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Abstract

The forebrain is the brain region which has undergone the most dramatic changes through vertebrate evolution. Analyses
conducted in lampreys are essential to gain insight into the broad ancestral characteristics of the forebrain at the dawn of
vertebrates, and to understand the molecular basis for the diversifications that have taken place in cyclostomes and
gnathostomes following their splitting. Here, we report the embryonic expression patterns of 43 lamprey genes, coding for
transcription factors or signaling molecules known to be involved in cell proliferation, stemcellness, neurogenesis,
patterning and regionalization in the developing forebrain. Systematic expression patterns comparisons with model
organisms highlight conservations likely to reflect shared features present in the vertebrate ancestors. They also point to
changes in signaling systems –pathways which control the growth and patterning of the neuroepithelium-, which may have
been crucial in the evolution of forebrain anatomy at the origin of vertebrates.
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Introduction

Lampreys are a key species to study the evolution of

morphological traits at the emergence of craniates (or vertebrates).

As agnathans (meaning without jaws) and cyclostomes (meaning

round mouth), they are, together with hagfish whose embryology is

less advanced [1], the only extant representatives of one of the two

major taxa which arose in the vertebrate lineage about 500 million

years ago and gave rise to the two sister groups of vertebrates: the

agnathans and the gnathostomes. The description of shared

characters between lampreys and the more traditional vertebrate

model organisms -all belonging to gnathostomes- is therefore

crucial to address the emergence of the novelties, which

characterize vertebrates among chordates, and the amazing

diversification which arose within the taxon [2].

Lampreys are odd animals, with a peculiar anatomy, a

remarkably long and special life cycle, and an extended embryonic

and larval development when compared to the other widely-used

‘‘developmental biology models’’ (reviewed in [2,3]). In particular,

the brain of lampreys shows a number of unique characteristics –

for example it lacks myelin [4]-, although its overall aspect is

clearly vertebrate-like. Indeed, and contrarily to other non-

vertebrate chordates like tunicates and amphioxus, the lamprey

brain includes a real telencephalon, a forebrain region that is

derived from the anterior-most part of the alar plate of the neural

tube and constitutes a vertebrate synapomorphy. Nevertheless, the

lamprey telencephalon is significantly different from gnathostome-

type telencephalon during development and in adults, in terms of

size, shape, cytoarchitecture, and neuroanatomy. To begin with,

the embryonic lamprey telencephalon is remarkably tiny (in

relative proportions versus other brain regions) and shows very

slow and weak growth, and the resulting adult telencephalon is

strikingly cell poor. Second, the lamprey telencephalon (like the

rest of its brain) is not migrated, meaning that the neuronal cell

bodies remain in a ventricular position and do not invade the

brain tissue after they are born. This results in a very basic

cytoarchitecture, with nearly all neurons packed in periventricular

position [5], a feature which strongly contrasts with the extensive

migrations in both radial and tangential direction which take place

in gnathostome telencephalon, generating complex cytoarchitec-

tonic laminar or nuclear arrangements [6,7,8,9]. Third, the

lamprey telencephalon is only partially evaginated and a large part

of it is called the ‘‘telencephalon impar’’ [5] because it does not

inflate through the same morphogenetic movements as its lateral-

most part. The non-evaginated telencephalon is therefore similar

in terms of morphogenesis to the diencephalon. Fourth, the

lamprey subpallium does not present one of the two major

subpallial components described in gnathostomes, and lacks a

pallidum [10]. We and others have discussed the absence of a

pallidum in adults with respect to the absence of expression of

positional and regional identity factors [11,12] and signaling

molecules [12] during early embryonic development.

Here, we report an exhaustive molecular characterization of the

lamprey embryonic forebrain, aimed at understanding the

molecular and cellular mechanisms that shape this territory.

Expression analyses of more than 40 genes known to control
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proliferation, neurogenesis and patterning in the forebrain of

gnathostomes, were conducted in lamprey embryos, starting from

pre-hatching to larval stages. Systematic comparisons with

vertebrate model organisms suggest that changes in signaling

systems –pathways which control the growth and patterning of the

neuroepithelium- have been crucial in the evolution of forebrain

anatomy at the dawn of vertebrates.

Results and Discussion

In order to identify lamprey genes involved in forebrain

development, we used a candidate approach focused on genes

known to be involved in the control of cell proliferation,

neurogenesis, regionalisation of the central nervous development,

including components of the major signaling pathways. Searches

in our cDNA database using zebrafish sequences as queries led to

the identification of 89 specific hits. Following further identifica-

tion by reverse Blast and phylogenetic analyses, these hits could be

assigned to a total of 43 distinct genes described in Table 1.

Whole-mount in situ hybridizations were carried out using each

of the 89 probes on Petromyzon marinus embryos at stage (st.) 24

(hatching) and st. 26 (prolarvae), completed when necessary by

slightly earlier or later stages (st. 19–22/tailbud or st. 27/

ammocoete larvae). The distribution of the transcripts within the

depth of the neuroepithelium as well as the presence of expression

boundaries was further assessed on transverse and sagittal

histological sections. The results obtained for genetic systems

respectively involved in the control of cell proliferation, neuro-

genesis, regionalization and cell signaling are presented in the

following sections, under a ‘‘results and discussion’’ format for the

sake of simplicity and clarity.

Proliferation and stem cells
Proliferating Cell Nuclear Antigen (PCNA) labels cells in S

phase of the cell cycle (plus G1/G2) and is probably the most

widely used marker for proliferating/cycling cells throughout the

organism, including the neural tube. PCNA immuno-histochem-

istry has been used to characterize proliferation patterns in the

developing lamprey brain [13]. Here, we used in situ hybridization

with four independent clones for the PCNA coding gene (all

yielding identical results) to gain insight into proliferation patterns

in the embryonic and larval forebrain. As shown in Figure 1, both

st. 24 and st. 26 embryos showed a heavy expression as viewed in

toto, with some ‘‘banded’’ aspects along the antero-posterior axis of

the neural tube (Fig. 1A, B). As examined on sections, expression

was very strong around the ventricular zone (vz, relatively thick),

Table 1. List of the 89 lamprey clones whose phylogeny and expression was studied in the present paper.

Clone # Orthology Species Clone # Orthology Species

Proliferation/stem cell (20clones) Regionalization (continued…)

31,131,132,140 PCNA P.m. 17 FoxB1 L.f

40 Musashi2 L.f. 130 FoxC1/2

168, 169 Pisolo L.f. and P.m 37 SoxE2 (Sox 8/9/10) L.f

49 Notch P.m. 115, 117, 120 SoxE3 (Sox8) L.f

48, 133 Delta1 P.m. and L.f 116 SoxD (Sox 5/6/13) L.f

152–154 Cyp17 L.f. 122 SoxD1 (Sox 5/6/13) L.f

38, 42 SoxB1 (1/2/3) L.f. 41 Sox ? L.f

28, 137 Sox3 L.f. 24 Tcf7-like L.f

146, 147 HMGbox L.f. Midline/signaling (32 clones)

148 HMGbox L.f. 161, 162, 163, 164 Pleiotrophin L.f. and P.m

Neurogenesis (6 clones) 15,16,84,86,83,90,135 FgfR L.f. and P.m

88 Neurogenin1 L.f. gift Kate Hammond Fgf8/17 L.f

18 NeuroD2 L.f. 13 Fgf ? L.f

29, 123, 125, 127 Id2/3 L.f. 1, 2, 70 Wnt7 L.f

Regionalisation/patterning (31 clones) 73 Wnt5 L.f

22, 25 COUP-Tf/NR2F L.f. 94, 101, 105, 107, 108 Frizzled1/2 L.f. and P.m

23, 93 OtxA-Otx1/2 L.f. 95, 99 Frizzled2/7 L.f

53 Otx5/Crx L.f. 100, 136 Frizzled1/2/7 L.f

19, 64 Dbx1 L.f. and P.m 106 Frizzled5/8 P.m

114 LIM-kinase2 L.f. 102, 103 SFRP1/5 L.f

160 Ldb3 P.m. 96, 97, 98, 109 SFRP2 L.f. and P.m

8 Ldb1/CLIM1 L.f.

113 Pitx2 P.m.

71, 72, 74, 76–80 Pitx2 L.f.

