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Spinal cord injury (SCI) results in a multitude of metabolic co-morbidities that can

be managed by exercise. As in the non-injured population, manipulation of exercise

intensity likely allows for fruitful optimization of exercise interventions targeting metabolic

health in persons with SCI. In this population, interventions employing circuit resistance

training (CRT) exhibit significant improvements in outcomes including cardiorespiratory

fitness, muscular strength, and blood lipids, and recent exploration of high intensity

interval training (HIIT) suggests the potential of this strategy to enhance health and

fitness. However, the neurological consequences of SCI result in safety considerations

and constrain exercise approaches, resulting in the need for specialized exercise

practitioners. Furthermore, transportation challenges, inaccessibility of exercise facilities,

and other barriers limit the translation of high intensity “real world” exercise strategies.

Delivering exercise via online (“virtual”) platforms overcomes certain access barriers while

allowing for broad distribution of high intensity exercise despite the limited number of

population-specific exercise specialists. In this review, we initially discuss the need for

“real world” high intensity exercise strategies in persons with SCI. We then consider

the advantages and logistics of using virtual platforms to broadly deliver high intensity

exercise in this population. Safety and risk mitigation are considered first followed by

identifying strategies and technologies for delivery and monitoring of virtual high intensity

exercise. Throughout the review, we discuss approaches from previous and ongoing

trials and conclude by giving considerations for future efforts in this area.
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INTRODUCTION

Spinal cord injury (SCI) is an insult to the nervous systems
that leads to a host of co-morbidities. For example, metabolic
complications post-injury begin with a rapid and precipitous
loss of lean muscle (Grimby et al., 1976; Castro et al., 1999;
Gorgey and Dudley, 2007; Moore et al., 2015) and bone mass
(Zleik et al., 2019; McMillan et al., 2021c) and increase in fat
mass (Groah et al., 2011; Farkas et al., 2019; McCauley et al.,
2020; Gater et al., 2021). The profound post-injury changes
in body composition occur in parallel with disordered lipid
(Brenes et al., 1986; Zlotolow et al., 1992; Karlsson et al.,
1995; Maki et al., 1995; McGlinchey-Berroth et al., 1995; Nash
et al., 2005; Emmons et al., 2010; Ellenbroek et al., 2014; La
Fountaine et al., 2017, 2018) and glucose metabolism (Palmer
et al., 1976; Duckworth et al., 1980, 1983; Karlsson et al., 1995;
Aksnes et al., 1996; Bauman et al., 1999; Chilibeck et al., 1999;
Jeon et al., 2002; Elder et al., 2004; Battram et al., 2007; Segal
et al., 2007; Wang et al., 2009; Lewis et al., 2010; Gorgey and
Gater, 2011; Yarar-Fisher et al., 2013). The coalition of these
component risk factors is defined as cardiometabolic disease
(CMD), and the Consortium for Spinal Cord Medicine has
released Clinical Practice Guidelines for CMD in SCI (Nash
et al., 2019). Importantly, these guidelines identify obesity as
the most common CMD component risk factor in SCI, and
other dyslipidemic CMD risk factors cluster in a manner
favoring disordered fat metabolism after SCI (Libin et al., 2013).
Mitigation strategies are warranted since this disordered fat
metabolism in SCI is both a cause and the effect of the aberrant
accumulation of whole-body fat mass, as well as regionally
specific infiltration of fat deposits into various tissues such as
skeletal muscle (Moore et al., 2015) and bone marrow (McMillan
et al., 2021c). In persons without SCI, physical activity is an
important management strategy for obesity (Piercy et al., 2018).
Furthermore, regular physical activity is important for promoting
health in SCI as well (Martin Ginis et al., 2018; Nash et al.,
2019), but in this population there are considerations for tailoring
exercise interventions to target specific outcomes such as obesity
(McMillan et al., 2021b). Developed by experts in nutrition,
exercise, rehabilitation, cardiology, endocrinology, and internal
medicine, the Consortium’s clinical practice guidelines (Nash
et al., 2019) recommend exercise as a primary treatment for the
management of CMD in SCI. These guidelines recommend “at
least 150min per week [. . . ] satisfied by sessions of 30–60min
performed three to five days per week, or by completing at least
three 10-min sessions per day” (Nash et al., 2019). Furthermore,
recent systematically developed (Appraisal of Guidelines, for
Research, and Evaluation second edition; AGREE II) evidence-
based activity guidelines developed by an international team

