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Abstract

In the last decade, Australia has experienced an overall decline in red cell demand, but

there has been an increased need for phenotyped matched red cells. Lifeblood and mathe-

maticians from Queensland universities have developed a probabilistic model to determine

the percentage of the donor panel that would need extended antigen typing to meet this

increasing demand, and an estimated timeline to achieve the optimum required phenotyped

(genotyped) panel. Mathematical modelling, based on Multinomial distributions, was used

to provide guidance on the percentage of typed donor panel needed, based on recent histor-

ical blood request data and the current donor panel size. Only antigen combinations deter-

mined to be uncommon, but not rare, were considered. Simulations were run to attain at

least 95% success percentage. Modelling predicted a target of 38% of the donor panel, or

205,000 donors, would need to be genotyped to meet the current demand. If 5% of weekly

returning donors were genotyped, this target would be reached within 12 years. For pheno-

typing, 35% or 188,000 donors would need to be phenotyped to meet Lifeblood’s demand.

With the current level of testing, this would take eight years but could be performed within

three years if testing was increased to 9% of weekly returning donors. An additional 26,140

returning donors need to be phenotyped annually to maintain this panel. This mathematical

model will inform business decisions and assist Lifeblood in determining the level of invest-

ment required to meet the desired timeline to achieve the optimum donor panel size.

Introduction

The International Society for Blood Transfusion Committee on Terminology for Red Cell Sur-

face Antigens has recognized over 300 blood group antigens. The combinations of these blood

group antigens vary between individuals so transfused red blood cells (RBC) have the potential

to cause an immune response in recipients that lack certain antigens. Patients who have red

cell antibodies that are considered clinically significant will require red cells that are negative

for the corresponding antigen. Depending on the specific alloantibody in the recipient and the
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prevalence of the blood group antigen in a donor population, delivery of compatible RBCs can

be difficult [1]. Patients that have specific conditions or are on treatments that make red cell

antibodies difficult to exclude, or where it is considered beneficial to reduce the risk of alloim-

munisation may also require transfusion with red cells lacking one or more blood group anti-

gens. The limited shelf life of red cell products and the reliance of blood donor appointments

makes the estimation of the phenotyped inventory complex and challenging.

While there has been an overall reduction in the demand for RBC in Australia (approxi-

mately 20% since 2011/12), there has been a rise in the demand for phenotype matched red

cells (approximately 50% over three years). As the sole provider of fresh blood components to

the Australian population, the Australian Red Cross Lifeblood has a keen interest in identify-

ing blood donors with a range of red cell phenotypes.

Lifeblood routinely performs ABO, Rh (D, C, E, c and e) and K typing to match blood

donors and recipients. Extended antigen typing with antibody-based serological methods can

be laborious, expensive, and limited to reagent antibody availability and is only performed on

a proportion of repeat donors. When reagent antibodies are not available for phenotyping,

DNA microarrays that target specific single nucleotide polymorphisms (SNPs) can also be

used for extended blood group typing [2]. Blood donors who have been genotyped on previous

donations will have historical genotype information that can predict the phenotype and be

used without requiring re-testing [3].

Mass screening of blood donors with extended phenotyping and genotyping provides the

opportunity to create and maintain a large database to meet demand for specific antigen-nega-

tive requirements. The additional cost of extended blood group phenotyping and/or genotyp-

ing generally precludes testing the entire blood donor panel. However, there is limited

literature on the optimum percentage of the donor pool that is required to be tested to reliably

meet the demand for phenotype matched red cells.

The majority of molecular blood group screening programs should be able to cover around

97% of all clinically important blood groups [4]. Portegysa et al. [5] describes one such regional

donor registry established in Germany that provides matched blood products on demand.

