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Several arenaviruses, chiefly Lassa virus, cause hemorrhagic fever disease in humans and pose a significant
public health problem in their endemic regions. On the other hand the prototypic arenavirus LCMV is a superb
workhorse for the investigation of virus–host interactions and associated disease. The development of novel
antiviral strategies to combat pathogenic arenaviruses would be facilitated by a detailed understanding of the
arenavirus molecular and cell biology. To this end, the development of reverse genetic systems for several
arenaviruses has provided investigators with novel and powerful approaches to dissect the functions of
arenavirus proteins and their interactions with host factors required to complete each of the steps of the virus
life cycle, as well as to cause disease.
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Introduction

Arenaviruses cause chronic infections of rodents with a worldwide
distribution (Buchmeier et al., 2007). Human can be infected through
mucosal exposure to aerosols, or by direct contact of abrade skin with
infectious material, derived from infected rodents. Several arena-
viruses cause hemorrhagic fever (HF) disease in humans and pose a
great public health concern within the virus endemic regions
(Buchmeier et al., 2007). On the other hand, the prototypic arenavirus
LCMV is a superb workhorse for the investigation of virus–host
interactions including mechanisms of virus control and clearance by
the host immune defenses, as well as viral counteracting measures
leading to chronic infection and associated disease (Oldstone, 2002;
Zinkernagel, 2002). This review will focus on recent developments on
arenavirus reverse genetics and their implications for a better
understanding of the arenavirus molecular and cell biology, as well
as mechanisms underlying arenavirus–host interactions and
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associated disease and the development of novel antiviral drugs and
vaccine strategies to combat pathogenic arenaviruses.
Arenaviruses and their impact in human health and microbial science

The Old World (OW) Lassa virus (LASV) and several New World
(NW) arenaviruses cause HF disease in humans (Buchmeier et al.,
2007). Thus, LASV is estimated to infect several hundred thousand
individuals yearly in its endemic regions of West Africa, resulting in a
high number of Lassa fever (LF) cases associated with high morbidity
and significant mortality. Likewise, the NW arenavirus Junin virus
(JUNV) causes Argentine HF, a severe illness with hemorrhagic and
neurological manifestations and a case fatality of 15–30%, whereas the
NW Machupo (MACV) and Guaranito (GTOV) arenaviruses emerged
as causative agents of HF in Bolivia and Venezuela, respectively
(Peters, 2002). Notably, increased traveling to and from endemic
regions has led to the importation of LF into non-endemic metropol-
itan areas around the globe (Isaacson, 2001). Moreover, compelling
evidence indicates that the globally distributed prototypic arenavirus
LCMV is a neglected human pathogen of clinical significance,
especially in cases of congenital infection leading to hydrocephalus,
mental retardation and chorioretinitis (Barton et al., 2002). In
addition, LCMV poses special threat to immuno-compromised
individuals, as illustrated by recent cases of transplant-associated
infections by LCMV with a fatal outcome in the USA (Fischer et al.,
2006) and Australia (Palacios et al., 2008).

Studies on the prototypic arenavirus LCMV have led to major
advances in virology and immunology that apply universally to other
microbial infections and viral infections of humans, including virus-
induced immunopathological disease, MHC restriction and mecha-
nisms of virus induced immunosuppression (Oldstone, 2002; Zinker-
nagel, 2002). The outcome of LCMV infection of its natural host, the
mouse, varies dramatically depending on the strain, age, immuno-
competence and genetic background of the host, as well as the route
of infection, and the strain and dose of infecting virus (Oldstone, 2002;
Zinkernagel, 2002). This provides investigators with a unique model
system to investigate parameters that critically influence many
aspects of virus–host interaction including the heterogeneity of
phenotypic manifestations often associated with infection by the
same virus.
Fig. 1. Arenavirus genome organization and virion structure. Arenaviruses are enveloped vir
ambi-sense coding strategy to direct the synthesis of two viral polypeptides. The S (ca 3.5 k
GPC is posttranslational processed into GP1 and GP2. The L (ca 7.3 kb) segment encodes for t
functionally the arenavirus counterpart of the matrix (M) protein found in many envelope
Arenavirus genome organization and proteins

Arenaviruses are enveloped viruses with a bi-segmented negative
strand (NS) RNA genome and a life cycle restricted to the cell
cytoplasm. Virions are pleomorphic but often spherical and covered
with surface glycoprotein spikes. Both the large, L (ca 7.3 kb) and
small, S (ca 3.5 kb) genome RNA species use an ambisense coding
strategy to direct the synthesis of two polypeptides in opposite
orientation, separated by a non-coding intergenic region (IGR) with a
predicted folding of a stable hairpin structure (Buchmeier et al., 2007)
(Fig. 1). The S RNA encodes the viral glycoprotein precursor, GPC, (ca
75 kDa) and the nucleoprotein, NP, (ca 63 kDa), whereas the L RNA
encodes the viral RNA dependent RNA polymerase (RdRp, or L
polymerase) (ca 200 kDa), and a small (ca 11 kDa) RING finger
protein Z that is functionally the counterpart of the matrix (M)
protein found in many enveloped NS RNA viruses.

