wireless channels to formulate the existing state. In this time frame,
the IoT node estimates the precision benefit, latency detection, and energy consumption
of the utility. The authors proposed the Dyna-Q malware identification method in [24]
that uses the Dyna framework to learn and identify the best offload approach. To improve
learning performances, both the real experience and the simulated experiences generated
by Dyna architecture are used.

Table 5 summarizes the benefits and limitations of different ML algorithms used in
the literature along with their performance accuracy and Table 6 summarizes the recent
research on ML-driven authentication schemes obtained from the literature. There are no
standardized performance metrics used as they vary across different layers. Furthermore,
none of the proposed schemes addresses mitigating all types of attacks, indicating the
difficulty in introducing robust design across different attack models. Time taken for au-
thentication is one of the most important performance parameters which is not considered
in the literature. Furthermore, RL is one of the most promising algorithms to solve the
listed AA attacks in different layers obtained from the literature.

Table 5. Benefits with Performance Accuracy and Limitations of different ML algorithms.

Techniques Benefit(s) with Performance Accuracy Limitations(s)

Q-Learning [24,25,62,90,91,94]

Able to detect Jamming, Spoofing,
Eavesdropping, DoS/DDoS, Malware attacks
using optimal authentication threshold while
the mis-detection of spoofing minimized by
61.72% and false positive by 93.33%.

Classfication Accuracy, Miss-detection,
False/True Positive, False/True Negative
has not analyzed. Morever DoS/DDoS,
Jamming and Malware attacks have not
been formulated.

KNN [88] Detects Intrusion attacks. Accuracy has not
been specified.

FAR, FRR, EER, False/True Positive,
False/True Negative have not analyzed.
Moreover, only designed to detect
intrusion from sequential request.

SVM [63,95]
Detects Intrusion attack and also able to
classify Spoofing attack. Accuracy has not
been specified.

Only algorithms, strategies, and
application discussed with limited
analysis on spoofing.

Naïve Bayes [95] Detects Intrusion attack. Accuracy has not
been specified.

Dyna-Q [24,62]

Detects Intrusion attack. Moreover, the
mis-detection rate of Dyna-Q is 6.9% lower
and false positive rate is 5% lower
than Q-Learning.

The applications are Limited to Malware
Attack only.

DQN [93] Detects Jamming attack. Accuracy has not
been specified.

The attack design Limited to Jamming
without analyzing FAR, FRR, EER,
False/True Positive, False/True
Negative metrics.

DNN [92]
Detects Spoofing attack with accuracy more
than 94.5% and user identification accuracy
is 93%.

No considerations on low-resource
devices and limited to WiFi
enabled devices.

Distributed Frank Wolfe [61] Detects Spoofing attack and saves
communication overhead by 37.4%.

DoS/DDoS, Eavesdropping attacks have
not been considered to be formulated.

Incremental Aggregated function [61] Detects Spoofing attack and saves the
computational overhead by 71.3%.

DoS/DDoS, Eavesdropping attacks have
not been considered to be formulated.
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Table 6. Summary of Recent Studies on Machine learning approaches for Authentication with Performance.
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Performance Metric

Detection Accuracy X X X X X X X X X X X X
Root Mean Error X X X X X
Energy Consumption X X X
SINR X X X
Average Error X X X X X X
Classification Accuracy X X X X X X X X X X
False Alarm X X X X X X X
Miss-Detection X X X X X X
False/True Positive X
False/True Negative X
Detection Latency X
Proximity latency X X
Data Secrecy X X

Attacks

DoS X X
Jamming X X X
Spoofing X X X X X X
Intrusion X X X
Malware X
Eavesdropping X X

3.4.3. General IoT Authorization Schemes

IoT authorization schemes are dependent on node characteristics such as attribute,
role, and capability. Access rules can be specified by different attributes, such as topic
characteristics, object characteristics, environment characteristics within the attribute-based
access control (ABAC). Static components, including users, responsibilities, passwords,
requirements, and devices, are used in the role-based access control (RBAC). There are
several interactions between these components. Mining the relationship is also one of
RBAC’s key activities. Capability-based access control (CapBAC) always creates a lookup
table to search for capabilities in functions and resources permission of every domain, such
as a token and key. The exact individual has limited access privileges in different domains.
Therefore, the physical aspects of the products, such as biometrics or system product ID
become the main focus. However, the RBAC and ABAC authorization schemes do not
provide the benefits for the distributed networks with multiple interactions, complexity,
and dynamic scalability of IoT specifications, with adequate management and effectivity. A
similar challenge to access control lists (ACL), the concept of least privilege is challenging
to implement in RBAC and ABAC systems.