The Canadian Blood Service (CBS) is responsible for providing blood to all areas of Canada,

outside of Quebec, and has approximately 450,000 donors providing around 900,000 units of

RBCs annually. It was estimated that 20–30% of these donors have some level of extended phe-

notyping, beginning with extended Rh (C, c, E and e) and K phenotyping and then on to

Duffy (Fya and Fyb), Kidd (Jka and Jkb), S and s typing on subsequent donations if indicated

[6]. CBS found that with a screening rate of 30%, it would take three to five years to achieve a

sufficient registry to service their population [6]. Following on from this, they estimated an

ongoing screening rate of 10–20% for their new donors to maintain a stable inventory. This

analysis was based on a rare donor turnover of less than 10% each year, and the addition of

related donors for each new rare donor discovered from the screening [6].

Similarly, Hema-Quebec implemented a strategy to create a database from genotyping

21,000 frequent blood donors over two years [7]. Their analysis demonstrated that this data-

base should provide enough variation in blood group antigens to cover 95% of the 16,500

annual hospital requests for phenotyped RBCs. They also estimated that they would need to

genotype 4,000 new donors each year to maintain this database.

The Bloodcenter of Wisconsin in the United States of America (USA) performed mass-

scale genotyping on their blood donors over four years and by the final year of the program,

29% of all blood units on any given day had a known genotype. This allowed 99.8% of patient

encounters to be resolved by their own database and inventory. The Bloodcenter of Wisconsin

determined that each year, 4,000 donors would need to be genotyped to maintain this database

[3, 8].
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In the Netherlands, the Sanquin Bank of Frozen Blood (SBFB) runs a national typing pro-

gram of blood donors. All donors are typed for ABO, Rh and K typing, with K positive donors

being typed for k. In addition, 30% of donors were further typed for Fya, Fyb, Jka, Jkb, M, N, S

and s and a further few were typed for Kpa, Cw, Cob, Wra, Lua, Lea, Leb and P1. With this data-

base, Sanquin were able to find compatible units in 95% of requested cases [9].

In collaboration with mathematicians from Queensland universities, Lifeblood conducted

this project to develop a mathematical model to determine:

• the percentage of the Australian whole blood donor panel requiring additional phenotyping

or genotyping, to ensure that sufficient donors with the commonly ordered antigen combi-

nations are available to meet demand;

• the timescale for achieving the minimum percentage of phenotyped or genotyped donors;

• how this timescale may be reduced by increasing the percentage of inventory tested;

• the percentage of inventory to be tested to maintain the optimum number of whole blood

donors phenotyped once the target has been reached.

There is very little modelling work in the literature to address this or similar blood demand

problems, but we highlight work done by Blake and Clarke [6] that was primarily designed to

evaluate the impact of frozen inventory. In their paper a two-phase approach was developed to

determine how rare a blood type needed to be before freezing and the associated screening

rates. Discrete event simulations were run with their model evaluating a single antigen at a

time. When exploring scenarios based around 29 different antigens, these were treated as

mutually exclusive, so that the underlying statistical distributions are Binomial.

A natural modelling approach is based around the Multinomial distribution, where the

number of categories is greater than 2. The probabilities are associated with a list of “antigen

combinations” based on the ABO blood group system, as well as a combination of 40 other

blood group systems and over 300 different blood group antigens.

Methods

To estimate the level of phenotyping and genotyping to meet clinical demand with at least 95%

success percentage, we started with a set of individuals (donors) to be allocated (typed) across r
disjoint independent categories (antigen combinations). Each category was assigned a target

(number of donors) and a probability of assigning an individual to that category. Then we pre-

dicted the number of individuals (donors) required to reach the targets under a random alloca-

tion, refer to Fig 1.

A crucial step in this process was the determination of the probability distribution. Whilst

each antigen has its own probability distribution, these are generally population specific and

the occurrence of each antigen in a particular antigen combination is not always independent.