Arenaviruses exhibit high degree of sequence conservation at the
genome 3′-termini (17 out of 19 nt are identical) and, as with other NS
RNA viruses, arenavirus genome termini exhibit terminal comple-
mentarity with the 5′- and 3′-ends of both L and S genome segments
predicted to form panhandle structures. For several arenaviruses, an
additional non-templated G residue has been detected on the 5′ end
of their genome RNAs. There are significant differences in sequence
and predicted folded structure between the S and L IGR, but among
isolates and strains of the same arenavirus species the S, as well as L,
IGR sequences are highly conserved.

The NP, the most abundant viral polypeptide both in infected cells
and virions, is the main structural element of the viral RNP and plays
an essential role in viral RNA synthesis. Recent evidence indicates that
NP exhibits also a type I interferon (IFN-I) counteracting activity
(Martinez-Sobrido et al., 2009, 2007, 2006). This anti-IFN activity was
mapped to the C-terminus of NP. The recently determined crystal
structure of LASV NP at 1.80 A resolution identified distinct N- and C-
terminal domains (Qi et al., 2010). The N-terminal domain has a
potential cap-binding activity that could provide the host-derived
primers to initiate transcription by the virus polymerase (Qi et al.,
2010). In contrast, the C-terminal domain has a folding that mimics
that of the DEDDH family of 3′–5′ exoribonucleases like the one
associated with SARS Corona virus nsp14 protein (Eckerle et al.,
2010). Functional studies confirmed the 3′–5′ exoribonuclease
activity of LASV NP, which was proposed to be critical for the anti-
uses with a bi-segmented negative strand RNA genome. Each genome segment uses an
b) segment encodes for the viral nucleoprotein (NP) and glycoprotein precursor (GPC).
he virus RNA dependent RNA polymerase (L) and a small RING finger protein (Z) that is
d negative strand RNA viruses.
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IFN activity of NP but dispensable for the role of NP on replication and
transcription of the viral genome (Qi et al., 2010). This assertion,
however, is difficult to reconcile with the lack of anti-IFN activity
associated with the NP of TACV (Martinez-Sobrido et al., 2007) and
the finding that an LCMV with a mutant NP lacking the 3′–5′
exoribonuclease had a large decrease in fitness during its replication
in IFN-deficient Vero cells (Martinez-Sobrido et al., 2009). The viral
glycoprotein precursor GPC is post-translationally proteolytically
processed by the S1P cellular protease to yield the two mature virion
glycoproteins GP-1 (40–46 kDa) and GP-2 (35 kDa) (Beyer et al.,
2003; Lenz et al., 2001; Pinschewer et al., 2003b). GPC contains a 58-
amino-acid signal peptide (SSP) that is expressed as a stable
polypeptide in infected cells and it remains associated to the GP
complex (GPcx). This SSP has been implicated in different aspects of
the trafficking and function of the viral envelope glycoproteins
(Saunders et al., 2007; York and Nunberg, 2006; York et al., 2004).
GP-1 mediates virus interaction with host cell surface receptors and is
located at the top of the spike, away from the membrane, and is held
in place by ionic interactions with the N-terminus of the transmem-
brane GP-2. The arenavirus RING finger protein Z is a structural
component of the virion that has no homologue among other known
NS RNA viruses. In LCMV-infected cells Z has been shown to interact
with several cellular proteins including the promyelocytic leukemia
(PML) protein and the eukaryote translation initiation factor 4E
(eIF4E), which have been proposed to contribute to the noncytolytic
nature of LCMV infection and repression of cap-dependent transla-
tion, respectively (Borden et al., 1998a, 1998b; Campbell Dwyer et al.,
2000; Djavani et al., 2001; Volpon et al., 2010). Z has been shown to be
the arenavirus counterpart of the M protein found in many other NS
enveloped RNA viruses that plays a critical role in assembly and cell
release of mature infectious virions (Perez et al., 2003; Strecker et al.,
2003; Urata et al., 2006).