1. Attribute-Based Model In the ABAC-based model, the object and the subject are both
defined by the attributes function [96]. The client is given a suitable right of access in
the ABAC model in compliance with his characteristics. Recent studies mainly con-
centrated on maintaining user privacy because attributes could include user private
information whose leaking significantly hinders ABAC expansion. In [97] the authors
introduced a privacy-preserving attribute-based access control (P-ABAC) scheme
to avoid data leakage. In P-ABAC user-side manages the critical attributes with
homomorphic encoding. With the assistance of stable ciphertext-based homomorphic
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multi-party computational encoding techniques, the authorization mechanism can
also make error-free decisions about access by the received attribute without any
knowledge about privacy.

2. Role-Based Model The role-based access control (RBAC) offers system permissions
that stipulate access for the users to services depending on individual roles and
encourages security principles, such as task separation, administrative segregation
of administrative roles, and fewer privileges. When the tools extend or access rules
span multiple administrative realms, the RBAC model alone has a function eruption
dilemma. A service-based RBAC model will be able to run in more IoT scenarios.
Moreover, an expanded RBAC model using contextual knowledge, which can be used
in detail as constraints to achieve a more scalable, modular, and lightweight access
control mechanism. In [98], Barka et al. recommended that RBAC be implemented in
smart entities across the Internet as a Web of Things (WoTs) access control mechanism.
The organizational role-based access control (ORBAC) model is an extension of the
RBAC model. It introduces a new dimension to the concept of “organization”. In
the trust-ORBAC model, the ORBAC model uses the concept of trust management.
Trust-ORBAC defines two dynamic thrust vectors, one for the organization and the
other for users with various parameters. Moreover, the Tr-ORBAC model in which
trust is embedded to improve the cooperation of various organizations and avoid
malicious behaviour. In the SmartOrBAC scheme, the problem is grouped into smaller
functional layers. SmartOrBAC distributes the processing costs between restricted
and less restricted equipment to ensure that some users can access data in advance in
the context of the task/action plan by restricting access to confidential information
beyond the control of the system administrator. In [99], Guesmia et al. suggested
an expansion of the OrBAC paradigm with a non-monotonic logic of the temporal
representation. This logic may be a centralized plan to reflect the policies formally.
The schedule contains a variety of assignments ordered, and in specific situations,
make exceptions. The proposed OrBAC model can dynamically evaluate the required
action sequence according to the data environment patterns while the access request
is generated.
In [100], the authors proposed a framework of access control and verification schemes
based on location-controlled functions named location-constrained roles-based access
control (LCRBAC). The authors describe cyberspace and physical space as a static
topology for the LCRBAC scheme by describing cyber objects and physical object
dynamic behaviors. The proposed scheme is often focused on the verification findings
on a labeled transfer device to allow cyber-physical experiences via the reaction policy
and principle.

3. Capability Based Model In capability-based access control (CapBAC), users provide
access through an authorization sequence and token (such as authorization key, ser-
vice ticket). Identity management is not a key function that offers tremendous benefits,
especially where clients can access interdisciplinary scenarios. The comparison be-
tween ACL and CapBAC is that access control depends on the central server in the
ACL model. On the other hand, the CapBAC model has leaves access management
responsibility to the client. The BlendCAC concept, which is a decentralized CapBAC
blockchain operating model, was proposed by Ronghua Xu [101]. A clear identity-
based token management approach for access control, which uses a clever contract
to register, spread, and revoke the authorization, is proposed within the BlendCAC
model. In a cloud-based authentication scheme, users can access IoT services and
command multiple smart ubiquitous environments through IoT cloud. In the case
of large IoT schemes, Xu et al. [102] introduced the Federated CapBAC Mechanism
(FedCAC), which is a token management approach focused on the identification that
requires registration, dissemination, and revocation of the entry.
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3.4.4. Ml-Based Authorization Schemes