of scientists endorse with moderate to high confidence the

beneficial effects of exercise on CMD in persons with SCI (Martin

Ginis et al., 2018). or These guidelines recommend “at least
30min of moderate to vigorous intensity aerobic exercise three
times per week” (Martin Ginis et al., 2018). Thus, current SCI
CMD exercise guidelines are designed primarily around volume
and frequency. However, experts are calling into question the
importance of intensity in exercise prescription for persons with

SCI (Nightingale et al., 2017a), especially in the context of
addressing the metabolic co-morbidities of this condition.

In the general population, exercise intensity is an important
parameter to consider for prescribing exercise to target CMD-
related health outcomes (Weston et al., 2014; Batacan et al.,
2017; Campbell et al., 2019; Taylor et al., 2019), with higher
intensity exercise generally showing more favorable outcomes
compared to moderate-intensity continuous training (MICT).
Despite challenges related to proper implementation, there is a
growing body of emerging evidence in SCI showing that higher
exercise intensities promote greater physiological and potentially
greater clinical benefits (Harnish C. et al., 2017; Nightingale et al.,
2017a; Graham et al., 2019; McLeod et al., 2020), though not all
results are universal (Solinsky et al., 2020). For example, multiple
findings show the feasibility of high-intensity interval training
(HIIT) arm cycling in SCI (de Groot et al., 2003; Harnish C.
et al., 2017; Harnish C. R. et al., 2017; Nightingale et al., 2017a;
Astorino and Thum, 2018b; Astorino, 2019; Graham et al., 2019;
McLeod et al., 2020; McMillan et al., 2020; Solinsky et al., 2020),
and one study demonstrates that HIIT performed on an arm
ergometer allows a reduced time commitment to achieve a fixed
calorie target vs. MICT (McMillan et al., 2020). However, all
of these data stem from trials performed in laboratory settings
in which the experimenter implements the exercise regimen
and the only requirement of the patient is to follow his/her
instructions. Moreover, one challenge of employing HIIT in a
“real-world” setting is the staggering number of permutations
of parameters including work and recovery durations and
intensities. Real-time manipulation of these variables, especially
while also exercising, can require substantial cognitive processing
and experience with this modality that may be inappropriate
for a novice exerciser to perform on their own. Other forms of
intermittent exercise such as circuit resistance training (CRT)
combining brief bouts of arm ergometry with dynamic whole-
body resistance training have been employed in this population
and show substantial metabolic effects (Jacobs et al., 2001, 2002;
Nash et al., 2001, 2002, 2007; Kressler et al., 2014; McMillan
et al., 2021a). Accordingly, a recent systematic review concluded
that CRT elicits more favorable changes in the clinical lipid
profile compared to aerobic exercise alone (Farrow et al., 2020).
However, despite the emerging evidence supporting the role
of exercise intensity in targeting CMD-related outcomes, there
are many considerations for implementing “real world” high
intensity exercise in this population.