The arenavirus L protein has the characteristic sequence motifs
conserved among the RdRp (L proteins), of negative strand (NS) RNA
viruses (Poch et al., 1989). Detailed sequence analysis and secondary
structure predictions done with the LASV L polymerase identified
several regions of strong alpha-helical content and a putative coiled-
coil domain at the N-terminus (Vieth et al., 2004). Subsequent
bioinformatic analysis together with biochemical and MG-based
functional studies have shown that LASV L protein is likely organized
into three distinct structural domains and that at specific amino acid
positions LASV L can be split into an N- and C-parts that are able to
functionally trans-complement each other (Brunotte et al., 2011).
Notably, the recent electron microscopy characterization of a
functional MACV L protein has reveal a core ring-domain decorated
by appendages, which may reflect a modular organization of the
arenavirus polymerase (Kranzusch et al., 2010).

Arenavirus life cycle

Consistent with a broad host range and cell type tropism, a highly
conserved and widely expressed cell surface protein, alpha-dystro-
glycan (aDG) has been identified as a main receptor for LCMV, LASV
and several other arenaviruses (Cao et al., 1998; Kunz et al., 2002).
However, many arenaviruses appear to use an alternative receptor
(Kunz et al., 2004), and human transferrin receptor 1 was identified as
a cellular receptor used for entry of NW HF arenaviruses JUNV and
MACV (Radoshitzky et al., 2007). Upon receptor binding, arenavirus
virions are internalized by uncoated vesicles and released into the
cytoplasm by a pH-dependent membrane fusion step that is mediated
by GP-2 (Eschli et al., 2006; Gallaher et al., 2001). The fusion between
viral and cellular membranes releases the viral RNP into the
cytoplasm, which is ensued by the onset of viral RNA synthesis.
LCMV mRNAs have 4–5 non-templated nt and a cap structure at their
5′-ends, which are likely obtained from cellular mRNAs via cap-
snatching mechanisms whose details remain to be determined. A
recently described endonuclease activity associated with the arena-
virus L polymerase could play a critical role in this process (Morin et
al., 2010). Transcription termination of subgenomic non-polyadeny-
lated viral mRNAs were mapped to multiple sites within the distal
side of the IGR (Meyer and Southern, 1994; Tortorici et al., 2001),
which suggested that the IGR acts as a bona fide transcription
termination signal for the virus polymerase. The NP and L coding
regions are transcribed into a genomic complementary mRNA,
whereas the GPC and Z coding regions are not translated directly
from genomic RNA, but rather from genomic sense mRNAs that are
transcribed using as templates the corresponding antigenome RNA
species, which also function as replicative intermediates (Fig. 2).

Assembly and cell release of infectious arenavirus progeny require
both Z and GPC, as well as the correct processing by the cellular site 1
protease (S1P) of GPC into GP1 and GP2 (Kunz et al., 2003; Perez et al.,
2003; Strecker et al., 2003; Urata et al., 2006).

Reverse genetics and their implications for the investigation of
arenavirus molecular and cell biology

The generation of an infectious RNA virus from cloned cDNA,
referred to as reverse genetics, was first reported more than 20 years
ago for the bacteriophage Qb (Taniguchi et al., 1978), and shortly after
a similar approach was reported for the generation of poliovirus
(Racaniello and Baltimore, 1981). In contrast to positive-stranded
RNA viruses, like bacteriophage QB, deproteinized genomic and
antigenomic RNAs of negative strand (NS) RNA viruses, like LCMV,
cannot function as mRNAs and are not infectious. This reflects the fact
that the template of the polymerases of NS RNA viruses is exclusively
a nucleocapsid consisting of the genomic RNA tightly encapsidated by
the NP, which associated with the virus polymerase proteins forms a
ribonucleoprotein (RNP) complex. Thus, generation of biologically
active synthetic NS viruses from cDNA requires trans complementa-
tion by all viral proteins involved in virus replication and transcrip-
tion. These considerations hindered the application of recombinant
DNA technology to the genetic analysis of these viruses. However,
following the pioneering work of Palese's group (Luytjes et al., 1989),
significant progress has been made in this area and for all NS RNA
viruses, short model genomes (aka minigenomes (MG)) could be
encapsidated and expressed by plasmid-encoded proteins. Moreover,
it has become possible to rescue infectious virus entirely from cloned
cDNAs formembers of all families of NS RNA viruses (Kawaoka, 2004).

The use of reverse genetic approaches has revolutionized the
analysis of cis-acting sequences and trans-acting proteins required for
virus replication, transcription, maturation and budding. In addition,
the possibility to generate predetermined specific mutations within
the virus genome and analyze their phenotypic expression in vivo in
the context of the virus natural infection is contributing very
significantly to the elucidation of the molecular mechanisms
underlying virus–host interactions at the cellular and molecular
levels, which has provided investigators with novel and powerful
approaches for the investigation of viral pathogenesis. In addition,
these developments have also paved the way for engineering these
viruses for vaccine and gene therapy purposes (Subbarao and Katz,
2004; von Messling and Cattaneo, 2004).

