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ABSTRACT Linker histone H1 is one of the main chromatin proteins which plays an important role in organizing
eukaryotic DNA into a compact structure. There is data indicating that cell type-specific post-translational
modifications of H1 modulate chromatin activity. Here, we compared histone H1 variants from NIH/3T3, mouse
embryonic fibroblasts (MEFs), and mouse embryonic stem (ES) cells using matrix-assisted laser desorption/
ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FT-ICR-MS). We found
significant differences in the nature and positions of the post-translational modifications (PTMs) of H1.3-H1.5
variants in ES cells compared to differentiated cells. For instance, methylation of K75 in the H1.2-1.4 variants;
methylation of K108, K148, K151, K152 K154, K155, K160, K161, K179, and K185 in H1.1, as well as of K168 in
H1.2; phosphorylation of S129, T146, T149, S159, S163, and S180 in H1.1, T180 in H1.2, and T155 in H1.3 were
identified exclusively in ES cells. The H1.0 and H1.2 variants in ES cells were characterized by an enhanced
acetylation and overall reduced expression levels. Most of the acetylation sites of the H1.0 and H1.2 variants from
ES cells were located within their C-terminal tails known to be involved in the stabilization of the condensed
chromatin. These data may be used for further studies aimed at analyzing the functional role played by the
revealed histone H1 PTMs in the self-renewal and differentiation of pluripotent stem cells.

KEYWORDS mouse embryonic stem cells, linker histone H1, post-translational modifications, 2-D electrophoresis,
MALDI mass spectrometry.

ABBREVIATIONS MALDI-FT-ICR-MS — Fourier transform ion-cyclotron resonance mass spectrometry; PTM —
post-translational modifications; ESC — embryonic stem cell; MEF — mouse embryonic fibroblast; AU-PAGE —
acetic acid-urea polyacrylamide gel electrophoresis; SDS-PAGE — sodium dodecyl sulfate polyacrylamide gel
electrophoresis; meK — lysine methylation; acK — lysine acetylation; pS/T — serine /threonine phosphorylation;
MetO — methionine sulfoxide.

INTRODUCTION

Chromatin architectural proteins include structural
proteins, such as histone H1, which are devoid of en-
zymatic activity, bind nucleosomes without apparent
DNA sequence specificity, and change the local and
global architecture of chromatin [1—-8]. Proteins be-
longing to the human and mouse histone H1 families
include seven somatic subtypes (H1.0 through H1.5, and
H1X), three testis-specific variants (H1t, H1T2m, and
HILS1), and one variant restricted to oocytes (H1o0)
[9—13]. The H1 variants have different evolutionary
stability, euchromatin/heterochromatin distribution,
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and chromatin-binding affinity, which may be a result
of post-translational modifications [14—17].

Over the past few decades, chromatin of ES cells
and iPS cells has been the focus of extensive research
because of the tremendous potential of these cells in
biomedicine. Chromatin of these cells has some unique
structural features that distinguish it from chromatin
of differentiated cells [17—18]. In particular, hetero-
chromatin of ES cells appears to be more relaxed due
to a reduced expression of H1 proteins [19] and PTMs of
nuclear proteins [18—20], leading to globally increased
transcription. In this study, we compared PTMs of the
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H1 variants from mouse—differentiated and ES cells.
We report on novel ES cell-specific PTMs of H1 and
discuss the potential impact of these PTMs on H1 func-
tions and the structure of chromatin in ES cells.

MATERIALS AND METHODS

Ethics statement

All animal procedures were performed according to the
Guidelines for the Humane Use of Laboratory Animals,
with standards complying with those approved by the
American Physiological Society. Mouse experiments
were conducted strictly in agreement with the animal
protection legislation acts of the Russian Federation
and were approved by the Institute’s Ethics Board as
complying with the requirements for humane use of
laboratory animals.

Mouse embryonic fibroblasts (MEFs) were iso-
lated using animals after natural mating, which were
sacrificed using the UK Home Office “Schedule 1”
procedure requiring no specific ethical approval. The
E14Tg2A cell culture was procured from BayGenomics.
The NIH/3T3 cells were obtained from the Russian Cell
Culture Collection (Institute of Cytology, St. Peters-
burg, Russia), where they were authenticated by STR
DNA profiling analysis.