For several research conflicts and resolutions, policy developers are expected to
contribute to the policy’s arbitrary and versatile modification manually. Furthermore, there
is no successful method for identifying conflicts of interest and managing policy for IoT
services authorization in the current world of coexisting security conflicts. Researchers are
attempting to use ML-based techniques to build semi-automated authorization schemes.
In [103], the authors formulate the mutual intrusion detection system as an evolutionary
game-theory model. The model offers a solution to help nodes determine whether or not
to take part in the detection. The intrusion detection scheme will resolve issues in which
mutual nodes do not fully know other nodes.

In [104], the authors represent a scheme for resolving disputes between IoT-based
services by redefining conflict resolution as a planning problem. They establish a se-
mantic policy structure for IoT-based conflict identification and allow soft constraints
to settle conflicts resulting from multiple services. In [105], the authors perform a de-
tailed survey of current frameworks and systems of access management applied to shared
community-centered systems. As the authors suggested, authorization schemes should
promote easy-to-use semi-automated dispute resolution procedures and cohesively permit
straightforward data processing in the event of contradictions rather than implementing
blanket policies. The authors in [106] implemented authorization schemes based on the
multi-layer perceptron (MLP). It uses the two neural networks on the hidden layer to train
the MLP connection weights and compute the suspicion that an IoT device suffers from
DoS attacks. This scheme utilizes back-propagation (BP) for the retrospective estimation
and error BP and particle swarm optimization (PSO) as a reproductive adaptation for
measuring the link weights of the MLP using particles with variable frequencies. IoT
device is tested to shut down the MAC layer and the PHY layer for the conservation of
energy and increase network life by exceeding the threshold for the output of MLP.

3.5. Characteristics of IoT AA Schemes
3.5.1. Centralized AA

The central entity is often referred to as a trusted third party in centralized AA schemes.
It is involved in interaction that collects, stores, computes, monitors, and distributes each
network entity authentication factor (value). The PKI-based SSL/TLS is among the most
frequently used authentication scheme using a centralized CA. While PKI has several
trustworthy certificate authorities (CA), the AA scheme is still centralized and can cause a
bottleneck in a highly dynamic and heterogeneous IoT environment.

One of the predecessors of IoT, the wireless sensor network (WSNs), has its own
security services. Many WSNs use a comprehensive network central server to manage
sensor nodes operated by low-powered batteries. A gateway/edge node also acts as a
root of trust for perception nodes, specifically as a large distribution unit. Sensor Network
Encryption Protocol (SNEP) is an example of Security Protocols for Sensor Networks
(SPINS) in a typical case. Throughout SNEP, any node with its edge node shares a hidden
key named the master key. Additional keys are extracted from a unified authority master
key between perception nodes.

In [107], the authors proposed a cross-domain and locally organized robust distributed
trust management (RobustTrust) authentication system. The trust has 3 security compo-
nents that assist with the use of the expert knowledge-based framework to enhance security
system efficiency by evaluating trust on every node to combat compromised and mali-
cious devices/nodes. In addition, the node may share the knowledge of the distributed
trust assessment with one specific node. The trust parameter evaluation consists of the
acquisition of information about the other nodes (based on compatibility, integrity, and
response), credibility assessment (based on honesty, consistency, and cooperativeness) and
node interaction (based on competency, suggestion, and trustworthiness). However, node
vulnerability and the trust management strategy in the cross-domain environment are not
assessed in terms of security.



Sensors 2021, 21, 5122 24 of 34

In [108], the researchers proposed a holistic cross-domain trust management model
(HoliTrust). It is a multilevel and centrally managed security concept for authorization that
considers cross-domain node-to-node communication aspects and cross-domain trust man-
agement significance neglected in previous studies. The HoliTrust system was developed
by segregating domains into communities where each community has its dedicated server
to calculate trust level, based on the similarities and interests of the request to provide
security to communities. The trust-level is computed by combining trust values from dif-
ferent servers (community-based servers, domain-based servers, and trust-based servers).
At the same time, it is not allowed to communicate the community-based servers across
domains. The community-based server helps the computation of trust by considering the
information of a particular domain while an interaction is taking place among a node and
its domain. If any of the nodes are compromised by malicious activity, others will not be
affected. However, the HoliTrust Model is theoretical, making it challenging to understand
the performance of the model and its effectiveness.