20 Six1/2 L.f.

69 Pax3/7 L.f. Total clones 89

Table 1 gives a list of clones whose expression was studied in the present paper. The family, the orthology relationship (when possible), and the species of origin (P.m.,
Petromyzon marinus; L.f., Lampetra fluviatilis) of the clones are given. Sequences are accessible in Genbank under accession numbers FP243278 to FP243259.
doi:10.1371/journal.pone.0005374.t001
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but much more diffuse in the mantle zone (mz), and showed some

clear discontinuities separating vz progenitor domains (Fig. 1C, E,

F, dotted lines on Fig. 1C). At rostral forebrain levels, a fork-like

pattern of expression at the dorsal midline was a hallmark of the

dorsal thalamus highly proliferative zone that lies behind the

pineal organ (p in Fig. 1B, E) and the telencephalic/diencephalic

boundary (Fig. 1E, F, arrow; see also below and dorsal midline

markers). The discontinuous proliferation pattern observed along

the neuraxis is particularly noteworthy, and prefigures the

neurogenetic or histogenetic domains which themselves corre-

spond to the future functional units of the larval and adult brain.

In this context, proliferation is clearly absent in patterning centers

such as the zona limitans intrathalamica (zli, Fig. 1B, C) which

separates and patterns the prethalamic and thalamic regions of the

diencephalon (see [12] for zli and Hedgehog in embryonic lampreys).

Such an organization and pattern is highly similar to what has

been reported in fish [14,15], or using immunohistochemistry in

lampreys [13]. Moreover, here we show that the restriction of

proliferation to a small subset of ventricular cells is already well

established at st.24. This finding, together with the estimated very

long cell cycle length in lampreys [13] may partly explain the

especially slow growth of its brain.

To be compared to PCNA, Musashi (a RNA-binding protein;

reviewed in [16]), Notch, a single-pass transmembrane receptor

for the ligand Delta, (reviewed in [17]), Pisolo (a newly discovered

proliferation factor; Alessandro Alunni and Jean-Stéphane Joly,

personal communication) and two Sox B1 subgroup members

(HMG-box containing factor; reviewed in [18]) are markers of

neural stem cells and neural progenitor cells which were present in

our database (See also Figure S1 for high power pictures of

expression data and Figure S2 for phylogeny).

Musashi showed faint but clear expression along the ventricular

lining (Fig. 2A, B), with a few expressing cells also consistently

observed in the marginal portion of the neuroepithelium (often

showing a bilateral symmetrical distribution, arrows on Fig. 2B).

Notch mRNA expression was diffuse at st.24 and got nicely

restricted to a ‘‘thick vz’’ pattern at st.26 (Fig. 2C–E). Its ligand

Delta was similarly confined to the ventricular aspect of the

neuroepithelium, with additional weak but significant expression

in the marginal zone. Pisolo showed somewhat similar to musashi,

salt and pepper-like expression (Fig. 2I–K), with robust signal in a

‘‘thick vz’’ but also many scattered expressing cells in the

differentiating zone, which appeared quite randomly distributed,

i.e., with absence of an ‘‘interpretable’’ pattern. Finally, two

distinct Sox members (both belonging to the B1 group, see Figure

S5, AB) showed strong and conspicuous signal throughout the

depth of the neuroepithelium (vz to mz) at st.24 (Fig. 2L–N, L’–

N’). Expression was then excluded from the marginal zone at st.26,

remaining in an ‘‘enlarged vz’’ (interpreted as vz+svz) throughout

the neural tube (not shown). These distributions are fully

comparable to those of orthologous genes in fish for example

(ZFIN database for zebrafish Msi, Notch, Delta, Sox2; Alunni and

Joly for medaka pisolo). Of note, at the difference of PCNA,

Musashi, Notch and Delta expression did not show obvious

discontinuities in the A/P axis of the neural tube -although some

patches and sub-domains may be observed for Musashi and Pisolo

in the D/V axis at posterior levels. This is also consistent with data

from fish embryos, in which no discontinuity along the neuraxis is

Figure 1. Developmental expression of lamprey PCNA. A and B show in toto views, and C to G show transverse sections. In this and
subsequent figures, anterior is to the left and dorsal is up for in toto images, the stage is indicated in the bottom left corner (st.24, st.26, or else), and
section level is indicated in the top right corner of the photography (e.g., tel for telencephalon, di for diencephalon; see code in Figure 2 inset). In this
figure only and to help the reader through the paper, the planes of section are indicated by black bars in A for the sections in C and D, and by black
bars in B for the sections shown in EFG. In C, the dotted lines highlight the transverse domains which emerge from PCNA expression. In D, the circle
delineates the contours of the neural tube. In E and F, the arrows point to the typical fork-like pattern reproducibly found at the dorsal midline just
posterior to the pineal gland (p) and which probably corresponds to the dorsal thalamus (see text). zli: zona limitans intrathalamica; mz, vz, marginal
and ventricular zone. Pictures shown are from clones 31 and 132.
doi:10.1371/journal.pone.0005374.g001
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described for these ‘‘stem cell’’ markers. By contrast, Sox

expression displayed a clear A/P discontinuity at the mid-

hindbrain boundary (mhb; e.g., arrowhead on Fig. 2L; also seen

in zebrafish) and more posteriorly in the hindbrain and spinal

cord. The fact that these typical neural stem cell markers are

expressed in confined region of the neuroepithelium during

embryogenesis in lampreys, and in a highly comparable manner

when compared to studied gnathostome species, suggest that the

molecular mechanisms controlling neural ‘‘stemcellness’’ and the

renewal of neural progenitors are shared –at least in part- by all

the craniates.

Our in situ hybridization screen also revealed striking and

unexpected patterns for some genes not classically described as

‘‘proliferation genes’’, but which may be classified as such due to

their clear-cut patterns. Two of them are presented below.

These included two independent HMG-box family members

(non Sox, poorly resolved phylogenetic relationship between the

HMGb1 to 3 groups), which both showed an impressive and

banded pattern in toto (Fig. 2O–Q), strongly resembling the PCNA

pattern. Examination on sections confirmed the vz discontinuities

(therefore similar to PCNA, compare to Fig. 1) in the A/P axis,

and additionally revealed a complex pattern in the depth of the

neuroepithelium (Fig. 2Q): both the ventricular and the marginal

zone were positive for these two clones, leaving a non-expressing

neuroepithelial zone at the level of the putative svz. Their pattern

also showed some ‘‘trails’’ reminiscent of migration from the vz to

the mz, i.e., in the radial dimension of the neuroepithelium (arrows

on Fig. 2Q). This is interesting to relate to the comment of Villar-

Cheda and colleagues [13], who suggested that there is little if any

tangential migration in the lamprey brain. In line with this

conclusion and although the occurrence of tangential migrations

processes cannot be excluded at larval, metamorphic or even adult

stages, our results suggest that radial migrations prevail at

embryonic stages in the lamprey. Generally, tangential migrations

are considered as a powerful means of generating diversity in the

brain, they represent a shared mechanisms in the forebrain among

gnathostomes including sharks [6,9,19,20], and may therefore be a

jawed vertebrate innovation.