Mouse cell cultures

NIH/3T3 cells obtained from ATCC and mouse embry-
onic fibroblasts (MEFs) prepared from mid-gestation
mouse embryos [21—22] were cultured in DMEM sup-
plemented with 10% fetal bovine serum, L-glutamine,
and 1% penicillin/streptomycin. Mouse ES cells (line
E14Tg2A, BayGenomics) were cultured on gela-
tin-coated dishes in DMEM/F12 supplemented with
15% fetal bovine serum, 1% penicillin/streptomycin,
L-glutamine, NEAA, and leukemia inhibitory factor
(LIF). The cells were washed with PBS (pH 7.5), har-
vested with 0.05% trypsin (10 min at 37°C), and col-
lected by centrifugation at 2,000 g for 5 min. Pellets
were frozen in liquid nitrogen and stored at -70°C. To
prepare the H1 samples for subsequent analysis, cells
were collected from six plates (d = 10 cm).

Histone H1 variant extraction and separation

To preserve as much of the PTMs as possible, H1
proteins were extracted directly from frozen pellets,
avoiding nucleus isolation, according to the previously
described procedure [7]. The H1 variants were separat-
ed by 2-D electrophoresis as described previously [7—8].

Digestion and MALDI-FT-ICR-MS analysis
Following 2-D electrophoresis, gel fragments contain-
ing nuclear proteins were cut out, minced, and treated

as described previously [7]. Biological samples were
analyzed in two biological and two or three analytical
replicates. The mass spectra were recorded and analyz-
ed as described previously [7].

RESULTS

The objective of this study was to compare the PTMs of
linker histones H1 from differentiated and pluripotent
mouse stem cells. To separate the histone Hlvariants,
we used a combination of AU-PAGE and SDS-PAGE,
which is especially versatile for identifying charged
acid-soluble proteins, including histones [7, 8, 23, 24].
Figure 1 shows the results of 2-D electrophoretic sep-
aration of H1 from two types of differentiated cells
(namely, spontaneously immortalized mouse embry-

B

- 25° 26e

~
-
=
e
~.
e

’--"

Fig. 1. Two-dimensional gel electrophoresis of H1-
enriched extracts from NIH /3T3 cells (A), MEFs (B), and
ES cells (C). H1 variants were identified in five fractions
(marked 2—4, 6—7 in A), seven fractions (marked 4—10
in B), and eight fractions (marked 15—-18, 20-21, 30-31
in C) for NIH/3T3, MEFs, and ES cells, respectively. The
remaining fractions were attributed to the HMGB and
HMGN of High-Mobility Group family proteins and other
nuclear proteins (Table S1[25])
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Fig. 2. Mass spectrum of the 2D NIH/3T3 H1 zones

onic fibroblasts (line NIH/3T3) and primary mouse
embryonic fibroblasts (MEFs)) and from pluripotent
stem cells (namely, mouse ES cells (line E14)). We
identified H1 subtypes in NIH/3T3 cells (five fractions;
Fig. 1A), MEFs (seven fractions; Fig. 1B), and ES cells
(eight fractions; Fig. 1C). The remaining fractions were
attributed to members of High Mobility Group family
proteins and other nuclear proteins (Table S1[25]). The
results of the MS analysis of H1 are presented in Table
S2[25]and Figs. 2—4.

Six H1 isoforms (H1.0, H1.1, H1.2, H1.3, H1.4, and
H1.5) were detected and analyzed. We identified
PTMs of H1 from NIH/3T3, MEFs, and ES cells (Ta-
ble), which were represented by acetylation, methyla-
tion, and phosphorylation. The results are summarized
in Fig. 5, which additionally includes the previously
identified PTMs of H1 from mouse thymus [7]. The
data for the H1.0 mouse thymus variant were miss-
ing, so we relied on the data obtained for MEFs and
NIH/3T3 cells.

DISCUSSION
Methylation

H1 histones represent one of the main groups of nu-
clear proteins of chromatin that participate in the
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longitudinal compaction of replicated chromosome
[24]. In chromatin of ES cells, there are 0.5 molecules
of total H1 histone per nucleosome, which is twofold
lower than in chromatin of differentiated cells [26]. De-
pletion of linker histone H1 in mice reduces chromatin
compaction, global nucleosome spacing, and the overall
levels of PTMs of some histones [26].