3.5.2. Distributed AA

Distributed AA schemes can solve the centralised AA schemes shortcomings. There is
no central entity in distributed environments and the participants work together to develop
relation based on mutual interactions. Each entity evaluates and distributes trust expertise
to particular nodes autonomously.

The Localized Encryption and Authentication Protocol (LEAP+) employs GWN as a
security layer for WSNs focusing on distributed trust systems. Its existence, however, is
restricted to particular tasks such as [109] node activation. The sensor nodes work with
neighbouring nodes to build and maintain core similarities. The resemblances allow LEAP+
to minimize the overall control of a given point and the overhead connectivity of direct
communication between a sensor node and a neighbouring node.

In [110], Ruidong et al. proposed a distributed AA Scheme to allow distributed
authorization by using Identity-based Signature for distributed identities verification
of the publishing nodes and by using a Ciphertext Policy in the ABAC model. The
framework proposed by the authors has three main stages, initializing, publishing date
securely, and retrieval of data securely, which seamlessly integrates authentication and
authorization into the cloud. As per the experimental findings, the proposed scheme
achieved lower bandwidth costs than the existing systems. Likewise, in [111], the authors
illustrate in EDTM (Efficient Distributed Trust Model) for authentication to investigate
trust and relationship between nodes or systems by considering only the behaviour for
AA was not sufficient. Correspondingly, the authors of [112] have developed a preventive
maintenance approach for IoT devices, which was presented as a self-directed learning data
acquisition unit during the ML algorithm execution. The systematic approach focuses on
risks that enable the tracking device to lose data or knowledge. These monitoring methods
are also used for various actuators as a virtual system. However, the Bubbles of Trust
in [69] also convey the distributed characteristics of IoT authentication.

Generally, distributed AA schemes are more reliable than centralized AA schemes.
The authentication and authorization costs may be allocated to participants to increase
scalability. Yet, distributed systems are more prone to collusion. The control and analysis
of the network become more complicated, and overhead for specific nodes appears to be
greater than that in centralized schemes.

From the AA schemes literature review, it has been seen that there is a considerable
lack of research for IoT authentication and authorization. However, there is very little AA
research conducted based on ML. As the number of IoT nodes increases rapidly, and new
unknown threats and attacks will also increase. Therefore, the various security issues need
to be resolved as quickly as possible before they can cause any significant damage. ML is
promising to solve already known and unknown threats by a learning process. ML-driven
schemes can solve several issues of AA to enhance IoT security.
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4. Open Issues, Challenges, and Future Directions

IoT is considered (a) very complex, with rapid and repetitive shifts in the security
specifications of network entities; (b) extremely heterogeneous, with various forms and
attributes of network entities. Therefore, various issues need to be addressed before ML-
based AA can incorporate into IoT to improve security. A wide variety of encryption
methods such as hash key, XOR-based encryption, Elliptic-curve cryptography (ECC) use
of a smart card, and biometric technologies are used for a AA process. The purpose of any
newly developed AA scheme is to be lightweight and defend IoT nodes from attacks by
considering the low processing power factor and the limited space in IoT devices. Since
the utilization of IoT devices is rapidly increasing, robust authentication and authorization
schemes are needed for individual devices and their services. However, most ML-based
Authentication and Authorization schemes have not considered essential requirements for
authenticating and authorizing IoT nodes. Hence, the following sections address various
concerns and challenges with future research directions for AA related to IoT for the future.

• Resource Constraint and Robustness of Authentication Protocols: Sensors are the
end nodes that are limited in resources (limited battery capacity, processing resources).
The protocols need to be lightweight and move between resource usage and safety.
Moreover, the structure for IoT authentication mechanisms, especially for resource-
restricted and the environment of IoT framework, should take into account low
computation costs. This reinforces the need for the creation of authentication systems
to implement lightweight encryption algorithms and conventions. The authentica-
tion protocols must have robustness against potential attacks, including Sybil, node
capture, interpret, identification of passwords, message breaches, brute forces, broker,
protection, collision, and text selection.