In the same category, three independent clones for Cyp17 (the

steroidogenic enzyme cytochrome P450 17alpha-hydroxylase)

showed an A/P banded pattern with strong vz/lower svz-mz

expression (Fig 2R–T). Clear expression boundaries and domains

in the telencephalon (between pallial and subpallial areas, Fig. 2T)

and diencephalon (between dorsal and ventral thalamic areas,

Fig. 2T) were detected on sections, and expression became

amplified and preferential in the forebrain at st.26. Together with

Cyp19 (also called brain aromatase), Cyp17 belongs to the large

superfamily of Cyp genes which have diverse functions in steroid,

lipid, and xenobiotic metabolism [21,22]. Cyp 17 and 19 are

specifically involved in the synthesis of neurosteroids, and their

expression is known to be particularly high in the brain of teleost

fishes, in which the high production of neurosteroids has been

related to the continuous neurogenesis through life [23]. They are

also expressed during development in fish and amphibians, where

their functions are more hypothetical [24]. The expression pattern

found here for lamprey Cyp17 may suggest a putative important

role in the control of proliferation and/or neurogenesis in specific

forebrain domains as discussed in fish, and suggests that a

significant synthesis of neurosteroids in the embryonic brain is a

shared character in anamniote craniates.

Overall, the above described expression for proliferating

progenitors/stem cells gene markers in the developing lamprey

brain were globally highly similar to the situation described in

jawed vertebrates (see summary Figure).

Neurogenesis
Our cDNA collection contained several independent clones for

Neurogenin (Ngn1) and its downstream mediator NeuroD2 (see

Figure S3 for phylogeny), which are two proneural basic helix-

loop-helix factors and key regulators of vertebrate neurogenesis

[25]. Expression of both transcription factors was, as expected for

proneural factors, strikingly different from those of proliferation

factors reported above (Fig. 3). Ngn1 showed strong expression

throughout the neural tube, at the exclusion of the proliferative vz

(Fig. 3A, compare to PCNA, Fig. 1C–G). A complete antero-

posterior series shown in figure 3A demonstrates important

discontinuities at mid-diencephalic level (putatively at the location

of the zli organizer, arrowhead) and at the mid-hindbrain

boundary (mhb), another important organizing center (Fig. 3B).

NeuroD2 on the other hand displayed high expression throughout

the nervous system, and only on lightly labeled embryos could be

discerned a post-migratory neural crest–like pattern encompassing

the condensing cranial ganglia (Fig. 3C–E). In the developing

neural tube, NeuroD showed a well recognizable ‘‘neurogenic’’

and Ngn1-like pattern (Fig. 3E).

In this section we also report a lamprey Id2/3 (for Inhibitor of

Differentiation) family member (Fig. 3F–H, see also next section

on patterning). Id proteins are HLH factors without basic amino

acid DNA binding domain, and act as dominant regulators of

proneural genes, possibly intervening in the maintenance of neural

stem cells [26,27]. We found the lamprey Id2/3 transcripts in the

ventricular zone and showing clear discontinuities, especially in

the diencephalon (arrows in Fig. 3H). The patchy appearance of

Id2/3 expression in lamprey (also discussed below), and its

presence in the vz where stem cells and progenitors reside

(Fig. 3H), are concordant with patterns reported in other species

and in agreement with its suspected functional role. Of note, the

present Id2/3 factor happens to be different from the Id gene

previously reported by Meulemans et al. [28], suggesting that

lampreys have at least two Id family members.

Thus, the molecular mechanisms for the genetic control of

neurogenesis appear well conserved in craniates, with a clear

ventricular to marginal progression of cells from proliferation to

neuronal specification to neuronal differentiation, respectively. In

addition, the absence of proliferation as well as neurogenesis at the

level of zones suspected to be ‘‘signaling zones’’ or ‘‘secondary

organizers’’ highlights the importance of these special centers to

organize the surrounding neuroepithelium and control cell fate. It

Figure 2. Expression of stem cell and proliferation markers in lamprey developing brain. A (toto) and B (sections) show lamprey musashi
2 (Msi2, clone 40). C,D (toto) and E (sections) show lamprey Notch (clone 49). F,G (toto) and H (sections) show lamprey Delta1 (clone 48). Vit, vitellus.
I,J (toto) and K (sections) show lamprey pisolo (pictures taken from clone 169). The white asterisk in panel I indicates background trapping in the
ventricle. L,M (toto) and N (sections) show a lamprey SoxB1 (Sox1/2/3) member, see also phylogeny for Sox genes in Figure S5). Toto views are from
clone 38, and sections from clone 42. L’,M’ (toto) show another SoxB1 member identified as Sox3 (pictures taken from clone 137). O,P (toto) and Q
(sections) show a lamprey HMG-box (toto view from clone 148, sections from clone 147). Arrows in panel 2Q indicate putative streams of radially
migrating cells. R,S (toto) and T (sections) show lamprey Cyp17 (toto views are from clones 154 and 153, sections are from clone 152). Dotted lines in
T highlight the ‘‘banded’’ pattern of expression of this transcript. The inset in the upper right corner gives the list of anatomical abbreviations used in
this and other figures.
doi:10.1371/journal.pone.0005374.g002
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also suggests that the genetic networks to accomplish these crucial

neuro-developmental processes were recruited in the craniate

ancestors of lampreys and gnathostomes, because non-craniate

chordates such as amphioxus or ascidians do not possess

equivalent signaling centers in their anterior-most neural tube

([12] and see also below, section on ‘‘signaling’’, and summary

figure).

Regionalisation and patterning
We and others have previously brought evidence for the (partial)

conservation of the plan of organization of the developing brain in

lampreys as compared to jawed vertebrates [11,12,29,30,31]. Our

cDNA collection contained several clones of interest in this

respect, which allow completing the picture of the patterning

events during forebrain development in lampreys (see. Figure S4

for phylogenies).

As described previously [32,33], OtxA expression territory is

reminiscent of the one of Otx1 and Otx2 in jawed vertebrates,

spanning the forebrain and midbrain, with a sharp posterior

boundary (Fig. 4A). Within the forebrain, a number of clones

reported in Figure 4 highlighted transverse boundaries (i.e., in the

A/P axis), consistent with a neuromeric/prosomeric mode of

forebrain development in lampreys as well as in other vertebrates.

Genes such as FoxB1 (Fig. 4B), COUP-TF/NR2F (Fig. 4C), Dbx1

(Fig. 4H), Pitx2 (Fig. 4JKL), LIM-kinase 2 (Fig. 4F) or Sox8/9

(Fig. 5C and see below) displayed banded patterns which

confirmed the neuromeric nature of the embryonic brain (see

also HMG-box and Cyp17 ‘‘banded’’ patterns on Fig. 2O, R).

This was particularly striking in the diencephalon, where many of

the genes shown in figures 4–5 displayed transverse and highly

specific and nested expression domains. It is reasonable to suspect

that these factors (among which a vast majority of transcription

factors) confer regional identity and/or neuronal identity to

expressing cells.

Remarkably, the telencephalon appeared to lack expression for

several of this category of development regulators, although our

search in the database was clearly oriented towards forebrain-

specific genes. Indeed, neither COUP-TF (Fig. 4C), Dbx1

(Fig. 4G), Six1/2 (Fig. 4I) nor Id2/3 (Fig. 3F), were expressed in

the lamprey telencephalon (delineated by dotted lines on in toto

views). By contrast, these factors share highly similar expression

patterns in other brain regions with their gnathostome counter-

parts. Indeed and for example, in post-telencephalic brain,

expressions of lamprey COUP-TF or Dbx1 are highly similar to

Xenopus or zebrafish COUP-TF1 ([34] and ZFIN) and zebrafish

Dbx1a (ZFIN), respectively. Unlike the telencephalon, the

diencephalon therefore appeared remarkably conservative in

terms of patterning events (see also below, signaling systems).