A comparative analysis of the H1 variants from
NIH/3T3, MEFs, and ES cells revealed that the overall
methylation of the H1.4 and H1.5 variants in ES cells
was reduced compared to that in differentiated cells
(F1ig. 5). The identified methylation of H1 proteins in
this region occurred at K34 /K35, K63/65, and K73/75,
depending on the H1 variant (Table).

Many of the PTMs, such as meK63/64 for the
H1.2-H1.4 variants, meK47 for H1.3, meK97 for H1.2,
meK117 for H1.2, and meK27 for H1.5, have been
previously reported [7, 8, 10—12]. Methylation at these
positions is thought to protect the e-amino groups of
lysines by increasing histone affinity to DNA and facili-
tating their transition to a locally repressed chromatin
state [7, 8]. Importantly, we identified methylation at
K75 for the H1.2-H1.4 variants exclusively in ES cells
(Fig. 5, Table S2 [25]). This PTM is located within the
globular domain and may result in the protection of the
e-amino groups of the lysines in these cells.
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Fig. 3. Mass spectrum of the 2D MEFs H1 zones

Methylation of K108, K148, K151, K152 K154, K155,
K160, K161, K179, and K185 in H1.1, as well as that
of K168 in H1.2, has been identified exclusively in ES
cells, whereas methylation of K202 and K204 in H1.4
may be limited to differentiated NIH3T3 cells and
MEFs. Most of these PTMs are located within S/TPXK
or (S/T) PXZ motifs near the phosphorylated serines
and threonines of H1. The potential role of these modi-
fications will be discussed in the Methyl/acetyl/phos-
pho crosstalk section.

Acetylation

Our data demonstrated that the overall H1 acetyla-
tion level in ES cells had increased compared to that
in differentiated cells (Fig. 5). As expected, we iden-
tified multiple acetylation sites in the N-terminal and
globular domains of H1 (Table). In most cases, the exact
biological role of these modifications remains unknown.
One of the best studied acetylation sites is acK34-H1.4.
The acK34-H1.4 is a hallmark of the promoters of the
transcriptionally active gene and helps recruit the gen-
eral transcription initiation complex TFIID to the pro-
moters [27]. However, we have not identified this PTM
in NIH/3T3, MEFs, and ES cells. We found methylation
at this position of H1.4 in NIH/3T3 and MEFs but not
in ES cells; the role of these modifications is not clear
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yet. Methylation protects the e-amino groups of lysine,
thus increasing histone affinity to DNA and facilitating
the transition to a locally repressed chromatin state.
Demethylation of K34-H1.4 in ES cells, on the other
hand, may favor acetylation at this site and facilitate
recruitment of the general transcription factor TFIID
to the promoters.

AcK83 and acK87 of H1.1 and acK81 of H1.2 have
been identified exclusively in ES cells. Reduction in
the positive charge in this region due to acetylation of
the amino group of lysine residues may destabilize H1-
DNA interactions, resulting in the formation of a locally
relaxed chromatin state.

The formation of open chromatin may also be facili-
tated by acetylation of lysine residues at the C-terminal
regions of the H1.1-H1.3 variants. The reduced positive
charge of the C-terminal domains of H1 proteins could
weaken DNA/H1 interactions at the entry/exit regions
of the core particle and prevent H1 interaction with
regulatory chromatin proteins. Moreover, most of these
C-terminal ES cell-specific acetylation and methylation
sites of the H1.1-H1.3 variants are located within the S/
TPXK or (S/T) PXZ motifs near the phosphorylated
serines and threonines. Their potential biological role
and the mechanism of regulation of H1I-DNA inter-
action mediated by acetylation/methylation of lysins
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Fig. 4. Mass spectrum of the 2D ES H1 zones

within the S/TPXK or (S/T)PXZ motifs will be dis-
cussed in more detail in the Methyl/acetyl/phospho
crosstalk section.