• Authorization for Each Service: User identities are used to access one or more ser-
vices, but some of these identities can only be used by a specific service. Therefore, a
scheme must provide a mechanism to access the device, depending on the different
services that claim to access and use identity data. Thus, user information exchange
between different system services is not allowed or should follow the authorization
policy of individual services.

• Datasets Unavailability: Powerful ML-driven schemes required massive datasets.
The performance of different ML algorithms must be evaluated and compared by
credible datasets from actual physical environments. The data include personal and
vital details that distinguish the individuals and their actions and personality. For
example, body area networks (BAN) and other IoT technologies can violate consumer
privacy, and smart home data can reveal personal actions and behaviours. It is
therefore vital for developers not to jeopardize consumer safety by the data used by
ML-driven techniques. To date, the anonymity methods must need to be considered
before it is used for analytics as the demonstration showed that the techniques for
anonymity are hacked. Training models may be jeopardized by inserting fake data. It
may be difficult to gather data while protecting privacy and confidentiality. Questions
like how ML algorithms should be implemented, and which degree of privacy ML
algorithms can uphold need to be answered. Therefore, it is important to examine
data security and user privacy conservation techniques in ML-driven analytics for
IoT networks. Actual IoT scenarios cannot completely be encompassed in the data
produced by simulations. Production of synthetic data can become quite costly for
computing and training.

• Sharing Information to Reduce Overhead: The overhead of authentication protocols
is a key factor in communication, particularly in resource-restricted devices. Fewer
messages should be shared between communication partners. Owing to the limited
capacity of IoT devices, the volume of the message should be as low as possible.

• Trust Relationship among Services: IoT security system needs to be flexible as it has
to support multiple nodes and attach additional nodes. All three layers of the IoT sys-
tem (application, communication, and perception layer) will provide authentication
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service. The user can have and use different identities to access more IoT services.
Therefore, the AA must introduce devices in the authentication phase using a precise
selection of identities automatically or semi-automatically. The trust management
scheme must manage multiple relationships to select the identities required in the
context of access to the service. Therefore, the challenge of authenticating multiple
shared devices is expressed by a single user who uses more than one service at a time.
The problem can be solved by SSO in SAML, OAuth, etc. The use of devices shared
by different users is another important aspect. It is currently addressed through the
so-called “sandbox” techniques to differentiate users in the IoT environment. A D2D
authentication function is represented as the authentication of multiple devices in
an IoT network. An application user device can access all its devices and individual
services after performing initial authentication on a single device and authorized
access services through trust relationships among related devices. Access to a con-
nected device will allow the collection of contextual metadata and sensor node data
in centralized services management.

• Easy, Time & Location Driven Authentication: Throughout the design of IoT authen-
tication frameworks that enable several applications to be accessed from one single
sign-on mechanism and thus minimize user interface repetition, the complexity of the
application throughout IoT networks must be addressed. Nevertheless, the machine
must learn about the ownership of the device and the operator to whom it is linked
to enabling efficient contact with this program. Alternatively, it is necessary to reply
promptly to the sender, as authentication needs to emerge on time. Protocols often
use timestamps and session keys to secure them from attacks. However, the physical
context, such as the device’s physical information, temperature, location, behavioural
analysis of IoT node, etc., should also need to be considered in developing Context-
Aware ML-based AA schemes. Context-awareness in ML-based AA can provide a
more robust authentication and authorization and defend against attacks by using the
context as AA factor have been discussed in [113]. Moreover, IoT security should rely
on centralized and distributed characteristics that consider timing.

• New & Strong Authentication Schemes: Researchers use XOR-ing and hashing al-
gorithms to render the authentication protocol lightweight. Additionally, protocols
require numerous guarantees to maintain authenticated data retention. There are
also other opportunities to implement modern authentication methods based on ML.
The open issues in IoT security are quantum computation, quantum bit interaction,
and quantum cryptography. Considering the attacks in IoT networks are massive,
especially at the first step in network access, specific network packets are critical for
that device efficiency through their behaviour. Therefore, it is necessary to establish
trust in each node to protect the IoT network from all possible attacks using a robust
ML-based authentication protocol.