Figure 3. Developmental expression of proneural factors in lamprey brain. A and B show Ngn1 expression (clone 88). A shows a complete
antero-posterior series through forebrain of a stage 24 embryo, and B shows a horizontal section. The zli (zona limitans intrathalamica) and mhb (mid-
hindbrain boundary) signaling centers are indicated. ov, otic vesicle. C,D (toto) and E (section) show NeuroD2 expression (pictures from clone 18). The
arrow in E points to NeuroD2-expressing post-migratory neural crest. vit, vitellus. tg, fog, and pllg point to the trigeminal, facial/octaval and posterior
lateral line ganglia, respectively. See Barreiro-Iglesias et al. 2008 in the open Journal of Zoology (Open access, indexed in Google Scholar) for
localization of the lamprey ganglia. ov, otic vesicle. F,G (toto) and H (sections) show Id2/3 expression (toto views from clone 123, sections from clone
127). The dotted lines in F delineate the telencephalon. The black lines in G indicate the section plane of sections in panel H. Arrows indicate
concentration/patches of ventricular expression. pit, pituitary.
doi:10.1371/journal.pone.0005374.g003
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In contrast, we found numerous clones expressed in the

pituitary: Pitx2 (Fig. 4J–L), Six1/2 (Fig. 4D, E), Id2/3 (Fig. 3F–

H), and Ldb3 (Fig. 4N) were strongly expressed in the pituitary

placode and anlage at various stages, and allowed following the

development of this structure, from the early stages when close

apposition between basal diencephalon and oral epithelium is seen

(Pitx2 at st.24, Fig. 4J), to later stages when the various elements

involved are clearly individualized (st.26 for Pitx2, Six1/2, Id2/3;

Figs. 4K, 4E and 3H), and finally to the development taken by the

organ at early ammocoete stage (Ldb3 at st.27, Fig. 4N). Such a

representation of ‘‘pituitary genes’’ supports with developmental

data the idea that this organ and its associated neuro-secretary

Figure 4. Developmental expression of regionalization and tissue patterning genes in lamprey. The dotted lines on in toto views
delineate the telencephalon. pit, pituitary. A, OtxA (clone 93). The Lampetra fluviatilis clone shown is orthologous to the Lampetra japonica OtxA/Otx2
reported by Ueki et al. (1998) [33]. B, FoxB1 (clone 17). C, COUP-TF/NR2F (clone 25). D (toto) and E (sections) show Six1/2 expression (clone 20). Note
the conspicuous expression in the eyes and pituitary (pit). F, LIMk2 (clone 114). G, Pax3/7 (clone 69). H (toto) and I (sections) show Dbx1 expression
(clone 19). J (toto), K (sections) and L (toto, ventral view, anterior is up) show Pitx2 expression (clone 113). M,O (toto) and N (section) show Ldb3
expression (clone 160). M is a lateral view at trunk level. N is a transverse section to show expression in somites.
doi:10.1371/journal.pone.0005374.g004
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functions is evolutionary ancient [35,36,37], and that a number of

specification cascades and genetic networks were already fixed in

the last common ancestor of gnathostomes and lampreys for its

development.

Our gene/cDNA collection also illustrated the shared genetic

processes involved in dorso-ventral patterning of the neural tube in

lampreys and jawed vertebrates: Pax3/7 (Fig. 4G and see also

[12,38]), Dbx1 (Fig. 4H, I), or Id2/3 (Fig. 3G) showed longitudinal

expression domains which clearly correspond to D/V subdivisions

of the brain such as the roof plate (Pax3/7 posterior to the di-

mesencephalic boundary; Id2/3 in its post-mhb domain) or

specific progenitor zones which course through the longitudinal

brain axis (Dbx1 in its post-mhb domain).

As we have previously reported the analysis of LIM-homeodo-

main transcription factors in lamprey brain [12,39], a special

comment should be done concerning Ldb/Clim cofactors of LIM-

homeodomain, for which we found two independent and distinct

clones. Figure 4 (M, N) shows one of them, identified as Ldb3,

expressed in a highly specific and restrictive manner in the somites

up to stage 26, and then in the pituitary at amnocoete stage

(described above). This is again well-conserved with pituitary

development in other vertebrates, as the Ldb cofactors were

originally discovered for their interactions with pituitary specifying

LIM-homeodomain factors [40]. The other Ldb/Clim clone

corresponded to Ldb1/CLIM1 (Figure S4, H) and displayed a

ubiquitous type of expression (not shown), thereby ensuring that

LIM-hd factors can be recruited to their target promoters to exert

their transcriptional regulatory effects throughout the embryo.

A short special mention should be added for a small list of clones

expressed in neural crest, and therefore interesting in terms of

Figure 5. Developmental expression of four lamprey Sox family members. The dotted lines on in toto views delineate the telencephalon. A
(toto) and B (sections) show a group E (Sox8/9/10) member (clone 37, orthologous to P.m SoxE2). Arrows point to neural crest-derived expressing
ganglia. C (toto) and D (section) show Sox8 expression (clones 115,117,120, orthologous to L.j SoxE3). Shown are clones 115 (C, st.24) and 117 (C, st.26
and D). Dotted lines in D delineate the transverse diencephalic domains. E,G (toto) and F,H (sections) show expression of two lamprey group D (Sox5/
6/13) members. Clone 116 (E,F) is expressed in both the brain and the neural crest (arrows in E and F), whereas clones 120 (G) and 122 (H) expression
is restricted to the brain.
doi:10.1371/journal.pone.0005374.g005
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ectodermal tissue patterning. Sauka-Spengler and collaborators

[41] have recently described lamprey neural crest gene regulatory

network, and several clones found in our database confirmed their

results, such as NeuroD2 (Fig. 3E), ZicA (not shown), or Sox genes

(below).

Finally, we had the opportunity to analyze the expression of

several independent and distinct members of the Sox family. Of

note, those of the Sox1/2/3, i.e., B1 group have already been

reported above in the ‘‘proliferation’’ class. There are 20 SRY-

related high-mobility-group box (Sox) transcription factors in

mammals, falling into 8 groups. Their HMG-box domain fulfills

the function of DNA-binding, with the peculiarity that it binds

DNA in the minor grove (reviewed in [18]). As a whole the Sox

family controls cell fate and differentiation in a multitude of

processes, with special emphasis in the development of the brain

and neural crest [18,42]. We found clones for two members of the

SoxE class (Sox8/9/10 genes, with critical role in neural crest

development). One of them, orthologous to Petromyzon SoxE2

recently isolated by McCauley and Bronner-Fraser [43] , was

prominently expressed through neural tube, and in post-migratory

and condensing neural crest cells (Fig. 5A, B). Of note, another

lamprey Sox clone with unclear orthology showed the same type of

expression pattern (not shown). In addition, another SoxE group

member orthologous to Lenthenteron japonicum SoxE3 isolated by

Ohtani et al. [44] and putatively identified as Sox8 (Figure S5)

displayed a striking regionally-restricted, banded pattern in the

forebrain, but with no detectable expression in the neural crest

(Fig. 5C, D).

Among the SoxD group (Sox5/6/13 genes, with highly variable

roles such as in skeletal, neural crest, cardiac, glial, or erythrocyte

development), we retrieved 2 clear lamprey members, probably

resulting of a lamprey-specific duplication (Figure S5, D, E). One

clone displayed a complex banded forebrain (Fig. 5E) and typical

neural crest pattern (arrows on Fig. 5E, F), and was highly

expressed at st.24 but virtually unexpressed at st. 26 (not shown).