For example, the probability of a phenotype E-, Fya-, Jkb-, K- and Lua- may not be the product

of the probabilities of the individual components. To address this issue, we used historical fre-

quency information from previous Lifeblood requests to build a set of probabilities for each of

the categories (combination of antigens) requested. The probabilities of the antigen combina-

tions of interest were calculated by taking the frequency of a requested product (antigen com-

bination) as a percentage of the total number of requests, refer to Fig 2. It was assumed that the

historical request data, used to set targets for the allocation of donors to r categories, was suffi-

ciently comprehensive to determine reasonable estimates for the probabilities of each of these

categories.
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Each donor is assumed to be aligned with a unique category, that is has a combination of

antigens unique to the donor. In the simulation S donors are allocated across r categories

based on the category probabilities in Fig 2, the probability (frequency) of observing a donor

of that category. Thus, to simulate S donors coming through the door at random the allocation

to a category is achieved by a random process based on a Multinomial distribution (refer to

Table 1). Many software packages implement this. Matlab can be used with command mnrnd

Fig 1. A) Donor panel and indicative probability distribution for r categories (shown as blood bags); B) Given the

probabilities for each category, donors are assigned at random to the categories.

https://doi.org/10.1371/journal.pone.0276780.g001
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(S,p), where p is a vector of length r the number of different categories. If after S donors are

allocated, the targets for all the categories are not reached, then the number of donors is

increased until all the targets are met. To ensure the targets for the uncommon phenotypes are

met, the simulation is continued until at least one donor is allocated to each category. However

the Multinomial distribution ensures more donors are allocated to catagories with a higher

probability. So, in the simulation, categories with greater probability will be allocated more

donors, with the one donor case being the rarest situation for categories of low probability.

This random process ensures that more donors are allocated to categories with higher proba-

bilities, meeting these targets as well. In building the Multinomial distribution model we used

the following framework:

Under a Multinomial distribution on the category types A1,� � �,Ar, with probabilities p1,� � �,

pr2[0,1] where p1+� � �+pr = 1, the probability of obtaining typed donors to match (n1,� � �,nr)
requests, where

Pr
i¼1

ni ¼ S, is given by

P ¼ Prob n1; � � � ; nrð Þ ¼
S!

Qr
j¼1

nj!

Yr

j¼1
pnj
j :

Here
Qr

j¼1
pnj
j denotes the product of r terms, pnj

j over j = 1,� � �,r, and a! = a.(a−1).(a−2)� � �

2.1.

The following theorem underpins the mathematical model:

Fig 2. Probabilities for 50 (highest) genotype antigen combinations. The horizontal axis shows antigen

combinations, and the vertical axis shows probabilities.

https://doi.org/10.1371/journal.pone.0276780.g002

Table 1. Notation to be used in the specification of the Multinomial distribution.

Glossary

Notation Specification

S Number of donors to be typed

R Number of distinct categories (unique identifies, products)

A = (A1,� � �,Ar) Vector containing the distinct categories

Nvec = (n1,� � �,nr) Vector containing the number of typed donors in each category

Pvec = (p1,� � �,pr) The vector of probabilities, one for each category

Kvec = (k1,� � �,kr) Targets for the number of typed donors for each category

https://doi.org/10.1371/journal.pone.0276780.t001
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Theorem 1: Given the above Multinomial distribution where S donors are to be allocated

to r categories, A1,� � �,Ar, with probabilities p1,� � �,pr then the expected number of donors to be

allocated to category Ai is given by E½ni�, with variance Var½ni�, where

E½ni� ¼ piS;

Var½ni� ¼ pið1 � piÞS; i ¼ 1; � � � ; r;

noting that the marginal distributions are Binomial distributions.

The vector of given targets (Kvec) and the sum of these targets (K), are used to estimate the

size of S so that all the components of the vector of targets are met with a certain probability.

The size S must be greater than or equal to K. However, it is very unlikely to be equal to K as

some of the Multinomial samples needed to match a given component of the target vector may

be considerably greater than the individual targets. We estimated S and the associated proba-

bility.

PS ¼ Probðn1 � k1; � � � ; nr � krÞ

where
Pr

j¼1
nj ¼ S:

Intuitively if S−K is positive but close to 0, we would expect the probability PS to be very

close to 0. However as S−K becomes larger, the probability of meeting the targets approaches

1.

