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ABSTRACT Agrobacterium tumefaciens C58 is a tumor-causing pathogen targeting
plants and is ubiquitously found in soil. Here, the complete genome sequence of Mi-
lano, a myophage infecting A. tumefaciens C58, is presented. Milano encodes 127
proteins, of which 45 can be assigned a predicted function, and it is most similar to
the flagellotropic Agrobacterium phage 7-7-1.

Agrobacterium tumefaciens C58 is a Gram-negative rod-shaped bacterium ubiqui-
tously found in soil (1). As a plant pathogen, A. tumefaciens C58 contains plasmid

TiC58 that transfers transfer DNA (T-DNA) to 90 families of dicotyledonous plants,
inevitably resulting in crown gall tumors. Bacteriophages may be useful in manipulat-
ing this characteristic for engineering Agrobacterium strains. Here, we present the
genome sequence of myophage Milano.

Milano was isolated from filtered rice stem extracts in Beaumont, TX, on A. tume-
faciens C58 grown aerobically at 28°C in nutrient broth yeast (NBY) medium without
glucose (2) by the soft agar overlay method (3). The high-titer lysate generated via the
soft agar overlay method was used for extracting genomic DNA with the phenol-
chloroform method, as in reference 4, and then the phage genomic DNA libraries were
prepared using a NEBNext Ultra II DNA library prep kit and sequenced on an Illumina
MiSeq instrument at the Genome Sequencing and Analysis Facility at the University of
Texas at Austin (5). The 820,950 250-bp paired-end sequence reads were quality
controlled with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
and trimmed with the FASTX-Toolkit 0.0.14 (hannonlab.cshl.edu/fastx_toolkit/). Com-
plete assembly into a single contig using SPAdes v.3.5.0, with default parameters, was
confirmed via PCR of the genome ends (forward primer, 5=-GTCCTGAATCCATTTCGTA
TGC-3=; reverse primer, 5=-CTCCGTTCTTCAGCTACTATG-3=), coupled with Sanger se-
quencing (5, 6). Genes were called and annotated using GLIMMER 3.0 and Meta-
GeneAnnotator 1.0 in the Web Apollo instance hosted by the Center for Phage
Technology (https://cpt.tamu.edu/galaxy-pub), and all analyses were performed in their
Galaxy instance (7–10). Potential tRNA genes were inspected using ARAGORN 2.36 (11).
Gene functions were predicted using domains from InterProScan v.5.22, LipoP, and
TMHMM, as well as BLASTp comparisons to the NCBI nonredundant (nr) and UniProtKB
Swiss-Prot/TrEMBL databases (12–16). HHpred results were used as confirmatory evi-
dence, in addition to the presence of domains or alignments (17). Rho-independent
termination sites were detected using TransTerm (http://transterm.cbcb.umd.edu/).
Milano’s morphology was determined by negative-stain transmission electron micros-
copy at the Texas A&M Microscopy and Imaging Center with 2% (wt/vol) uranyl acetate
(18).

Milano is a myophage with a 68,451-bp genome, 93.1% coding density, and a G�C
content of 52.5%, which is lower than the G�C content of 58% of the host, A.
tumefaciens C58 (1). Our analysis revealed 127 coding sequences, of which 45 have a
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function predicted by using BLASTp or InterProScan, but no tRNAs. Based on Phage-
Term prediction, Milano uses headful DNA packaging (19). While Milano contains
mostly hypothetical proteins, there is one closely related phage in the NCBI nr data-
base, namely, Agrobacterium myophage 7-7-1 (GenBank accession number JQ312117)
(20). By comparison with progressiveMauve, Milano has 61.68% nucleotide identity and
shares 94 proteins with Agrobacterium phage 7-7-1, a flagellotropic phage (21).

The Milano genome is organized in a modular fashion, with predicted structural,
replication, and lysis proteins grouped together. The predicted tape measure protein
(GenBank accession number QBQ72047) is preceded by the likely tail assembly
chaperones (QBQ72045) with a putative frameshifted protein product (QBQ72046),
analogous to the well-studied lambda G/GT chaperone system (22). The predicted
endolysin (QBQ72055), i-spanin (QBQ72056), and embedded o-spanin (QCQ78506) are
encoded consecutively; however, the holin was not identified. Additionally, a putative
nucleoid occlusion-like protein (QBQ72073) with a ParB domain (InterProScan
IPR003115) and many BLASTp hits to Noc proteins and two potential ribosome mod-
ulation factor domain superfamily proteins (QBQ72082 and QBQ72098) were found.

Data availability. The genome sequence and associated data for phage Milano
were deposited under GenBank accession number MK637516, BioProject accession
number PRJNA222858, SRA accession number SRR8869236, and BioSample accession
number SAMN11360273.
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