Its paralogous SoxD member, the Lampetra fluviatilis orthologue of

the recently isolated Lenthenteron japonicum SoxD1 [44], had similar

expression in the forebrain but not the neural crest, and was

persistently expressed at st. 26 (Fig. 5G, H). Of note, three out of

these four Sox genes, in addition to the B1 group members

described earlier, were expressed in the developing telencephalon,

suggesting that the members of this family of transcription factors

were already recruited to the anterior-most aspect of the neural

tube in the common ancestor of all craniates. In agnathans also,

Sox genes thus appear like a crucial gene family to control nervous

system development and patterning (e.g., [42]), although some

function shuffling events have probably happened in the family

through vertebrate evolution.

Midline and signaling pathways
We have previously reported that lamprey Hedgehog (Hh)

shows significant differences in its expression pattern when

compared to gnathostomes, particularly in the forebrain, and we

have suggested that such modification of midline signaling -which

govern the growth and patterning of the neuroepithelium- may be

a motor for forebrain evolution. Here follows a survey of our

cDNA library for other signaling systems, including the Fgf

(Fibroblast Growth Factor, Wnt (Wingless-Int), and pleiotrophin

signaling pathways, therefore allowing a more global picture of the

signaling systems at work to control the morphogenesis of the

lamprey forebrain.

Fgf (Fibroblast Growth Factor) signaling. Seven

independent clones for a unique FgfR were found in our library,

allowing assembling a long contig for phylogenetic analysis. This

FgfR case is exemplary of an often encountered situation with

unresolved orthology relationships between the lamprey and

gnathostome sequences (Fig. 6A, and see also figures S2 to S7).

All seven clones for this FgfR showed identical expression patterns

(not shown), including a prominent transverse band in the

diencephalon corresponding to the zli and additional fainter

expression zones in the posterior diencephalon, mesencephalon,

hindbrain and spinal cord (Fig. 6B–E). At st.26, FgfR expression

was also detected in the eyes (Fig. 6D) and the lips (arrowhead in

Fig. 6D). Thus, lamprey FgfR pattern appears fairly similar to

zebrafish FgfR3/4 but does not cover the diffuse expression

throughout the forebrain (and particularly the telencephalon,

noted t in Fig. 6E) as zebrafish FgfR1/2 do [45]. Concerning Fgf

ligands, the only clone we retrieved from the library was not

expressed at the stages examined, and we therefore analyzed the

pattern of an Fgf8/17 previously isolated by Hammond and

Whitfield [46] for their study of the lamprey otic vesicle. Fgf8/17

was expressed from the earliest stages examined (neurula) at the

mid-hindbrain boundary in a strong and thick line (Fig. 6F).

Strikingly, the anterior neural ridge/rostral telencephalic

expression domain, which is also a hallmark of gnathostome

Fgf8 was markedly absent, and remained absent at later stages 24

and 26 (black asterisk in Fig. 6F, G). A telencephalic Fgf8/17

domain could only be detected at stage 27, at the rostral tip of the

telencephalon, together with additional expressing zones in the

hypothalamus and dorsal diencephalon (Fig. 6G, H), which

recapitulates the archetypal gnathostome ‘‘early’’ Fgf8 pattern.

This finding of a putative significant heterochrony in telencephalic

Fgf8/17 pattern was unexpected since a true telencephalon,

subdivided in pallial and subpallial components, is clearly present

(although poorly developed) at these stages. This raises the

possibility that at early stages, the signaling mechanisms, which

involve the Fgf8/17 secreting anterior neural ridge as one key

signaling center in jawed vertebrates [47], may substantially differ

in the lamprey. However, it remains equally possible that an as yet

unidentified paralogous form may be present in the lamprey and

expressed prior to stage 27. For instance, in zebrafish, Fgf3 early

expression and function are partially redundant with those of Fgf8

[48] and an Fgf8 paralog, Fgf19, was demonstrated to play a role

in ventral telencephalic and diencephalic patterning [49]. An

exhaustive characterization of the Fgf family in lamprey based on

genomic data will be crucial to assess the possibility of similar

expression and function shuffling processes in the Fgf family in the

lamprey.

Wnt (Wingless-Int) signaling. Our database was rich in

Wnt pathway components, allowing a thorough comparative

analysis of ligands, receptors, and antagonists of this crucial

pathway for forebrain specification and development (Figures S6

and S7 for phylogenetic analyses).

Concerning Wnt ligands, the library contained 4 independent

clones for a Wnt7 and a Wnt5 lamprey member, respectively

(Fig. 7A–E). Both Wnt factors showed a nested expression as a

sharp transverse band through the diencephalon corresponding to

the zli (compare to FgfR above or Hh in [12]), at st.24 as well as at

st.26. The Wnt5 clone additionally presented a low level of

expression throughout the neural tube (Fig. 7D, E). Thus, it

appears that Wnt ligands are preferentially and highly secreted

from a mid-diencephalic signaling centre in lampreys, which is

consistent with conservation in lamprey of the essential role of Wnt

signaling in promoting diencephalic identity (e.g., [50]). This

conservation is strongly supported by the expression of Tcf7 as a

sharp and large domain restricted to the diencephalon (Fig. 7F–H),

that is in an exactly identical manner to the Lef-Tcf factors
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downstream of Wnt signaling in other vertebrates (e., g., see ZFIN

for zebrafish).

We next retrieved a large number of clones (10 total) for the

Wnt receptors Frizzled. Three of them showed a typical banded

pattern, with two main transverse expressing zones located just

rostrally and just caudally to the Wnt-producing zli. They are

shown in Fig. 7I–N and they all belong to the Frizzled 1/2/7

orthology class in the Frizzled receptor superfamily (Figure S7).

Lamprey Frizzled 1/2/7 expression additionally encompassed the

telencephalon (Fig. 7I, J, K, N), and was also present in the

prechordal plate, a vertebrate-specific, rostral-most ‘‘extension’’ of

the notochord with important signaling properties and particularly

crucial for the development of the hypothalamus (Fig. 7K, arrow).

Although the frizzled members in mouse [51] or zebrafish (ZFIN

database) show less spectacular and more widespread patterns

than those found here in lamprey embryos, they were reported

absent from the Wnt-secreting, zli region (see summary figure).

Likewise, the zebrafish prechordal plate also expresses Frizzled

receptors [52]. In summary, these similarities suggest that the main

source of Wnt ligand in the zli signals through Frizzled receptors

both anteriorly and posteriorly in the diencephalon, in the lamprey

as in other vertebrates.

Figure 6. Developmental expression of Fgf signaling components in lamprey forebrain. A, phylogenetic tree (NJ) of FgfR clones. A contig
was assembled out of 7 independent clones (see Table 1), and analysis clearly shows that the unique FgfR present in our database emerges at the
base of the tree, and cannot be assigned a robust orthology. B,D (toto) and C,E (sections) show expression of lamprey FgfR. Toto pictures are taken
from clones 15 and 83, while section pictures are taken from clones 15 and 16. The right panel in E shows a saggital section, with dotted lines
delineating the brain and telencephalon. F,I (toto) and G,H,J (sections; G saggital, H and J coronal) show Fgf8/17 expression (cDNA gift from Kate
Hammond [46]). The asterisks in F and G point to the absence of Fgf at rostral telencephalic level at st. 21, whereas the mhb expresses strongly the
transcript. Also note faint expression in the presumptive pharynx (arrowheads). The arrows in I and J points to rostral telencephalic expression at the
rostral midline at stage 27. At st. 27, strong labeling is also present in the lips and pharynx. White asterisk in I: background trapping in branchial arch.
ddi, dorsal diencephalon; h, hypothalamus; p, pineal gland; ph, pharynx.
doi:10.1371/journal.pone.0005374.g006
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Figure 7. Developmental expression of Wnt signaling components in lamprey forebrain. A,B (toto) and C (saggital section) show Wnt7
expression pattern (clone 70). In C the arrow points to the prechordal plate (pcp) which does not express Wnt7. D,E, expression of Wnt5 in toto
(clone73). F,G (toto) and H (section) show Tcf7-like (clone 24) expression as a very discrete and sharp domain in the diencephalon. I,J (toto) show
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SFRPs (Secreted Frizzled-Related Protein) are crucial compo-