One way of addressing this problem is to perform a number of Multinomial trials to esti-

mate S for a given set of targets and probabilities. Unfortunately, this is not a computationally

feasible approach even for moderate sizes of r. However, when S is large, the following theorem

by Mallows (see also Esary, Proschan and Walkup)can be applied to find good approximations

to these probabilities and good estimates of S.

Theorem 2: The following lower and upper bounds on PS hold

1 �
Xr

j¼1

Probðnj < kjÞ � PS �
Yr

j¼1

Probðnj � kjÞ � expð�
X

Probðnj < kjÞÞ:

Proof: Mallows [10, 11]

Here the individual probabilities Prob(nj<kj) and Prob(nj�kj) are the marginal (binomial)

probabilities and are very quick to compute. Importantly, as S becomes large and the probabil-

ity PS gets closer to 1 then these bounds get close together, and so provide an excellent approxi-

mation to the probability PS. We chose a high probability PS of 0.95.

The sample size was approximated with the lower bound being greater than 0.95

PS � 1 �
Pr

j¼1
Probðnj < kjÞ > 0:95: ð1Þ

Once we have estimated S in this manner, we validate the results by running a set of Monte

Carlo Multinomial samples to determine if indicative request targets can be met.

For a given S we simulate from the appropriate Multinomial distribution and record the

vector Nvec = (n1,� � �,nr) as the number of donors allocated to each category. The number of

negative terms in the difference Nvec−Kvec = (n1−k1,� � �,nr−kr) represents the number of times

a target is not attained.

It is well known that one area in which standard Monte Carlo simulations do not work par-

ticularly well are in rare event simulation [12]. In this case many simulations may be needed to

estimate these rare events and this can become computationally extremely burdensome. New

approaches have been developed such as the cross entropy method [12] that can be represented
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as a stochastic search algorithm that can address the issue of rare event estimation, but imple-

mentations are not trivial. However, in our case we have access to tight upper and lower

bounds on the multinomial probability of meeting targets with high probability through the

theory of Mallows. Thus rare event estimation of rare antigen combinations is just a matter of

computing marginal (binomial) probabilities and avoids the issues associated with rare event

simulation through Monte Carlo approaches. However, to cross validate results we generated

10,000 Monte Carlo Multinomial samples and computed the number of times that Nvec−Kvec
has a negative component in any position. The number of failures to meet targets was calcu-

lated as a percentage of the number of categories r. Taking one hundred minus this value gave

the minimum percentage of success in attaining the targets. The Monte Carlo Multinomial

sampling was repeated using increasing values of S until at least 95% success percentage was

obtained in all 10,000 Monte Carlo samples. This was compared with the estimates computed

by the approach of Mallows, described in Theorem 2.

Determination of testing regimes needed to meet targets

Using the described mathematical framework, formulae were developed to estimate the testing

schedule (timeline) needed to meet the required targets. These estimates were based on bounds

given in Theorem 2.

We use the average number of screened donors available in a year to estimate the percent-

age of requests that can be met. Using the notation in Table 2, the average number of screened

donors in year 1 is

D1 ¼ ð1 � mÞD0 þ qð1 � m=2Þ:

Here the choice of m/2 is based on the mean of a uniform distribution of donors through-

out the year. That is, there are q donors screened over the course of the year and thus, on aver-

age, a newly screened donor has been registered for six months at the end of the first year.

Accordingly, the non-return rate has been adjusted by m/2 to reflect this fact. Setting M = q(1

−m/2), the average number of screened donors in year 2 is

D2 ¼ ð1 � mÞðð1 � mÞD0 þMÞ þM ¼ ð1 � mÞ2D0 þMð1 � mÞ þM:

By induction, the average number of screened donors in year y is

Dy ¼ ð1 � mÞyD0 þM ð1 � mÞy� 1
þ ð1 � mÞy� 2

þ � � � þ ð1 � mÞ1 þ 1
� �

¼ ð1 � mÞyD0 þ
M
m

1 � ð1 � mÞyð Þ:

This formula enabled calculation of either q or the number of years y, given knowledge of

the targeted number of donors Dy and the initial number of donors already screened D0.