Arenavirus MG systems

The first arenavirus MG rescue system was developed for LCMV
(Lee et al., 2000). Subsequently MG systems were developed for LASV
(Hass et al., 2004) and the NW arenaviruses PICV (Lan et al., 2009),
TACV (Lopez et al., 2001), and JUNV (Albarino et al., 2009). Results
derived from MG-based assays identified NP and L as the minimal
viral trans-acting factors required for efficient RNA synthesis
mediated by the virus polymerase (Hass et al., 2004; Lee et al.,
2000; Lopez et al., 2001). For LCMV both genetic and biochemical
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evidence indicated that oligomerization of L is required for the activity
of the arenavirus polymerase (Sanchez and de la Torre, 2005).
Consistent with this finding biochemical and MG-based functional
studies have shown that LASV L protein contains both N- and C-
termini sites that mediate L–L interaction (Brunotte et al., 2011). The
use of MG-based assays facilitated mutation–function studies involv-
ing conserved acidic and basic amino acid residues within the N- and
C-termini of LASV L protein uncovered several residues within the N-
terminus of L that played a critical role in synthesis of viral mRNA but
not in RNA replication (Hass et al., 2008; Lelke et al., 2010). The recent
publication of an 2.13 A resolution crystal structure and functional
characterization of the N-terminal 196 residues (NL1) of the LCMV L
protein uncovered an endonuclease functional domain similar to the
one found in the N-terminus of the influenza virus PA protein (Morin
et al., 2010), andMG-based assays shown the endonuclease activity of
NL1 to be critical for arenavirus transcription (Morin et al., 2010).

Mutation–function analysis of the genome 5′- and 3′-termini using
the LCMV and LASVMG-based assays indicated that the activity of the
arenavirus genomic promoter requires both sequence specificity
within the highly conserved 3′-terminal 19 nt of arenavirus genomes,
and the integrity of the predicted panhandle structure formed via
sequence complementarity between the 5′- and 3′-termini of viral
genome RNAs (Hass et al., 2006; Perez and de la Torre, 2003). These
studies revealed that arenavirus RNA replication and transcription are
regulated in a coordinated manner. Likewise, MG-based assays
provided direct experimental confirmation that the IGR is a bona
fide transcription termination signal (Pinschewer et al., 2005), and
that intracellular levels of NP do not determine the balance between
virus RNA replication and transcription (Pinschewer, Perez, and de la
Torre, 2003), a finding conceptually similar to that reported for the
paramyxovirus RSV (Fearns et al., 1997).

Z was not required for intracellular transcription and replication of
a LCMV MG, but rather Z exhibited a dose dependent inhibitory effect
on both transcription and replication of LCMV MG (Cornu and de la
Torre, 2001, 2002; Cornu et al., 2004). This inhibitory effect of Z has
been also reported for TACV (Lopez et al., 2001) and LASV (Hass et al.,
2004). For most enveloped viruses, a matrix (M) protein is involved in
organizing the virion components prior to assembly. Interestingly,
arenaviruses do not have an obvious counterpart of M. However, Z has
been shown to be the main driving force of arenavirus budding (Perez
et al., 2003; Strecker et al., 2003; Urata et al., 2006), a process
mediated by the Z late (L) domain motifs: PTAP and PPPY similar to
those known to control budding of several other viruses including HIV
and Ebola virus, via interaction with specific host cell proteins (Freed,
2002). Consistent with this observation Z exhibited features charac-
teristic of bona fide budding proteins: 1) ability to bud from cells by
itself, and 2) substituted efficiently for other L domain. Targeting of Z
to the plasma membrane, the location of arenavirus budding, strictly
required its myristoylation (Perez et al., 2004; Strecker et al., 2006).
Results derived from cryo-electron microscopy of arenavirus particles
(Neuman et al., 2005) were also consistent with the role of Z as a
functional M protein.

Generation of recombinant arenaviruses

Generation of infectious virus from cloned cDNAs has been
reported for LCMV (Flatz et al., 2006; Sanchez and de la Torre,
2006), PICV (Lan et al., 2009) and JUNV (Albarino et al., 2009; Emonet
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et al., 2011). The ability to generate recombinant arenaviruses with
predetermined specific mutations and analyze their phenotypic
expression in the context of the natural course of infection has
opened new opportunities to investigate arenavirus–host interactions
that influence a variable infection outcome, ranging from virus control
and clearance by the host defenses to long-term chronic infection
associatedwith subclinical disease, and severe acute disease including
HF.