nents of the Wnt pathway, as they act as modulators or antagonists

of Wnt signaling (reviewed in [53]). Here we present the

expression patterns of lamprey SFRP1/5 (2 independent clones)

and SFRP2 (4 independent clones) which, importantly, clearly

belong to the group 1, 2, and 5 of SFRPs after phylogenetic

analysis (Figure S7). Both lamprey SFRPs showed remarkable and

almost identical patterns, being expressed exclusively as a sharp

and restricted domain in the basal diencephalon, at the base of the

hypothalamus (Fig. 7O–T). None of these SFRPs were transcribed

in the telencephalon (Fig. 7O, P and 7R, S). This contrasts with

the results obtained in gnathostomes in which an inhibition of Wnt

signals by SFRPs (particularly SFRP1/SFRP5 and Tlc in

zebrafish) is known to be required to specify and promote the

telencephalic territory [54,55,56]. A schematic comparison with

zebrafish, where the Wnt pathway has been thoroughly studied is

given on the summary Figure (schematized from data from ZFIN

and [56]; the situation in tetrapods is highly similar to zebrafish,

e.g., [57]). It suggests that the major difference in Wnt pathway

distribution between the two species may be related to the absence

of Wnt inhibitors/antagonists expression in the developing

telencephalon of lampreys, at least up to stage 26. A more

thorough analysis at later stages will be necessary to further

address this point, but it is attractive here to relate the lack of

SFRPs to the tiny size (and possibly the fewer subdivisions,

although there are no functional data available from model

organisms to support this to our knowledge) of the telencephalon

in embryonic lampreys. In this hypothesis, the lamprey could

exemplify the evolutionary consequences of changes in the spatio-

temporal expression of the modulators of a signaling pathway –i.e.,

not the ligand itself- on the anatomy and morphogenesis of a

structure.

Midkine signaling. Pleiotrophin (Ptn) is a secreted heparin-

binding growth factor and developmentally-regulated cytokine

with properties related with tumorigenesis, and is also involved in

neural development where it controls neurite outgrowth or

neuronal migration. Together with MK (midkine), Ptn belongs

to the Midkine family -which is thus formed by only two members.

Zebrafish and Xenopus MK can induce neural tissues, and both

MK and PTN are localized in the radial glial processes of the

mouse embryonic brain (reviewed in [58]). In the present study,

we found four independent clones for a lamprey pleiotrophin,

which unexpectedly showed a spectacular dorsal midline type of

expression profile (Fig. 8; see also Figure S8 for phylogeny). This

expression was somehow diffuse at st.24 in the dorsal-most aspect

of the anterior neural tube and particularly the dorsal

telencephalon (Fig 8A, D), and became strong and heavily

concentrated towards the telencephalic/diencephalic dorsal

midline at st. 26 (Fig. 8B, B’), also highlighting the previously

mentioned typical fork pattern of the dorsal thalamus and di-

expression of Frizzled 1/2 (I shows clone 101 and J shows clone 94). K (saggital section) shows another Frizzled 1/2/7 member (clone 100). Dotted
lines delineate the brain, telencephalon and notochord, and the arrow points to the Fzd-expressing prechordal plate (pcp). L,M,N show in toto views
of Frizzled2/7 (clone 95) through stage 27. O,P (toto) and Q (section) show SFRP1/5 expression. O and Q show clone 103 whereas P shows clone 102.
R,S (toto) and T (section) show SFRP2 expression. R and T show clone 97 whereas S shows clone 96. On whole-mount pictures, dotted lines delineate
the telencephalon. Arrows in Q and T indicate basal hypothalamic expression. White asterisks indicate background trapping in the mouth or
branchial arches. np, nasal placode; hp, hypophyseal placode.
doi:10.1371/journal.pone.0005374.g007

Figure 8. Developmental expression of pleitrophin (Ptn) in lamprey forebrain. A to C (toto) and DE (sections) show Ptn expression. AB
show clone 161 and B’CDE show clone 163. Note that expression is diffuse at stage 24 (A, D) and condenses at the dorsal midline at stage 26 (B, B’)
and 27 (E). Arrows in A point to dorsal telencephalic and dorsal diencephalic expression. Arrows in B indicate a thin line of expression in lower lip (ll)
and ventral aspect of the branchial arches. In B’ and D, rp indicates the roof plate. Note the difference of expression level at the di-mesencephalic
border (arrowhead in B’) between the pretectum (pt) and the tectum. In C, the arrows point to the Ptn-expressing tel-diencephalic boundary. E shows
an antero-posterior series through the telencephalon and tel-diencephalic boundary, highlighting the relationship of the Ptn pattern and the
suspected morphogenetic movements in the vicinity of the pineal gland (p). tdb indicates the telencephalo-diencephalic boundary region. rp, roof
plate; dt, dorsal thalamus; p, pineal gland; pt, pretectum.
doi:10.1371/journal.pone.0005374.g008
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telencephalic boundary (Fig. 8E, compare with PCNA for

example). At st.27, expression spread to the telencephalic/

diencephalic boundary zone (Fig. 8C, arrows). Notably, the roof

plate of other studied vertebrates does not express Ptn or Mk. In

zebrafish, Mk1 and Mk2 are rather expressed in the dorsal-most

or ventral-most parts of the ventricular neuroepithelium, but are

excluded from the roof or floor plate, respectively [59], while Ptn

is strongly expressed in the floor plate (Zfin). On the other hand,

mouse Ptn is expressed in the dorsal half of the neural tube but

not the roof plate (Fan et al., 2000). As stressed out by Winckler

and colleagues [59] it appears that the expression and function of

these midkines are highly divergent among vertebrates (mouse,

Xenopus, chick and fish). Our present findings in agnathans

reinforce this trend, and further suggest that this signaling

pathway is highly versatile and may be recruited to very

divergent processes, implicating also that the constraints on its

regulation of expression must be surprisingly weak. In this frame,

we would like to stress that from a morphogenetic point of view,

these differences in Ptn expression among vertebrates are

interesting to relate to the highly divergent cell movements

involved in telencephalic formation: evagination, more or less

pronounced, in tetrapods; eversion in teleost fishes; or partial

evagination in lampreys. The dorsal midline is thought to be

instructive in directing these movements. The expression of

lamprey Ptn being unique in the tel-diencephalic roof plate may

underlie the singular growth and morphogenesis of its dorsal

telencephalon.

Conclusions
The expression analysis of 43 genes involved at various steps of

(fore)brain development in lampreys provides a global picture of

forebrain embryogenesis in this agnathan species, and a better

understanding of the mechanisms which have allowed the

emergence of the ‘‘craniate’’ type of forebrain (Fig. 9A–C).

As stated in introduction, a major evolutionary novelty in the

brain of craniates is the presence of a forebrain, including a true

telencephalon and a diencephalon. It is striking to see that in the

lamprey lineage the developmental genetic networks which are

responsible for specification and patterning of the diencephalon

(including the pituitary) are well established, leading to the

formation of a typical ‘‘craniate-type’’ diencephalon, organized

into transverse subdivisions, and with the zli organizer having a

suspected crucial role in the establishment of this organization. At

the difference of the diencephalon which appears very ‘‘conser-

vative’’, we believe that major insights on the diverse mechanisms

which may have been used in the course of evolution for

telencephalic evolution emerge from our comprehensive survey.