Persons with SCI face multiple barriers to exercise
participation and adherence, helping explain why this population
spends such a high proportion (∼87%) of the day in a sedentary
state (Nightingale et al., 2017b). Internal barriers include lack
of energy and motivation (Cowan et al., 2013). In addition,
external barriers include factors such as transportation, the
cost of exercise programs, the inaccessibility of fitness centers
(Rimmer et al., 2000; Kehn and Kroll, 2009), and low trust in a
non-specialized exercise instructor’s ability to meet the unique
needs of an individual with SCI (Rimmer et al., 2000; Scelza et al.,
2005; Kehn and Kroll, 2009; Cowan et al., 2013). These barriers
exceed the agency of the individual and are superimposed upon
demographic variables such as socioeconomics, minority status,
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sex, age, and location of residence (Rimmer et al., 2000; Kehn and
Kroll, 2009; Cowan et al., 2012). To address these population-
specific barriers, recent studies have delivered exercise via online
(“virtual”) platforms (Wilroy et al., 2017, 2020; Lai et al., 2019).
Virtual strategies for delivering exercise to persons with SCI
overcomes certain structural barriers while allowing for a limited
number of specialists to broadly distribute population-specific
exercise services to many exercisers regardless of geographic
location. Although technological requirements for accessing
virtual exercise platforms exclude certain people such as those
without internet access, computer or smartphone, or lack of
adequate hand function, the COVID-19 pandemic has caused a
shift in internet usage in general (Lemenager et al., 2021) and
toward virtual exercise participation in particular (Parker et al.,
2021). This online transition presents an opportunity to broadly
deliver high intensity exercise to persons with SCI, by using
virtual platforms to deliver population-specific exercise safely
and effectively to the people where they live.

Explanation of Virtual Exercise
Virtual exercise (VEX) is any form of exercise that involves
real-time exchange of information via the internet. As such,
this practice mandatorily excludes a portion of the population
that cannot or does not have online access. Researchers and
practitioners must remain cognizant of the limitations to
internet access. However, despite limitations in this domain
of access, VEX overcomes barriers in other domains such as
transportation and infrastructure by allowing exercise to be
remotely delivered to participant’s homes by professionals who
have specific expertise regarding a given population’s unique
safety and implementation needs. While solutions to internet
access may seem more feasible than upgrades to transportation
and infrastructure, the former solution risks a greater potential
for allowing the burden of responsibility to be shifted onto
the individual whereas the later requires public resources. To
mitigate this risk, we support a multifaceted approach including
but extending beyond online services, and urge researchers and
practitioners to share and mitigate the resource responsibility
wherever possible.

There are various VEX delivery strategies available to
SCI exercise providers. Simple unidirectional guidance can
be provided via graphics on a web page or mobile app
depicting exercises for participants to complete. More advanced
unidirectional guidance can occur via pre-recorded “on demand”
video of an exercise instructor conducting a follow-along exercise
session for streaming at the participant’s convenience. However,
for neither of these options is real-time feedback or monitoring
provided to the participant. Therefore, if desired and possible,
multidirectional connection via video conferencing allows for
instructor(s) and participant(s) to engage during the exercise
session. This live streaming of VEX gives exercise professionals
the potential to actively monitor participants during the session,
allowing for remote delivery of exercise to specialty populations
(Chen et al., 2018). The availability of virtual platforms has
increased recently, especially since the online transition in
response to the COVID-19 pandemic.