The generation of the first recombinant arenavirus via a reverse
genetic approach consisted in the replacement of the LCMV GP gene
by the one of VSV G (Pinschewer et al., 2003b). This virus, called
rLCMV/VSVG, was generated through transfection of cells with a
plasmid expressing a recombinant LCMV S RNA segment, where VSV
G substituted for LCMV GPC, followed by infection with WT LCMV as
helper virus. The supernatant from infected cells contained a mix of
WT LCMV and rLCMV/VSVG and selection of rLCMV/VSVG was done
via passages in S1P-deficient cells, where the LCMV WT could not
produce an infectious progeny. This approach was limited to the
generation of rLCMV for the S segment and required a time-
consuming selection process. These limitations were overcome by
the rescue of infectious LCMV progeny entirely from cloned cDNAs
using either a T7 RNA polymerase (RP) (Sanchez and de la Torre,
2006) or pol-I RP (Flatz et al., 2006) system to launch intracellular
Fig. 3. Generation of recombinant arenaviruses via reverse genetics. Cells are transfected wit
species via either T7 RNA polymerase (T7RP) or RNA polymerase I (pol-I), together with pol-
mediated intracellular synthesis of L and S RNA species, the addition of a pol-II expression
culture supernatant is collected and used for amplification and purification of the recombin
synthesis of S and L genome, or antigenome, RNA species that were
subsequently replicated and transcribed by the virus polymerase
complex reconstituted intracellularly via plasmid-supplied L and NP
(Fig. 3). Both systems exhibited similar efficiencies and the same virus
rescued by any of the two systems displayed the same phenotypic
properties both in cultured cells and in vivo. This successful rescue of
LCMV from cloned cDNA was subsequently extended to other strains
of LCMV (Chen et al., 2008) and to the NW arenaviruses Pichinde virus
(PICV) (Lan et al., 2009) and Junin virus (JUNV) (Albarino et al., 2009).
Intriguingly, the rescue of PICV and JUNV using the T7RP-based
system did not require plasmid-supplied viral NP and L proteins
(Albarino et al., 2009; Lan et al., 2009; Liang et al., 2009), indicating
that T7RP-mediated RNA synthesis produced both viral antigenome
RNA species that were substrate for encapsidation and replication,
and mRNAs that serve as template to produce levels of NP and L
sufficiently high to facilitate virus rescue. This phenomenon has been
reported for several other negative-sense RNA viruses, including
bunyaviruses (Blakqori and Weber, 2005; Lowen et al., 2004),
filoviruses (Groseth et al., 2005), and bornaviruses (Schneider et al.,
2005). Moreover, for the orthobunyavirus La Crosse virus and
arenavirus PICV, the use of plasmid supplied viral trans-acting factors
was documented to diminish the efficiency of the system (Blakqori
and Weber, 2005; Liang et al., 2009).
h plasmids that direct intracellular synthesis of the L and S genome, or antigenome, RNA
II expression plasmids for the viral trans-acting factors L and NP. For rescues using T7RP-
plasmid for T7RP is optional. At 48–72 h post-transfection the virus-containing tissue
ant virus.
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Reverse genetic approaches similar to those used to rescue
infectious LCMV, PICV and JUNV from cloned cDNAs should be now
applicable to other arenaviruses. The T7RP-based system offers the
advantage of requiring only transfection of plasmids expressing the
viral genome RNAs. However, the T7RP has to be also provided either
via transfection or by the use of a cell line stably expressing T7RP. The
non-templated G found at the 5′-end of arenavirus genome RNA
species (Garcin and Kolakofsky, 1990; Raju et al., 1990) does not pose
a problem as truncated T7RP promoters that direct RNA synthesis by
T7RP starting with exhibit good levels of transcriptional activity
(Sousa and Mukherjee, 2003). The activity of genome promoter
present at the 3′-end of the S and L genomic RNAs was found to be
dramatically affected bymutations with the 3′-terminal 19 nt (Hass et
al., 2006; Perez and de la Torre, 2003). The generation of authentic 3′-
end viral genome termini using the T7RP is facilitated by the
incorporation of the HDV ribozyme downstream to the T7RP
termination sequence (Liang et al., 2009; Sanchez and de la Torre,
2006), but variability in the ribozyme cleavage efficiency could
negatively affect the rescue efficiency. T7RP-mediated transcription
can trigger the IFN-I response, via RIG-I (Habjan et al., 2008), which
could compromise the rescue recombinant viruses with enhanced
susceptibility to INF-I.