Table 2. Notation for calculation of timelines.

Glossary

Notation Specification

D0 Number of donors already screened

Dy Average number of screened donors in the system in year y
Q The number donors screened per annum

m The fraction of non-returning screened donors per annum as a decimal

https://doi.org/10.1371/journal.pone.0276780.t002
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Results

The mathematical Multinomial model was used to analyse supply and demand data for pheno-

typed red cells. Lifeblood’s phenotyped red cell demand for approximately 27000 requests was

analysed. The requests for antigen negative combinations achieved through extended pheno-

typing by serology or genotyping to predict the phenotype for the following antigens:

Serology: C, c, E, e, K, k, Fya, Fyb, Jka, Jkb, M, S and s

Genotyping: C, c, E, e, VS, V, K, k, Jsa, Jsb, Kpa, Kpb, Fya, Fyb, Jka, Jkb, M, N, S, s, U, Lua,

Lub, Doa, Dob, Hy, Joa, LWa, LWb, Dia, Dib, Coa, Cob, Sc1 and Sc2

Examples of the antigen combinations can be found in S1 Table where a full description of

all 403 antigen combinations is provided as a supplement.

The current testing technology allows for red cell products to be categorised as one of 403

distinct antigen combinations using genotyping, and 299 distinct antigen combinations using

extended phenotyping. For this study the following assumptions were used:

• donor panel consisted of 542,891 donors;

• approximately 700,000 donations collected annually;

• 13% of new donors did not return for a second donation;

• 17% of the panel is replaced with new donors each year;

• donors donate no more than 3 times per year;

• 12% of the donor panel has already been phenotyped;

• 670 donors are phenotyped each week;

• 135 donors are genotyped each week.

The probability for each antigen combination was determined and are provided in the sup-

plement. Fig 2 displays the first 50 genotype antigen combinations with the highest probabili-

ties (see S1 Table). The antigen combination with the highest frequency of being requested is

c-E-K- with a probability of 0.41. Fig 2 demonstrates the rapid reduction in probabilities for

the different genotype antigen combinations. Fig 3 zooms into the probabilities of the antigen

Fig 3. Probabilities for genotype antigen combinations, with the first 25 combinations with the highest

probabilities removed. The horizontal axis shows antigen combinations 26 to 403 and the vertical axis shows

probabilities.

https://doi.org/10.1371/journal.pone.0276780.g003
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combinations with the first 25 removed, thus showing the continuing rate of decline across all

combinations. It can be seen that approximately 93% of the antigen combinations have a fre-

quency of less than 4 in 1000. It is acknowledged that, in practice, requests for antigen combi-

nations, such as C-E-K- may be used to fill a request for say E-K-. However, amalgamating

such antigen combinations would increase the probabilities, but not change the number of

donors to be allocated to amalgamated antigen combinations. It is not expected that this will

change the calculation of the number of donors needed to fulfil requests. In addition, some res-

olution information would be lost.

The analysis below will show that it is the large number of requests that are associated with

antigen combinations with small probabilities that significantly increases the number of typed

donors needed to fulfil the requests.

The bounds of Mallows in Theorem 2 were used to estimate that 205,000 donors need to be

genotyped to obtain at least one donor for each of the 403 antigen combinations with 95%

probability. This equates to 38% of the current donor panel. Since these lower and upper

bounds differ by only 0.12% at the 95% success percentage, this indicates a high level of accu-

racy. A summary of the results is provided in Table 3.

With respect to phenotype testing, the number of distinct antigen combinations reduced to

299, with the probabilities recalibrated for the phenotype specific data. Using the same proce-

dure based on Theorem 2, the number of donors to be phenotyped to obtain at least one

donor for each of the 299 antigen combinations, with 95% probability, was estimated to be

35% of the donor panel or 188,000. A summary of the results is provided in Table 4. Once

again there is a high degree of confidence in this estimate as the upper and lower bounds agree

within 0.12%.