In April of 2021 we conducted an informal search of
ClinicalTrials.gov to locate ongoing and current studies
employing VEX in persons with SCI using the search terms:
“spinal cord injury” AND (exercise OR “physical activity” OR
workout) AND (online OR virtual OR “home based”). As of the
search date, the search revealed five ongoing trials registered in
the ClinicalTrials.gov system (NCT03024320, NCT04408287,
NCT04564495, NCT03495986, and NCT04397250). Utilizing
virtual platforms to deliver on-demand exercise instructions,
in the form of graphics and/or pre-recorded videos, has been
successfully implemented in adults with a mobility limitation
including those with SCI as part of the “Scale Up Project
Evaluating Responsiveness to Home Exercise and Lifestyle
Tele-Health” (SUPER-HEALTH; NCT03024320) study (Wilroy
et al., 2017, 2020; Lai et al., 2019; Rimmer et al., 2019). Further
utilization of video conferencing technologies can be used to
deliver an even more interactive service to exercise participants,
similarly to the implementation of VEX for other populations
(Hong et al., 2017; Chen et al., 2018). Currently, there are
three ongoing registered trials involving real-time participant
monitoring during home-based VEX individualized for persons
with SCI. In the “Spinal Cord Injury Exercise and Nutrition
Conceptual Engagement” (SCIENCE; NCT03495986) trial, a
single participant conducting functional electrical stimulation
(FES)-cycling exercise is monitored by the study team, with the
study team having remote access to the FES ergometer. This
trial requires months of FES exercise training and will determine
its effects on body composition and other cardiometabolic
health outcomes. In the “Improving Activity Engagement
Among Persons with SCI During COVID-19” (NCT04408287)
trial, a fitness instructor conducts real-time follow-along VEX
sessions for a group of participants with SCI. In the “Home
Based Tele-exercise for People with Chronic Neurological
Impairments” (Telex; NCT04564495) trial, the effects of sessions
of VEX delivered in real-time compared to pre-recorded
sessions will be compared in adults with chronic neurological
impairments including multiple sclerosis and SCI. The results
of this trial will be pivotal in comparing the added benefit of
having multidirectional exchange of information during VEX.
The logistical cost of pre-recorded sessions is substantially
less, greatly reducing the time requirements of the instructor.
However, the added benefit of the real-time feedback from the
instructor, as well as the interaction between and within the
participants themselves, likely confers an added benefit not
possible with pre-recorded sessions.

Safety Considerations and Screening
The pathophysiology of SCI warrants unique considerations
for VEX beyond the necessary adaptation of exercise mode
to accommodate the altered volitional motor function of the
participants. The participants and instructors need to aware
of, and actively mitigate, the increased risk for autonomic
dysreflexia (AD), hypotension due to circulatory hypokinesis
(Hjeltnes, 1984), thermal dysregulation, skin injury, fracture
(Jacobs and Nash, 2004), and musculoskeletal overuse injury
(Vives Alvarado et al., 2021) consequent with SCI. Of greatest
concern among exercising paraplegics and tetraplegics with
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SCI above the 5th thoracic vertebrae is AD (Karlsson, 1999)
classified as an increase in systolic or diastolic blood pressure
of >20 mmHg from baseline (Krassioukov et al., 2009). These
transient episodes of uncoordinated sympathetic outflow occur
10 (Popok et al., 2017) to 40 (Hubli et al., 2015; West
et al., 2015) times per day in response to peripheral stimuli.
These episodes cause a rapid rise in blood pressure combined
with either bradycardia or tachycardia and further symptoms
such as sweating, goosebumps, headache, nausea, anxiety, and
blurry vision (Karlsson, 1999; Krassioukov et al., 2009). It
should be noted that due to a reduced blood pressure in
higher levels of SCI (discussed below), AD-induced increases
in blood pressure can be exploited during exercise known as
“boosting” in athletes (Gee et al., 2015). However, boosting
is not always intentional (Nightingale et al., 2021), influences
exercise performance, and is considered dangerous and therefore
is discouraged (Gee et al., 2015). Circulatory hypokinesis
(Hjeltnes, 1984; Davis, 1993; Faghri et al., 2001; Dela et al.,
2003) is a phenomenon of reduced cardiac output for any
given oxygen uptake due to venous pooling in the paralyzed
lower extremities during exercise. The outcome is possible
hypokinetic hypotension during upper extremity volitional
exercise (Hjeltnes, 1984; Davis, 1993) but not lower extremity
electrically-stimulated exercise (Faghri et al., 2001; Dela et al.,
2003) likely because active contraction transiently increases
venous pressures (i.e., “skeletal muscle pump”). Along with
skeletal muscle flaccidity, decentralization of the sympathetic
efferent signals to blood vessels also contributes to the risk
of hypokinetic hypotension because autonomic signals usually
actively oppose vasodilation from local metabolites produced
by skeletal muscle contraction (Dela et al., 2003). Autonomic
decentralization of blood vessels and associated pseudomotor
cholinergic efferents innervating sweat glands further results in
an impaired ability to regulate body temperature during exercise
(West et al., 2013), increasing risk for hyperthermia especially
when environmental temperatures are high. The high intensity
nature of HIIE requires a greater metabolic rate than MICE,
possibly serving as a greater thermoregulatory challenge. Below
the level of injury, risk of skin injury is significantly increased in
response to abrasion and pressure changes that might occur due
to excessive/enhanced movement required during more dynamic
exercise such as HIIE or CRT. Bone loss begins very early post-
injury (Edwards et al., 2014) with periarticular hip and knee bone
mineral density decreasing 2 to 4% per month (Bieringsorensen
et al., 1990; Edwards et al., 2014) and declining up to ∼20%
(Bauman et al., 2015; Goenka et al., 2018) within the first year of
SCI, resulting in increased risk of fracture (Carbone et al., 2014;
Gifre et al., 2014). These pathophysiological considerations are
superimposed on the increased risk for musculoskeletal injury in
SCI due to overuse (Bayley et al., 1987; Burnham et al., 1993;
Curtis et al., 1999; Ballinger et al., 2000; Vives Alvarado et al.,
2021) and possibly also spasticity (Hartkopp et al., 1998).