The RNA pol I is localized in the nucleus of the cell and directs
synthesis of the large ribosomal RNA precursor that will be processed
into rRNA 5.8S, 28S and 18S (Comai, 2004). The pol I-based system
was first used with influenza virus, whose replication occurs in the
nucleus of infected cells (Neumann and Kawaoka, 2004), but
subsequently it has been used for the rescue of a variety of NS RNA
viruses including bunyaviruses, filoviruses and arenaviruses (Flatz et
al., 2006; Groseth et al., 2005; Habjan et al., 2008; Ogawa et al., 2007).
A limitation of the pol-I system is the species-specific activity of the
promoter (Comai, 2004; Neumann and Kawaoka, 2004), which would
prevent the use of a given pol-I construct with every cell line of
interest. On the other hand, transcription termination of the RNA pol-I
occurs very precisely at the pol-I termination signal, which eliminates
the need to add any ribozyme between the end of the viral RNA and
the pol I terminator. Besides their pros and cons, both T7RP and pol-I
systems have been proven to be similar efficient for the rescue of
arenaviruses (Sanchez and de la Torre, 2006), and other negative-
sense RNA viruses (Habjan et al., 2008).

Another important aspect to consider for a successful arenavirus
rescue is the need to confirm the sequence of the 5′- and 3′-termini of
the S and L genome RNAs. These cis-acting regulatory sequences play
a critical role in the control of RNA synthesis by the virus polymerase,
and minimal changes within them would likely prevent virus rescue.
Obtaining the correct sequence for the L IGR sequences and a
functional clone of the L polymerase are additional key factors when
attempting to rescue a given arenavirus for the first time.

The ability to generate recombinant arenaviruses with predeter-
mined specific mutations and analyze their phenotypic expression in
the context of the natural course of infection has opened new
opportunities to investigate arenavirus–host interactions that influ-
ence a variable infection outcome, ranging from virus control and
clearance by the host defenses to long-term chronic infection
associatedwith subclinical disease, and severe acute disease including
HF. Thus, the use of rLCMV/VSVG uncovered the arenavirus GP as a
viral Achilles' heel and provided the foundations for a novel strategy
to develop safe and effective live-attenuated arenavirus vaccines
(Pinschewer et al., 2003a, 2003b). Likewise, rLCMV/VSVG was very
instrumental in facilitating studies aimed at understanding the
regulation of CD8+ T cell function within the infected brain
(Pinschewer et al., 2010), as well as how viruses can induce organ-
specific immune disease in the absence of molecular mimicry and
without disruption of self tolerance (Merkler et al., 2006). Other
engineered rLCM viruses have been used to study LASV cell entry
pathway (Rojek and Kunz, 2008) and the role of NP in the inhibition of
induction of IFN-I by LCMV (Martinez-Sobrido et al., 2009). Likewise,
studies aimed at examining the critical role played by the S1P-
mediated processing of arenavirus GPC in the virus life cycle were
aided by the use of recombinant viruses where the S1P cleavage site
within GPC was replaced by a canonical furin cleavage site (Albarino
et al., 2009; Rojek et al., 2010; Urata et al., 2011). The rescue of
attenuated and virulent forms of PICV (Lan et al., 2009; Liang et al.,
2009), or the Docil and Aggressive strains of LCMV (Chen et al., 2008)
have allowed for the identification of specific genetic determinants
virus virulence. Despite the facile generation of these recombinant
arenaviruses, the ability to rescue arenaviruses expressing additional
genes of interest posed unexpected difficulties. Approaches success-
fully employed with other NS RNA viruses including the use of an
internal ribosome entry site (IRES), or of the picornavirus self-
cleaving 2A protease, did not work when applied to LCMV. This
problem was overcome by the generation of tri-segmented rLCMV
(r3LCMV) containing 1L and 2S segments. Each of the two S segments
was altered to replace one of the two viral ORF, GPC or NP, by a gene of
interest (GOI) (Emonet et al., 2009). The rationale behind this
approach was that the physical separation of GP and NP into two
different S segments would represent a strong selective pressure to
select and maintain a virus capable of packaging 1L and 2S segments.
A variety of r3LCMV have been rescued that express one or two
additional GOI. Depending on the GOI expressed (protein function,
size of the gene), these r3LCMV showed little or no attenuation in
cultured cells and they exhibited long-term genetic stability as
reflected by unaltered expression levels during serial virus passages
of the GOI incorporated into the S segment. The use of r3LCMV
expressing appropriate reporter genes should facilitate the develop-
ment of chemical screens to identify antiviral drugs, as well as siRNA-
based genetic screens to identify host cell genes contributing to the
different steps of the arenavirus life cycle. In contrast, the use of
r3LCMV to study virus–host interactions in mice has encountered
some limitations due to the observation that even r3LCMV with WT
growth properties in cultured cells exhibited an attenuated pheno-
type in the mouse due to reasons that remain to be determined.