Phosphorylation

We identified several phosphorylation sites of H1: T24,
S115, T120, and S123 of H1.1, S2, S41, T154, and T173
of H1.2 in both differentiated and ES cells. However,
phosphorylation of S129, T146, T149, S159, S163, and
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S180 of H1.1; T180 of H1.2; and T155 of H1.3 were iden-
tified exclusively in ES cells, whereas S36 and S204 of
H1.4 were not phosphorylated specifically in these cells
(Fig. 5, Table S2 [25]). The identified phosphorylation
sites are located mainly in the C-terminal portions of
H1 variants, and some of these are located within the
methyl/acetyl-phospho motifs (S/T)PXK and (S/T)
PXZ, which are phosphorylated during mitosis, result-
ing in the modulation of chromatin states (Fig. 5) [15,
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Table. Potential modifications of the H1 histone variants from NIH/3T3, MEF, and ES cells identified by MALDI mass
spectrometry. The modifications previously described in the literature are shown in bold

NIH/3T3

H1.0

H12

H1.3

H14

H15

Acetylation K12, K132, K136, K137, K149
Phosphorylation S135, T153
Methylation K116, K121, K125

Acetylation

K17

MEFs

H1.0

H12

H13

H14

H15

Acetylation
Phosphorylation

K17

T18

Methylation K34, K46, K63, K195, K197, K200, K202, K205
Acetylation K17, K26, K143
Phosphorylation S111,T132,T149, S192

ES cells

H1.0

H12

H13

H14

H15

Methylation

K45, K74
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28—34]. It remains to be experimentally determined
whether the observed phosphorylation at some sites
and/or lack thereof at the other sites within H1 vari-
ants is functionally related to the maintenance of the
pluripotent states of ES cells and/or the differentiation
capacity of these cells.

Phosphorylation at S173 (H1.2) and S187 (H1.4) oc-
curs during interphase and is necessary for chromatin
relaxation and activation of transcription [15, 30—32].
Taking into account the fact that these serines lie with-
in the methyl-phospho switch motifs, methylation of
K172 of H1.2 in ES cells may promote phosphorylation
of the adjacent S173. The pS173 may, in turn, promote
acetylation of K172, leading to transcription activation.

Methyl /acetyl /phospho crosstalk

In addition to stand-alone PTMs of H1, we identified
several conjoint PTMs, such as the following methyl-
ation/phosphorylation sites: meK148/pT149-H1.1 and
meK179/pS180-H1.1 in ES cells, meK191/pS192-H1.5
in MEFs, which are located mainly in the C-terminal
regions of the proteins (Fig. 5). Their structural organ-
ization resembles the methyl-phospho switch regions
of core histones; one relevant example is the K9/S10
site in histone H3 [35—38]. The regulatory state of the
K9/S10 site is characterized by a stable meK and dy-
namic phosphorylation of the S/T residue located next
to K. Phosphorylation of S10 and S28 in H3 leads to
acetylation at K9 and K27, respectively, resulting in
transcription activation [39].

In addition, we also identified several other acetyla-
tion/phosphorylation sites, including acK17/pT18 in
H1.4 and H1.5 from NIH/3T3 cells, acK17/pT18 in H1.3
from MEFs, acK23/pT24 in H1.1 from MEFs, acK184/
pS185 in H1.0 from MEFs, acK153/pT154 in H1.2 from
MEFs and ES cells, acK154/pT155-H1.3 from ES cells,
and acK172/pS173 in H1.2 from ES cells. These acety-
lation/phosphorylation regions are characteristic of
both ES and differentiated cells. Their structural orga-
nization resembles that of the methyl-phospho switch
regions, with the only exception that methylation
changes to acetylation. It is possible that the mecha-
nisms of methyl/acethyl-phospho region regulation of
H1 are similar to those discussed above for the methyl-
phospho switch regions of core histones [40—41]. In this
scenario, acetylation of the lysines within the K(S/T)
motif may lead to transcription activation in a similar
fashion. This hypothesis, however, requires further
experimental validation.

Citrullination

Citrullination of H1.2 to H1.4 at R54 promotes acquisi-
tion and maintenance of the pluripotent cell state [42].
Mechanistically, it displaces H1 from chromatin, pro-
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moting an open chromatin state. Citrullination is the re-
placement of arginine with citrulline. This change leads
to the displacement of the peak of ERSGVSLAALK
peptide at 0.9844 m/z in the mass spectra. We observed
a “displacement” peak of low intensity in the region
of 1131.64 m/z, but the determination accuracy is ex-
pressed as 9.8 ppm. When analyzing the modifications,
we did not take into account peaks higher than 3.0
ppm. Therefore, we cannot clearly establish whether
citrullination takes place in our H1.2—H1.4 ES samples.
Additional studies and MS/MS mass spectrometry are
needed to verify this assumption.