Due to these layered and intersecting risk factors, certain
safety precautions should be undertaken when conducting
VEX. A safety screening should be performed to establish a
baseline and identify any absolute contraindications to exercise.
Importantly, if an exercise candidate has any of the following,

participation should be postponed until physician clearance is
obtained: (1) uncontrolled AD, (2) history of syncope, syncope-
like symptoms, or confirmed hypotension during exercise, (3)
unhealed skin injury, (4) unhealed fracture, and/or (5) any of the
general contraindications to exercise as outlined in the American
College of Sports Medicine’s Guidelines for Exercise Testing
and Prescription (Liguori, 2020). Note that an AD event is
technically defined as a 20–30 mmHg increase in systolic and/or
diastolic arterial blood pressure (Krassioukov et al., 2009). Due
to this, certain ongoing home-based exercise trials in persons
with SCI (i.e., NCT03495986) employ remote monitoring
of physiological responses to exercise. While this approach
is preferable in higher risk situations, remote physiological
monitoring is resource limited and thus symptom monitoring
will be used in many contexts. The remote nature of VEX means
that the participant and/or their attendant(s) will be required to
independently respond in the event of an adverse event during an
exercise session. Therefore, screening is important, and exercise
instructors should be familiar with the population-specific risks
as well as mitigation strategies. Participants should be reminded
to empty the bladder before sessions and maintain a regular
bowel program to avoid AD, maintain adequate hydration to
reduce risk of hypotension, exercise in a temperature-controlled
environment and not in direct sunlight to avoid hyperthermia,
and be aware of proper equipment operation to avoid skin
injury. In the case of participants who are deemed by their
medical team to be at high risk for adverse response to VEX,
active monitoring can be implemented. For example, in the
aforementioned SCIENCE trial (NCT03495986), participants’
heart rate, blood pressure, and oxygen-hemoglobin saturation are
actively monitored by the study team during exercise. However,
this resource-intensive approach is beyond the requirements for
most persons with SCI to participate in VEX. Therefore, the
equipment implemented to monitor these signs is going to vary
depending on the individual risk of each VEX participant and
should be determined by each participant’s medical providers.