Harnessing arenavirus reverse genetics for the development of
novel strategies to combat human pathogenic arenaviruses

Novel targeting strategies

In vitro and in vivo studies have documented the prophylactic and
therapeutic value of the nucleoside analogue ribavirin (Rib) against
several arenaviruses (Damonte and Coto, 2002). Importantly, Rib
reduced both morbidity and mortality in humans associated with
LASV infection, and experimentally in MACV and JUNV infections, if
given early in the course of clinical disease (Damonte and Coto, 2002).
The mechanisms by which Rib exerts its anti-arenaviral action remain
poorly understood, but likely involve targeting different steps of the
virus life cycle (Parker, 2005). Two important limitations of the use of
Rib therapy are the need of intravenous administration for optimal
efficacy and significant side effects including anemia and congenital
disorders. Several inhibitors of IMP dehydrogenase, the S-adenosyl-
homocysteine (SAH) hydrolase, a variety of sulfated polysaccharides,
phenotiazines compounds, brassinosteroids and myristic acid have
been reported to have anti-arenaviral activity (Damonte and Coto,
2002). However, these compounds displayed only modest and rather
non-specific effects associated with significant toxicity. Therefore
there is a pressing need for novel effective anti-arenaviral drugs. In
this regard, a recent high-throughput screening (HTS) using a virus-
induced cytopathic effect (CPE)-based assay identified a potent small
molecule inhibitor of TACV and several other NW arenaviruses
(Bolken et al., 2006). Likewise, cell-based HTS based on the use of
pseudotyped virion particles bearing the GP of highly pathogenic
arenaviruses identified several small molecule inhibitors of virus cell
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entry mediated by LASV GP (Lee et al., 2008). These findings illustrate
how screening of complex chemical libraries using appropriate assays
represents a powerful tool to identify candidate antiviral drugs with
highly specific activities. Progress in arenavirus reverse genetics is
allowing investigators to dissect each of the steps of the virus life cycle
to uncover novel targets and develop screens to identify drugs
directed against specific steps of the arenavirus life cycle.

Targeting the biosynthetic processes, RNA replication and gene
transcription, directed by the arenavirus polymerase complex

Results frommutation–function studies have identified the core of
the arenavirus genome promoter and uncover that both sequence
specificity and structure are critical for promoter activity. Disruption
of the interaction between the arenavirus genome promoter and the
virus polymerase complex would interfere with the essential
biosynthetic processes of viral transcription and replication, which
is expected to have a strong deleterious impact on virus viability.
Hence, small molecules that interfere specifically with this interaction
could be efficacious antiviral agents.

Effector small molecules targeted at RNA may interfere with RNA
functions by a number of mechanisms. They can alter the functional
three-dimensional structure of the RNA molecule, so that interaction
with proteins is affected. Also, as interface inhibitors, they may
directly prevent the formation of competent RNA–protein complexes.
The study of small molecule RNA effectors has primarily focused on
the aminoglycosides (Hermann, 2000; Hermann and Westhof, 2000;
Sucheck et al., 2000; Sucheck and Wong, 2000; Wilson and Li, 2000).
The antibiotic activity associated with aminoglycoside targeting of
bacterial 16S ribosomal RNA is a well-known success case. The
potential of aminoglycosides as antiviral molecules by acting on RNA
has been illustrated by their ability to disrupt selectively the HIV-1
Rev-RRE (Wang et al., 1997) and Tat-TAR (Wang et al., 1998)
interactions. Similar approaches should be applicable to inhibit the
interaction between the arenavirus promoter and polymerase
complex. The genome core promoter is highly conserved among all
known arenaviruses, and recent studies have defined a motif at
positions 2–5 of the 3′ promoter that plays a key role in L polymerase
binding (Kranzusch et al., 2010). These findings predict the feasibility
of identifying aminoglycoside-based molecules with antiviral activity
active against different human pathogenic arenaviruses.

Mutation–function studies on the LCMV and LASV L polymerases
using MG-based systems combined with biochemical assays have
provided evidence of the requirement of L–L interaction for
polymerase activity. This finding has uncovered the possibility of
using small molecules to disrupt L–L interaction as a novel strategy to
inhibit arenavirus multiplication.

Targeting the S1P mediated processing of arenavirus GPC
Correct processing of arenavirus GPC by the cellular site 1 protease