We propose two main and probably strongly inter-related

Figure 9. Conserved proliferation and neurogenesis processes, but divergent signaling mechanisms in the forebrain in lampreys
and gnathostomes. A and B summarize the main findings of this study. In A, the neurogenesis pattern schematized is highly comparable to what
has been found in jawed vertebrates. By contrast, in B, four major signaling systems which control the growth, the patterning, and the
morphogenesis of the forebrain are depicted, and the type of difference when compared to jawed vertebrates is indicated. C provides a more
detailed comparison of the Wnt signaling pathways in embryonic lampreys (present data) and in zebrafish (compiled from ZFIN and [56]). It should be
noted that the absences of expression we observed for signaling systems in telencephalon await for evidences from functional and/or complete
genomic data that these apparent lacks are not compensated by other family members.
doi:10.1371/journal.pone.0005374.g009
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mechanisms: (1) the de novo expression and recruitment of regional

specification genes in the anterior-most part of the alar plate (from

which the telencephalon is exclusively derived). In embryonic

lamprey telencephalon, orthologues of gnathostome telencephalic-

expressed genes such as COUP-Tf, Dbx1, Six1/2 or Id2/3 were

not transcribed. This confirms and extends previous reports using

candidate approach strategy, where a typical ventral telencephalic

specification factor such as Nkx2.1 was found unexpressed in this

forebrain region in lampreys [11,12]. We suggest that the

recruitment of some new factors to pattern the gnathostome

telencephalon originates at least in part in upstream signaling

events, i.e., (2) a strong contribution of signaling systems, whose

components appear to be significantly modified both in space and

time between lampreys and gnathostomes. Extending our previous

findings on the Hedgehog pathway, we provide here new

examples of potential heterochronies (Fgf8/17 pathway) or

differential modulation of signaling (SFRPs in the Wnt pathway)

or else totally different patterns (pleiotrophin signaling) which may

have deep impacts on lamprey telencephalic patterning and

morphogenesis (Fig. 9B). Our findings highlight the notion that

morphological changes rather occur by modifying gene regulation

than sequence (see [60]) and open interesting and new perspectives

in the field of the study of lamprey regulatory sequences and

comparative genomics.

As opposed to these signaling and patterning divergences

observed in the telencephalon, our survey clearly indicates that the

basic molecular mechanisms for proliferation and neurogenesis as

well stemcellness throughout the neural tube are shared among

craniates (Fig. 9A). This finding was relatively expected, as the

discussed factors are recruited to cellular processes which appear

to be common to all deuterostomes, and even more so, have been

suggested to reflect conserved cell type differentiation in the last

common bilaterian ancestor [61]. It is nevertheless interesting to

observe, in lampreys, the presence of neurogenic zones charac-

terized in the anteroposterior axis of the forebrain by patches of

proliferation/neurogenesis, and which are separated by low/no

proliferation zones, often corresponding to signaling centers

locations (Fig. 9A). This mode of forebrain development is

typically ‘‘vertebrate-like’’ and was therefore recruited in the last

common ancestors of craniates.

Methods

cDNA library, sequencing and phylogenetic analyses
Three lamprey cDNA libraries (embryonic-prolarval (st. 20–26)

and adult brain and eye in Lampetra fluviatilis or larval to post-

metamorphic heads in Petromyzon marinus) were constructed in

pSPORT1 vector using the directional cloning protocol of the

Superscript plasmid system with Gateway technology (InVitrogen).

They were plated, arrayed robotically and submitted to large-scale

EST sequencing on an ABI3730xl by the Genoscope (Evry,

France). Sequencing was conducted using the reverse universal

primer, which generates sequences in the 59 region of inserted

cDNA fragment. The global gene content of the cDNA database

thus generated will be reported elsewhere. Searches for genes

involved in forebrain formation were achieved by a candidate gene

approach, using BLASTN searches of our lamprey cDNA

database with zebrafish sequences as queries. The identity of the

hits was first confirmed by a reverse BLASTN analysis on

Genbank. Orthology relationships were further assessed by

phylogenetic analysis (shown in supplementary figures or available

on request). For this purpose, lamprey sequences were aligned with

family members in other species, and phylogenetic trees were

constructed with the Neighbor Joining method using MEGA4.0.

In cases when both L. fluviatilis and P. marinus sequences were

retrieved for a single gene, a nucleotide identity comprised

between 98% (e.g., between clones 19 and 64 for Dbx1) and 100%

(e.g., between clones 113 and 77 for Pitx2, see Table 1) was

observed on overlapping fragments, suggesting a close relationship

between the two lamprey species. This conclusion was also

supported by the expression analysis, since identical, highly

specific signals were reproducibly obtained on P. marinus embryos

with homologous and heterologous probes (see figure legends and

Table 1 for clone details).

Sequences for the L. fluviatilis and P. marinus sequences analyzed

in this manuscript have been submitted to Genbank and

correspond to accession numbers FP243278 to FP243359.

In situ hybridization
Selected clones were picked from the arrayed cDNA library,

and checked for insert presence and size by restriction digestion

(BamH1+EcoR1digest). The insert was then PCR-amplified using

T7 and Sp6 primers, and 1–10 ng of the PCR product was used as

template for digoxygenin-labeled RNA probe synthesis using

digoxygenin 11-UTP (Roche) and Sp6 RNA polymerase (Pro-

mega) following standard protocols. Labeled RNA probes were

purified on NucleoSpin RNAII columns and stored in 50%form-

amide at 280uC until use. In situ hybridization was carried out

using an automat (Intavis InsituPro VS) in the following

conditions. Briefly, P. marinus embryos/prolarvae/larvae were

rehydrated, bleached (6%H2O2, 1 h), permeabilised by protein-

ase K treatment (10 mg/ml, 45 min), and postfixed (4%

paraformaldehyde, 20 min). Pre-hybridization and hybridization

medium contained 50% formamide, 5XSSC, 2% blocking

powder (Boehringer), 50 mg/ml heparine, 0.1 mg/ml tRNA,

0.5 M EDTA, and 10% CHAPS. Hybridization was carried out

at 70uC for 16 hours. After post-hybridization washes, embryos

were incubated in blocking buffer (PBS/Triton 0.1% containing

15% serum and 2 mg/ml BSA) for 3 hours at 4uC before

addition of the alkaline phosphatase coupled anti-digoxygenin

antibody (1:1500, Roche) for 12 hours at 4uC. After washes,

color reaction was performed in the presence of NBT/BCIP

(Roche). For in toto observation of expression patterns, embryos

were dehydrated and cleared in benzyl-benzoate before mount-

ing in Entellan. Otherwise they were dehydrated through

ethanol and butanol steps, paraffin-embedded and sectioned

(8 mm thick) on a microtome.

Photographs were taken on a Nikon E800 microscope equipped

with a Nikon Dxm1200 camera, and mounted for figures with

Adobe Photoshop. Images were corrected for brightness and

contrast only.

All the patterns shown were obtained in P. marinus, using either

homologous or heterologous probes from the closely related L.

fluviatilis species. In the latter case, highly specific patterns were

always observed and we directly checked for pattern identity

between the two species by a parallel analysis in L. fluviatilis for

several probes (Otx and LIM-homeodomain). Stages were

determined according to the staging table established for L.

reissneri by Tahara [62].

Supporting Information

Figure S1 High power magnification photographs through the

diencephalon of embryonic lampreys, showing the distribution of

transcripts for the ‘‘proliferation class’’ of clones reported in Figs 1

and 2, in the depth of the neuroepithelium (VZ, SVZ, and MZ).

Gene names are indicated.