Validation of our bounds approach was conducted by performing Monte Carlo Multino-

mial sampling, as described previously. The results of this process are given in Figs 4 and 5.

For Fig 4, we have assumed 23541 random donors are genotyped and three independent

Monte Carlo sampling scenarios have been run. The figure, 23541, was estimated using the

Mallows bound as in Eq (1), at the 95% success percentage and is based on the requirement

that all targets are satisfied at least once. The target data were provided by the Red Cross for a

120-day time period. In this case, the value of each group of four bars represents one antigen

combination and each colour represents a single assignment of donors to antigen combina-

tions. The target requests are indicated by blue bars with the three Monte Carlo samplings

Table 3. Number of donors to be genotyped to achieve at least 95% and 85% success percentage of obtaining at least one donor of each antigen combination, based

on the bound of Mallows. Estimates given to 3 significant figures.

Genotype estimates for donor panel of size 542,891 over 403 antigen combinations

Minimum success percentage,

C

SC: Number of donors to achieve minimum

percentage

Percentage donor panel Lower bound Upper bound Range of bounds

95% 205,000 37.76% 0.950001 0.951219 0.0012

85% 175,300 32.29% 0.850003 0.860614 0.0106

https://doi.org/10.1371/journal.pone.0276780.t003

Table 4. Number of donors to be phenotyped to achieve at least 95% and 85% success percentage of obtaining at least one donor of each antigen combination. Esti-

mates given to 4 significant figures.

Phenotype estimates for donor panel of size 542,891 over 299 antigen combinations

Minimum success percentage,

C
SC: Number of donors to achieve minimum success

percentage

Percentage donor

panel

Lower bound Upper

bound

Range of

bounds

95% 188,000 34.60% 0.950007 0.95121 0.00121

85% 158,200 29.14% 0.850012 0.86054 0.0105

https://doi.org/10.1371/journal.pone.0276780.t004
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shown in different colours. Here only the top 30 antigen combinations are displayed. There

are approximately 10000 requests for the first antigen combination (c-E-K-) and the sampling

process has allocated most of the donors to that antigen combination, but not enough to

meet all the targets. It can also be seen that the target for the antigen combination denoted 9

has not been met (as highlighted in the insert in Fig 4). This is true for many of the other anti-

gen combinations, while some targets have been exceeded.

In order to see how more targets can be met, we double the number of typed donors to

S = 47082. We again run three independent Monte Carlo samplings. We can see in Fig 5 that

many more targets are achieved for the 30 antigen combinations with the highest probabilities.

We explore further the relationship between S and K (the total number of targets) in order to

meet the requested targets later. Figs 6 and 7 show results for the 30 antigen combinations

with the smallest probabilities, with again S = 23541, 47082, respectively. The value of K for

Fig 4. Request targets for a 120-day period shown in blue, with three Monte Carlo Multinomial samplings. Here

there are 23,541 donors and we view the 30 antigen combinations with the highest probabilities.

https://doi.org/10.1371/journal.pone.0276780.g004

Fig 5. Request targets for 120 days shown in blue, with three Monte Carlo Multinomial samplings. Here there are

47,082 donors and we view the 30 antigen combinations with highest probabilities.

https://doi.org/10.1371/journal.pone.0276780.g005
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these two figures is 22. We see considerable variability across the three samplings in both

cases, at these low levels of probability.

To investigate further the relationship between S and K at the 95% success percentage, a set

of 10,000 Monte Carlo Multinomial samples were run. Targets for each of the 403 antigen

combinations were determined for a given time period. The specific time periods that were

chosen are:

• 15 consecutive 8-day periods (a possible preferred period for holding blood in inventory);

• 3 consecutive 120-day periods (assuming donors donate up to 3 times per year).

If S = K then the probability of meeting all the targets (k1,. . .,k403) is close to 0. However, as

the number of genotyped donors increases, to 6�K, the probability of meeting targets is in

excess of 94%, as shown in Table 5.