• Anonymity: Anonymity is a significant issue in IoT due to extensive data sharing.
An attacker may target the IoT network to collect details regarding IoT nodes, which
would reveal critical information, e.g., medical records. Alternatively, an attacker
can track down a user or object’s location and harm the devices or device properties,
especially in a mobile network. Future work may focus on data anonymization and
develop an IoT security process, which illustrates transparency.

As from the literature, none of the reviewed schemes is cross-layered to fit under the
scope of the Cyber-Physical domain for IoT. There is an urgent need for such authentication
schemes to mitigate attacks across different IoT architecture layers where IT and OT overlap,
blurring the line for defining AA schemes. ML algorithms such as RL and adversarial ML
are the most promising algorithms that can defend against dynamic threats and attacks
without changing or customizing IoT AA functions or human intervention.

• RL for AA: The AA frameworks incorporate artificial learning techniques, such as
enhancement of learning and game theory, for understanding and identifying hostile
actors through initialization and connectivity, and taking choices regarding protection
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with greater consistency in a complex operational environment. The operating envi-
ronment dynamics guarantee different policies (or collections of activities) to optimize
node access in every IoT setting. The Markov decision-making processes (MDPs)
initially established RL. An agent in RL explores how their behaviors impact the world
through trial and error. RL aims to produce long-term outcomes that can be used to
answer increasingly technical problems that traditional methods do not address. It is
the best option where no training databases are accessible, and learning is done by
practice and external contact. In a static stochastic framework, the RL enables a single
entity to learn a strategy that maximizes possible late rewards. However, as many
agents implement the information sharing process in a collaborative context, it may
go beyond the MDP pattern. The optimal strategy in these structures is based not just
on the context but also on the other actor’s policies. In this particular instance, game
theory is widely used.
Nevertheless, RL is afflicted by a dimensionality constraint, and its use in the actual
physical environment is constrained. RL also needs data to learn from experience and
requires significant computing resources. It is combined with other ML strategies such
as Deep Reinforcement Learning (DRL) to address RL shortcomings. In comparison,
given the limited amount of data accessible, both RL and DRL algorithms can do better
in AA than most ML algorithms. Moreover, the RL can learn from the environment,
which will forward the RL-based AA schemes to fight against current threats and
upcoming threats.
Similarly, malicious nodes may also implement ML methods and initiate attacks
during the initialization of the AA process. Thus, in the IoT environment, further
studies are needed to be anticipated into the usage of ML in the AA framework and
in resolving ML-based attacks.

• Adversarial ML: Most of the ML algorithms are subject to adverse attacks irrespec-
tive of the category of the algorithm utilized. The more general inconsistency be-
tween an intruder and a protector, an ML-led scheme is designed to protect from
attacks [114]. Nonetheless, all schemes are susceptible to both observational and
cause-effective attacks.
The intruder can affect the ML algorithms training or testing by altering data or
a pattern. An intruder applies reverse engineering primarily based on a scheme
identification and then exploiting it to avoid detection. Both of these cases can also be
launched for IoT protection at the same time. In general, ML-driven schemes involving
retraining the scheme very frequently or require the latest data are often more likely
to be targeted in these categories. For example, the ML framework dataset can be
rendered to various outcomes by slight modifications (e.g., adding a minimal quantity
of noise while maintaining the data identified with the actual PHY-Layer signal).
Furthermore, it remains vital to build resilient, robust, and reliable ML-driven schemes
to cope with complex attacks by intelligent opponents. Adversarial ML analysis
requires further attempts to track by adversaries and malware skipping attacks. ML-
driven AA systems are prone to attacks of poisoning. An attacker could inject mali-
cious information into an ML training dataset. The learning process is badly impaired
in this situation. Therefore, a weak paradigm is enlightened with the learning process.
It should be remembered that collusion attacks can be used as an initial step before
malware skipping attacks are later initiated. There is also a gap that an intruder might
manipulate with the training. An intruder can particularly abuse the vulnerability
of different underlying ML algorithms. To illustrate, an Intruder might generate
malicious information throughout a malware skipping attack, which purposely causes
system errors in the ML algorithm.
As a result, these attacks make the system vulnerable in scenarios such as (a) when
initial data filtration process is unsuccessful, the intruder may utilize the data which
vary considerably from the actual data which will generate the unpredictable actions
by ML algorithms; and (b) where the data needed to train the scheme are not always
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adequate for the function underlying an ML-driven scheme to achieve the ideal
learning process [115].