Formylation

Formylation of H1 variants was revealed in H1.2 at the
K63-K85 and K97 positions in mouse tissues but not
in cell lines [43]. We did not identify H1 formylation
sites in H1 variants from the cells. The biological role
of formylation is unknown, but it has been suggested
that a specific enzyme can catalyze formylation dur-
ing demethylation of lysines by amine oxidase LSD1
[44].

Oxidation

We identified the oxidation site for methionine at the
M31 position for H1.0 of NIH/3T3 and MEFs but not in
ES cells (Table 2S [25]). Oxidation of methionine pro-
duces MetO (methionine sulfoxide) [45]. The positions
of M residues in proteins often contribute to the for-
mation of the hydrophobic bonds between their sulfur
atoms and rings of the aromatic residues of tryptophan,
phenylalanine, or tyrosine [46]. These hydrophobic
sulfur-ring bonds ensure the structural stability of
proteins, which is approximately equal to that of an
ionic salt bridge [46]. The interaction with M establishes
the optimal positioning needed to ensure antioxidant
protection of aromatic amino acids. Oxidation of me-
thionine to MetO destroys this hydrophobic bond and
may destroy the normal protein 3D folding. Oxidized
proteins are characterized by increased surface hy-
drophobicity [47], which correlates with the age-re-
lated increase in the MetO content [45]. The absence of
oxidation sites of H1 in ES cells is consistent with the
unlimited self-renewal potential of these cells.

CONCLUSIONS

In this study, we compared the PTMs of H1 from dif-
ferentiated and pluripotent cells. We have shown that
the total levels of methylation/acetylation of H1.3—
H1.5 in ES cells are similar to those in differentiated
cells; however, we have not found any significant
differences between the nature and positions of the
post-translational modifications in the H1.3-H1.5 pro-
teins of ES and differentiated cells. In addition to re-
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MEFs ASGSFKLNKK | AASGEAKPKA KRAGAAKAKK PAGAAKKPKK AAGTATAKKS TKKTPKKAKK PAAAAGAKKA KBPKKAKATK AKKAPKSPAK |AKT!
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duced H1.0 expression levels in pluripotent cells [20],
we have demonstrated that H1.0 and H1.2 are also
characterized by an increased acetylation in ES cells
(F1g. 5). The majority of acetylation sites in H1.0 and
H1.2 from ES cells are located within the C-terminal
domains of the proteins, namely in the 97—121 and
145—-169 regions. These regions are present within the
two known sub-domains of the C-terminal tail, which
are involved in the stabilization of condensed chro-
matin [20, 48]. Reduction of the positive charge of the
N- and C-terminal regions of H1 proteins could weak-
en the HI-DNA interaction at the entry/exit regions
of the core particle and prevent H1 interaction with
regulatory chromatin proteins such as HMGN and
HMGBI1/2 [49-50]. It is known that HMGB1/2-pro-
teins are able to displace histone H1, thus facilitating
nucleosome remodeling and modulating the accessi-
bility of nucleosomal DNA to transcription factors or
other sequence-specific proteins [51]. Displacement of
H1 from the nucleosome should lead to the formation
of an open chromatin structure, which is characteris-
tic of stem cell chromatin.

Thus, an open structure of chromatin in pluripotent
stem cells can be effected both by a reduction of the to-
tal level of H1 expression and by the presence of post-
translational modifications in H1 proteins (H1.0, H1.2),
which lead to disruption of their binding to DNA and,
as a consequence, to the formation of chromatin with
a looser structure. The biological role of the currently
best known H1 modifications is not clear yet. Further
studies are required to identify the functional roles of
PTMs and to elucidate their crosstalk. This knowledge
will contribute to a deeper understanding of the mo-
lecular processes that underlie the chromatin function
in pluripotent cells. ®

These studies were supported by the
Russian Foundation for Basic Research
(grant No. 18-04-01199). MALDI-mass spectrometry
analysis of H1 proteins was carried out using the
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SPbSPU”) with financial support from the Ministry
of Education and Science of the Russian Federation.
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