Fig 6. Request targets for a 120-day period shown in blue, with three Monte Carlo Multinomial samplings. Here

there are 23,541 donors and we view the 30 antigen combinations with the smallest probabilities.

https://doi.org/10.1371/journal.pone.0276780.g006

Fig 7. Request targets for 120 days shown in blue, with three Monte Carlo Multinomial samplings. Here there are

47,082 donors and we view the 30 antigen combinations with the smallest probabilities.

https://doi.org/10.1371/journal.pone.0276780.g007
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The slight disparity between these numbers with the estimate of genotyping 205,000 donors

(Table 3) is to be expected as in a 120-day period not all rare antigen combinations will be

requested. However the Monte Carlo Multinomial sampling must still allocate donors to these

antigen combinations just in case they are needed.

The estimates provided in Table 4 have been validated with 10,000 Monte Carlo Multino-

mial samplings where the phenotyping request targets have been determined for 8 day and

120-day periods. The results are given in Table 6 where the number of categories is now 299.

Once again results are consistent with the estimated number of donors to be phenotyped to

achieve 95% success percentage as in Table 4.

For the purpose of illustrating the techniques presented here, the calculation of timelines

for meeting genotyping levels are based on the following assumptions.

• Weekly donations are collected from 13,500 returning donors and 1% of these are genotyped

per week.

• Currently q = 13500�0.01�365/7 = 7,039 donors genotyped annually.

• The current number of donors genotyped is D0 = 0.018�542891 = 9772.

• y represents the number of years of genotyping.

• m represents the percentage of non-returning donors per annum, m = 0.13, i.e. 13%.

All calculations are again based on the formula

Dy ¼ ð1 � mÞyD0 þ
M
m

1 � ð1 � mÞyð Þ

Table 7 shows the effect on the total number of donors genotyped for various typing per-

centages. Due to the assumed annual loss factor of 13% for non-returning donors, annual

Table 5. The probability of meeting targets for 403 antigen combinations based on fifteen 8-day periods and

three 120-day periods, respectively, over 10,000 Monte Carlo Multinomial samplings.

Monte Carlo Multinomial sampling genotype

Targets based on 8-day periods Targets based on 120-day periods

S Minimum success % S Minimum success %

8600 92.80% 94164 95.04%

10750 94.04% 117705 96.53%

12900 94.54% 141246 97.27%

15050 95.04% 164787 97.77%

17200 95.53% 188328 98.51%

https://doi.org/10.1371/journal.pone.0276780.t005

Table 6. The probability of meeting targets for 299 antigen combinations set from fifteen 8-day periods and three 120-day periods over 10,000 Monte Carlo Multi-

nomial samplings.

Monte Carlo Multinomial sampling phenotype

Targets set over 8-day periods Targets set over 120-day periods

S Minimum success Percentage S Minimum success Percentage

4�K = 12888 93.98% 4�K = 94156 95.32%

5�K = 15036 94.65% 5�K = 117695 95.99%

6�K = 17184 94.98% 6�K = 141234 97.32%

7�K = 19332 95.32% 7�K = 164773 97.66%

8�K = 21480 95.65% 8�K = 188312 98.66%

https://doi.org/10.1371/journal.pone.0276780.t006
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genotyping levels of 1% or even 4% are not enough to attain a cumulative 38% level for geno-

typing the donor panel within 20 years. However, if the level of genotyping is raised to 5% then

38% or 205,000 genotyped donors would be reached within 12 years, and if 12% of the donor

panel is genotyped each year then 38% will be attained within 3 years.

Furthermore, once a level of 38% genotyping of the donor panel is reached and given that

13% of donors do not return, then an annual genotyping level of 2.14% of the donor panel will

maintain this level at 38%.

The calculation of timelines for meeting phenotyping levels are based on the assumptions:

• Weekly donations are collected from 13,500 returning donors and 5% of these are pheno-

typed each week.

• Currently q = 13500�0.05�365/7 = 35196 donors are phenotyped each year.