5. Conclusions

IoT is proliferating rapidly in different areas. This raises serious concerns on the secu-
rity of the IoT devices due to recent attacks on the IoT network, showing how vulnerable
are IoT networks. If not secured appropriately, IoT networks can increase the vulnerabilities
in the existing IoT network and seriously threaten end-users. The shortcomings can be
minimized based on a comprehensive analysis of IoT networks in terms of authentication
and authorization and their threats as traditional and new methods change and improve.

This review provided a comprehensive review and proposed a detailed taxonomy
of AA in IoT networks. Based on the taxonomy, we discussed various aspects of AA
with general and ML-driven techniques to analyze how AA can improve IoT ecosystem
security and identify potential research opportunities. IoT architecture with respect to AA
schemes is also discussed, focusing on various attacks and threats in each IoT layer. The
requirements and current issues have also been discussed for IoT applications using ML
algorithms for AA. However, in most ML-based IoT AA schemes, the researchers have
not considered common performance metrics such as the delay and the location for the
authentication of IoT nodes. Furthermore, there are very few ML-driven authorization
mechanisms available in the literature. Hence, it is crucial to investigate ML-driven AA
schemes by considering standard and ML performance metrics to improve IoT environment
security, including the perception layer, communication layer, data processing, analysis
layer, and application layer. Besides, architectural approaches such as using a hybrid
approach instead of either centralized or only distributed approach can be used along with
ML for IoT AA.

Finally, the paper introduces future research direction by utilizing ML-based AA
to tackle IoT security problems in a collaborative and unified way. For example, the
wide variety of encryption methods used for an AA process can be re-designed to be
lightweight, collaborative, and flexible using ML-based approaches to fulfill the critical
requirements for IoT security. Several issues like the robustness of authentication protocols,
per service authorization, datasets unavailability, overhead reduction using information
sharing, services-trust relationship, easy, time, and location-driven authentication schemes,
and Reinforcement Learning for AA and Adversarial ML were discussed in this paper.
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Acronyms Abbreviations
AA Authentication & Authorization
ACL Access Control List
AES Advance Encryption Standard
AI Artificial Intelligence
ABAC Attribute Based Access Control
BAN Body Area Network
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BP Back-Propagation
CapBAC Capability-Based Access Control
CA Certificate Authorities
CRP Challenge Response Pair
CIR Channel Impulsion Responses
CSI Channel State Information
CoAP Constrained Application Protocol
XSS Cross-Site Scripting
DTLS Datagram Transport Layer Security
DNN Deep Neural Network
DoS Denial of Services
DDoS Distributed Denial of Services
ERR Equal Error Rate
XMPP Extensible Messaging and Presence Protocol
FAR False Acceptance Rate
FRR False Rejection Rate
DFW Frank-Wolfe
GWN Gateway Node
IAG Incremental Aggregated Gradient
IGMM Infinite Gaussian Mixture Model
I2C Inter-integrated Circuit
IMT Internet of Medical Things
IoT Internet of Things
ID Intrusion Detection
IPHC IP Header Compression
LEAP+ Localized Encryption and Authentication Protocol
MIN Machine Identification Number
ML Machine Learning
MITM Man in the Middle
MDP Markov Decision-Making Processes
MAC Media Access Control
MQTT Message Queuing Telemetry Transport
MLP Multi-Layer Perceptron
NB Naive Bayes
NHC Next Header Compression
PSO Particle Swarm Optimization
PHY-Layer Phyisical Layer
PKI Public Key Infrastructure
QoS Quality of Services
RSS Received Signal Strength
RSSI Received Signal Strength Indicators
RL Reinforcement Learning
RBAC Roles Based Access Control
SMQTT Secure Message Queue Telemetry Transport
SAML Security Assertion Markup Language
SNEP Sensor Network Encryption Protocol
SNSP Sensor Network Security Protocols
SPI Serial Peripheral Interface
SSO Single Sign-On
SVM Support-Vector Machines
TLS Transport Layer Security
TTP Trusted Third Party
WoTs Web of Things
WSN Wireless Sensor Network
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