Delivering Real World High Intensity Virtual

Exercise
The Consortium’s consensus-based clinical practice guidelines in
the United States denote “at least 150min per week [. . . ] satisfied
by performing sessions of 30–60min three to five days per week,
or at least three 10-min sessions per day (Nash et al., 2019).”
Other evidence-based physical activity guidelines for metabolic
health persons with SCI have been updated to recommend “at
least 30min of moderate to vigorous intensity aerobic exercise
three times per week (Martin Ginis et al., 2018).” These SCI
activity guidelines are designed primarily around volume and
frequency of activity with less clear recommendations for exercise
intensity expressed according to %HR/VO2max or mode. The
Exercise and Sport Science Australia (ESSA) position statement
on exercise and SCI recommends “150 min/wk of moderate-
intensity or 60 min/wk of vigorous-intensity” and allows for
a range of intensities similar to recommendations for persons
without SCI from governmental health authorities [e.g., CDC
(Piercy et al., 2018) and WHO (Bull et al., 2020)]. It is important
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to understand that these intensity levels are relative, with average
maximal rate of whole-body oxygen consumption in persons
with tetraplegia (7.9–9.5 mk/kg/min) (Simmons et al., 2014)
being below the values that qualify as “moderate” intensity
(10.5–21.0 ml/kg/min) in persons without SCI (Piercy et al.,
2018). The low rates of oxygen consumption and thus calorie
expenditure that can be achieved and sustained during exercise
by persons with SCI have important considerations for the
tailoring of exercise to address various CMD-related outcomes
(McMillan et al., 2021b), calling for novel approaches such as
HIIT (Nightingale et al., 2017a) and CRT. These high intensity
approaches have been shown in persons with SCI to increase
post-exercise energy expenditure and fat utilization (McMillan
et al., 2021a,b), thereby conferring benefits by influencing
metabolism beyond the transient increases seen during exercise.

Despite the lack of emphasis in current SCI guidelines,
experts have called for a recognition of the importance of
exercise intensity in this population (Nightingale et al., 2017a).
This call to “raise the intensity” originates from the important
role that exercise intensity plays in the physiological responses
and adaptations to exercise in persons without SCI. In adults
without SCI, HIIT has classically been prescribed to enhance
athletic performance (Billat, 2001) and more recently has been
realized in the context of enhancing indices related to health
status (Weston et al., 2014; Batacan et al., 2017; Campbell
et al., 2019; Taylor et al., 2019). Notably, when using HIIT,
a dramatically lower exercise volume is required to achieve
increases in cardiorespiratory fitness and oxidative capacity
compared to steady-state exercise (Burgomaster et al., 2008).
Furthermore, HIIT enhances metabolic function thus more
specifically addresses cardiometabolic disease component risks
(Weston et al., 2014; Batacan et al., 2017; Campbell et al., 2019).
Unfortunately, there is a paucity of research investigating efficacy
of HIIT in persons with SCI, and the few HIIT interventions
in SCI are limited by small sample size (de Groot et al.,
2003; Harnish C. R. et al., 2017), subject heterogeneity, short
training duration (Harnish C. et al., 2017), and complicated
exercise modes (Solinsky et al., 2020). Studies examining the
acute physiological response to HIIT (Astorino and Thum,
2018b; Astorino, 2019; Graham et al., 2019; McLeod et al., 2020;
McMillan et al., 2020) in persons with SCI have established its
safety and feasibility in persons with paraplegia, with preliminary
safety and feasibility evidence indirectly available for tetraplegia
(Solinsky et al., 2020). Importantly, the cardiovascular and
metabolic response to exercise undulates with changing exercise
intensity during a HIIT session in persons with SCI (McMillan
et al., 2020), showing that SCI does not ablate the acute
physiological responses that chronic adaptations are dependent
upon. Furthermore, one study (McMillan et al., 2020) in persons
with paraplegia demonstrated a reduced time commitment with
HIIT vs. steady-state arm cycling to achieve a fixed energy
expenditure equal to 120 kcal, providing indirect evidence for
the time-efficiency of HIIT in SCI. In addition, results from
one study in men and women with SCI (Astorino and Thum,
2018a) exhibited significantly higher enjoyment in response to
submaximal or supramaximal interval exercise vs. continuous
exercise, and no participants preferred the bout of continuous

exercise. Gauthier et al. (2018) examined the feasibility and
efficacy of six wk of home-based HIIT performed using their
own wheelchair. Participants did not report any serious adverse
events, deemed training to be feasible, and reported significant
subjective improvements in health.