• The current number of donors phenotyped is D0 = 542,891�0.121 = 65689.

• y represents the number of years of phenotyping.

• m represents the percentage of non-returning donors per annum, m = 0.13, 13%.

Table 8 gives estimates of the effect of increasing the percentage of phenotyping. If the level

of phenotyping is retained at 5% of the donor panel, then 35% of the donor panel (188,000

donors) will be phenotyped within 8 years and if the level of phenotyping is increased to 9% of

the donor panel, then a 35% target will be reached in 3 years. Furthermore, once a level of 35%

phenotyping of the donor panel is reached and given that 13% of donors are not returning,

then an annual phenotyping level of 1.94% of the donor panel will maintain this level at 35%.

Conclusions

We have used a Multinomial distribution to provide estimates for how many donors should be

tested to meet Lifeblood’s requests with respect to genotyping and phenotyping. The model

was constructed based on recent historical blood request data for uncommon red cell antigen

combinations, supplied by Lifeblood. An important mathematical technique is based on the

upper and lower bounds of the multinomial probability of attaining a set of bounds as given by

Mallows in Theorem 2. In doing this analysis we have assumed that the demand is uniformly

distributed over time. Over long time periods this is an appropriate assumption.

Table 7. Estimates (rounded to integers) of the number of years needed to reach 205,000 genotyped donors at the given percentages, minimum values that exceed

target are shown.

Given percentage of genotyping, the number of donors that will be genotyped after y years

Genotyping percentage of donor panel

� 4% 5% 6% 7% 8% 9% 10% 11% 12%

Years to attain Never attain 12 8 7 5 5 4 4 3

Number typed donors N/A 207381 207277 224388 208024 233419 221834 243458 213909

https://doi.org/10.1371/journal.pone.0276780.t007

Table 8. Estimates (rounded to integers) of the number of years needed to reach 188,000 phenotyped donors at the given percentages, minimum values that exceed

target are shown.

Given percentage of phenotyping, the number of donors that will be phenotyped after y years

Phenotyping percentage of donor panel

� 4% 5% 6% 7% 8% 9%

Years to attainment Never attained 8 6 4 4 3

Number typed donors N/A 191619 200533 188999 210622 198862

https://doi.org/10.1371/journal.pone.0276780.t008
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Genotyping of 38% of the donor panel is required to meet demand with at least a 95% suc-

cess percentage. At the current level of 1% genotyping of weekly inventory, it is estimated that

it is not possible to reach a target of 38% (205,000 donors). If the weekly genotyping levels are

raised to 5% the target will be reached within 12 years. Increasing to 12% would allow the 38%

target to be reached within 3 years. The model demonstrated that when the target is reached

then annual genotyping of an additional 28,500 is required to maintain the overall level.

Phenotyping of 35% of the donor panel is required to meet Lifeblood’s demand with at least

a 95% success percentage. At the current level of 5% phenotyping of inventory, it is estimated

that it will take 8 years to reach a target of 35% (188,000). If the level of extended phenotyping

of weekly returning donors is raised to 9% then a target would be achieved within 3 years. The

model also demonstrated that when the target is reached then annual extended phenotyping of

an additional 26,140 is required to maintain the overall level.

With the given mathematical model, we have the above access to tight lower and upper

bounds on the multinomial probabilities of meeting a set of targets, due to the theory of Mal-

lows. This makes rare event estimations much more efficient than just through Monte Carlo

simulations. This is an undoubted strength of our work. We have assumed that demand is uni-

formly distributed over time and not adjusted for that. However, over long time periods this is

not an unreasonable assumption. Another possible limitation is access to further data. We

were able to use request data for 2015/2016 to estimate antigen combination frequencies.

However, our estimations could have been more effective if request data for later years had

been used for further comparison and validation of results. However, we did not have access to

additional data. The result is a mathematical model that will inform business decisions and

assist Lifeblood to determine the level of investment required to meet the desired timeline to

achieve the optimum panel size.
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