Found at: doi:10.1371/journal.pone.0005374.s001 (4.63 MB TIF)
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Figure S2 Phylogenetic analysis of ‘‘proliferation/stem cell’’

class of clones. A, clone 140 (identical to clones 31, 131, 132,

smaller clones included into cl.140), shown in Figure 1, corre-

sponds to lamprey PCNA. B, clone 40, shown in Figure 2AB,

corresponds to a lamprey Msi2 ortholog. C, clone 49, shown in

Figure 2CDE, corresponds to a lamprey Notch with non-defined

orthology relationship towards the 3 Notch classes found in

gnathostomes. D and E, clone 48 and 133 (clone 48 is shown in

Figure 2FGH) are two lamprey Delta. Clone 48 belongs to the

Delta 1 class of orthology with good support, whereas clone 133

shows poorly resolved orthology relationship. F, clone 168 = 169

(clone 169 is shown in Figure 2I–K) is a lamprey pisolo. Pisolo is a

DUF1279 domain containing factor (identified in medaka fish by

Alunni and Joly, personal communication). Accession numbers for

pisolo genes are as follows: Homo, AK055618; Gallus, AJ719368;

Mouse, AK162396; zebra chr16, BC090760; zebra chr19,

XM_001918550; Aedes, XM_001655586. The outgroup is

composed of a zebrafish, a chicken, and a human DUF1279

domain containing ORF, the three of them corresponding to

ORFs of unknown function and representing the closest-related

genes to pisolo.

Found at: doi:10.1371/journal.pone.0005374.s002 (0.57 MB TIF)

Figure S3 Phylogenetic analysis of ‘‘neurogenesis’’ class of

clones. A, clone 88, shown in Figure 3AB, corresponds to a

lamprey Neurogenin1. B, clones 18 (shown in Figure 3CDE)

correspond to a lamprey NeuroD2. C, clones

29 = 123 = 125 = 127 (clones 123 and 127 are shown in

Figure 3FGH) correspond to a lamprey Id2/3 with good support,

but the orthology between Id2 and Id3 remains unresolved.

Found at: doi:10.1371/journal.pone.0005374.s003 (0.47 MB TIF)

Figure S4 Phylogenetic analysis of ‘‘patterning’’ class of clones.

A, clone 22, and B, clone 25 (clone 25 is shown in Figure 4C)

both correspond to a lamprey COUP-Tf/NR2F (Nuclear

Receptor subfamily 2). The two clones are from Lampetra (see

Table 1) but their sequence does not overlap. However, the fact

that they are both NR2F members with poorly supported

orthology towards the subfamily 1 or 2 probably suggests that

they correspond to the same gene. The fact that they show

identical expression patterns (clone 22 not shown) also supports

this idea. C, clone 114, shown in Figure 4F, corresponds to a

lamprey LIM-kinase 2. D, clone 20, shown in Figure 4DE,

clearly corresponds to a lamprey Sox1/2 factor. The available

sequence fragment does allow resolving properly orthology

within the Six1/Six2 group. E, clone 77 (and 7 other clones,

see Table 1) from Lampetra and clone 113 (from Petromyzon)

correspond to lamprey Pitx2. Clone 113 is shown in Figure 4JKL

and is identical in sequence to Petromyzon PitxA published in

Genbank. F, clone 19 = 64 (clone 19 is shown in Figure 4HI)

correspond to lamprey Dbx1. G, clone 17, shown in Figure 4B,

corresponds to a lamprey FoxB1. H, clone 8 (ubiquitously

expressed, not shown, see text) is lamprey Ldb1 (Ldb, LIM

Domain Binding protein, previously called CLIM for Cofactor of

LIM). I, clone 160, shown in Figure 4MN, is a lamprey Ldb3.

Ldb3 subgroup of Ldb is strongly divergent from Ldb1/Ldb2, in

that it contains a PDZ domain, a Zasp motif, and 3LIM

domains. Clustal alignment is shown with other Ldb3 members,

and shows very high conservation of the available lamprey

sequence (shown entirely) through the whole N-terminal part of

the protein, encompassing the PDZ domain and the Zasp motif

(short 26 a.a. motif).

Found at: doi:10.1371/journal.pone.0005374.s004 (1.16 MB TIF)

Figure S5 Phylogenetic analysis of Sox family member clones.

A, clones 28 = 137, shown in Figure 2LL’, correspond to a

lamprey Sox3. B, clones 38 = 42, shown in Figure 2LMN,

correspond to a clear SoxB1 (Sox1/2/3) lamprey factor, but with

poorly supported orthology relationship. C, C’, clones

115 = 117 = 120 and clone 37, shown in Figure 5A–D, correspond

to two lamprey SoxE (Sox8/9/10) members. The former is Sox8

and the latter has again a non-resolved orthology relationship. C’

shows a tree including only lamprey SoxE group members, and

allows to propose orthologies with previously isolated Japanese

lamprey and Petromyzon SoxE2 and SoxE3. D and E, clones 116

and 122, shown in Figure 5E–H, are two lamprey group D (Sox5/

6/13) members. They share a 79 amino-acid long identical stretch

of sequence, which corresponds to their dimerisation domain, a

functional domain which is unique to the SoxD group. Clustal

alignment with other vertebrate SoxD members at this level is

show in D. The NJ tree in E shows that the two lamprey paralogs

emerge at the root of the tree, and may correspond to a lamprey-

specific duplication.

Found at: doi:10.1371/journal.pone.0005374.s005 (0.94 MB TIF)

Figure S6 Figure S6: phylogenetic analysis of Wnt pathway

clones. A, clones 70 = 1 = 2 (clone 70 is shown in Figure 7ABC) are

lamprey Wnt7. B, clone 73, shown in Figure 7DE, corresponds to

lamprey Wnt5. C, clone 24, shown in Figure 7FGH is a lamprey

Tcf7-like whose orthology is not robustly supported between the

Tcf7-like1 and Tcf7-like2 groups.

Found at: doi:10.1371/journal.pone.0005374.s006 (0.84 MB TIF)

Figure S7 Phylogenetic analysis of Wnt pathway clones,

continued. A, clones 94 = 101 = 105 = 107 = 108 (clone 101 is

shown in Figure 7I and clone 94 is shown in Figure 7J) are

lamprey Frizzled 1/2. Note the organization of the Fzd

superfamily, with 4 large subgroups, namely groups Fzd1/2/7,

Fzd 5/8, Fzd 4/9/10, and Fzd 3/6. B, clones 100 = 136 (clone 100

is shown in Figure 7K) are also in group Fzd1/2/7, with no

support towards one of the 3 possible gnathostome orthologies.

Clone 95 (tree not shown, in situ hybridization presented in

Figure 7LMN) is in the same case, and identified as an Fzd2/7

member. As a result of this analysis of Fzd clones, we conclude that

there are (at least) 3 distinct lamprey group Fzd1/2/7 members,

like in gnathostomes, although their exact orthology relationships

are uncertain (see also Table 1). C, clones 96 = 97 = 98 = 109 (96

and 97 are shown in Figure 7RST) correspond to lamprey SFRP2.

D, clones102 = 103 (both shown on Figure 7OPQ) correspond to a

lamprey SFRP1/5, without robust support toward SFRP1 or

SFRP5 orthology.

Found at: doi:10.1371/journal.pone.0005374.s007 (0.69 MB TIF)

Figure S8 Phylogenetic analysis of pleiotrophin clones. The tree

shows that clone 161 (from Petromyzon) and clones

162 = 163 = 164 (from Lampetra) are lamprey midkines and

probably belong to the pleiotrophin group. Clones 161 and 163

are shown in Figure 8.

Found at: doi:10.1371/journal.pone.0005374.s008 (4.13 MB TIF)
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