Despite this burgeoning evidence supporting HIIT in SCI,
the broad delivery of high intensity exercise in this population
has yet to be achieved. The use of VEX could allow for
the widespread adoption of high intensity exercise by persons
with SCI in a “real world” context. Accordingly, there are
multiple on-going registered clinical trials deploying home-
based high intensity exercise in persons with SCI. In the
“High-intensity Interval Training for Cardiometabolic Health in
Persons with Spinal Cord Injury” (NCT04397250) trial, high-
intensity exercise sessions are completed at home with remote
monitoring of cardiovascular responses (Farrow et al., 2021).
In this study, practitioners administer arm cycles for home
use, and prescribe a HIIT paradigm to determine the effect
of a home-based HIIT intervention on cardiometabolic health
outcomes. The “Telehealth High Intensity Interval Exercise and
Cardiometabolic Health in Spinal Cord Injury” (Award Number
R21NR019309) trial was recently funded, and while details about
the trial have yet to be released, the purpose is to evaluate
the effect of a “home-based telehealth HIIT arm crank exercise
training program” on cardiometabolic health outcomes. These
trials will be the first to scientifically test the use of VEX to deliver
high intensity exercise to persons with SCI. However, it should
be noted that at least two previous studies have demonstrated the
feasibility of delivering non-virtual home-based high intensity
exercise in persons with SCI (Nash et al., 2002; Solinsky et al.,
2020). One of these studies used FES-assisted rowing (Solinsky
et al., 2020), a complicated mode of exercise that is not readily
accessible in a “real world” context. The other study (Nash
et al., 2002); however, employed a modified version of a well-
established CRT paradigm (Jacobs et al., 2001, 2002; Nash et al.,
2001, 2002, 2007; Kressler et al., 2014; McMillan et al., 2021a)
that has been shown to benefit multiple components of fitness
and health in persons with SCI (Jacobs et al., 2001, 2002; Nash
et al., 2001, 2007; Kressler et al., 2014). In this study, simple
and inexpensive adaptations—such as using resistance bands
attached to a home door—were used to reproduce the CRT in
a home environment, and similar cardiovascular and metabolic
responses were shown with the home-based vs gym-based CRT
variants (Nash et al., 2001). Resourceful approaches such as
this can now be combined with increases in internet access to
broadly deliver VEX in a “real world” context to persons with
SCI. This combination will possibly influence the viability of
high intensity VEX in persons with SCI (Astorino et al., 2021),
especially given the known (e.g., Astorino and Thum, 2018a)
and anticipated psychological and social impacts of HIIT in
SCI. For example, it has been demonstrated that HIIT is more
enjoyable than MICT in persons with SCI (Astorino and Thum,
2018a). This increased enjoyment could yeild a benefit to both
recruitment and retention. Additionally, intrapersonal as well
as interpersonal incentives should be considered. For example,
exercise professionals can capitalize on the social exchange that
can occur during VEX. Recent qualitative evidence showed that
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persons with SCI desire to belong to a collective of SCI peers
when participating in VEX (Lai et al., 2021). As suggested by
research demonstrating associations between exercise and social
belonging (Ginis et al., 2010; Richardson et al., 2017), integrating
prosocial components into VEX could prove beneficial to uptake,
adherence, and impact.

Conclusions
Exercise’s health benefits have been recognized since ancient
times (Booth et al., 2002), but advances in technology
allow us to reconceptualize the means by which we deliver
this potent biological stimulus. The rising tide of digital
technology will result in a merging of uni- and multi-directional
platforms, allowing for the flexibility of on-demand content
and the granularity and interactivity of real-time sessions.
After accounting for population-specific safety considerations,
this VEX will allow for persons with SCI to connect with
specialized exercise practitioners without specific transportation
and infrastructure requirements. Overcoming these barriers via
VEX allows for increased access to specialized exercise required

to optimize function and health in persons with SCI. Emerging
evidence supports a call to “raise the intensity” in SCI, while
the COVID-19 pandemic has increased internet usage and our
familiarity with virtual platforms facilitating social exchange.
When taken together, now is the time to employ VEX for the
broad delivery of “real world” high intensity exercise in persons
with SCI.
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