(S1P) is strictly required for production of infectious progeny and cell-
to-cell virus propagation, and thereby for both intra- and inter-host
virus propagation (Kunz et al., 2003). Intriguingly, studies on LCMV
and JUNV infection of cells deficient in S1P indicated that the
appearance of viral variants capable of growing independently of
S1P-mediated processing of GPC appears to be highly unlikely. These
findings strongly support the idea that inhibitors of S1P-mediated
processing of GPC would represent promising anti-arenaviral drug
candidates (Rojek et al., 2008, 2010). S1P is encoded by themembrane
bound transcription-factor protease site 1 gene and is an endoplasmic
reticulum (ER)/early Golgi membrane-anchored serine protease
(Sakai et al., 1998; Seidah et al., 2006). Despite its broad consensus
sequence, S1P exhibits exquisite substrate specificity and is involved
in proteolytic processing of a defined set of cellular proteins. The key
role of S1P in the regulation of lipid metabolism and cholesterol
biosynthesis has raised significant interest in developing specific
inhibitors of S1P activity. Several peptide and non-peptide-based S1P
inhibitors have been documented but their lack of cell permeability
would pose severe limitations to their use as antiviral drugs. Recently,
decanoylated chloromethylketone (CMK)-derivatized peptides con-
taining the RRLL recognition sequence of S1P have been shown to act
as potent suicide inhibitors of S1P catalytic activity. These drugs cause
irreversible inhibition of the catalytic activity of S1P against host cell
and pathogen derived targets, which might result in unacceptable
levels of cellular toxicity. Recently, the small molecule PF-429242 was
reported to be a potent S1P inhibitor both in vitro and in cell-based
assay (Hawkins et al., 2008; Hay et al., 2007). In addition, PF-429242
was shown to inhibit efficiently S1P-mediated processing of arena-
virus GPC, which correlated with the drug's ability to interfere with
propagation of both LCMV and LASV in cultured cells (Urata et al.,
2011).

Targeting virus budding
The arenavirus Z protein has features characteristic of a bona fide

budding proteins (Perez et al., 2003; Strecker et al., 2003; Urata et al.,
2006). For many characterized viral budding proteins, their budding
activity requires interaction, via its L domains, with specific host
cellular factors includingmembers of the ESCRTmachinery within the
endosomal/MVB pathway of the cell. In this regard TSG101, a member
of the ESCRT-I complex, has been identified as a host cellular protein
required for Z-mediated budding. Accordingly, siRNA-mediated
knock-down of TSG101 was found to interfere with Z-mediated
budding. The use of recombinant arenaviruses expressing appropriate
tagged versions of Z should facilitate studies aimed at the identifica-
tion and characterization of the Z-host cell protein interactions
involved in arenavirus budding in the context of the virus natural
course of infection. Knowledge from these studies may uncover novel
targets and facilitate the development of screening processes to
indentify small molecules capable of disrupting these interactions and
thereby interfering with virus propagation. The ESCRT machinery
participates in a variety of processes required for normal cell
physiology (Carlton, 2010; Morita et al., 2010) and therefore long-
term disruption of the normal function of ESCRT components is likely
to result in unacceptable levels of toxicity. However, arenavirus
induced HF are acute disease processes, and it is plausible that short
term inhibition of ESCRT members to combat an acute HF arenaviral
disease may cause only limited toxicity.

Novel vaccine strategies

The JUNV live attenuated Candid #1 strain, derived from the 44th
mouse brain passage of prototype XJ strain of JUNV, was found to be
attenuated in guinea pigs and preclinical studies supported the safety,
immunogenicity and protective efficacy of Candid #1 in both guinea
pigs and rhesus macaques (McKee et al., 1992). Moreover, studies
involving agricultural workers in the JUNV endemic area have shown
Candid #1 to be an effective and safe vaccine in humans (Enria and
Barrera Oro, 2002; Maiztegui et al., 1998). Candid #1 was licensed in
2006 for use exclusively in Argentina. Despite its success, there are
some limitations associated with the Candid #1 vaccine. Key concerns
relate to the lack of information about the genetic composition of the
Candid #1 vaccine and limited knowledge regarding the viral genetic
determinants of JUNV attenuation. RNA viruses, including Candid #1,
replicate and perpetuate as quasi-species. Therefore, every amplifi-
cation step to increase vaccine production may result in the
appearance or enrichment within the virus population of genotypes
within the potential of exhibiting increased virulence. As the genetic
markers associated with Candid #1 attenuation are not clearly
established, the emergence of potentially pathogenic variants within
the Candid #1 population is difficult to assess. The potential genetic
instability of Candid #1 is illustrated by the observation that Candid
#1 isolates obtained from blood mononuclear cells of vaccinated
rhesus monkeys showed a 1000 fold range of virulence, with some
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isolates exhibiting up to ~100 fold higher virulence compared to the
parental Candid #1 (Enria and Barrera Oro, 2002). Reverse genetic
approaches could facilitate the development of a safer vaccine against
AHF, and other HF arenaviral diseases, by facilitating the generation of
molecular clones of genetically well-defined live-attenuated vaccine
strains with the ability to induce strong protective immunity (Emonet
et al., 2011).

The first use of reverse genetic approaches for arenavirus vaccine
development involved the generation of an rLCMV where VSV G
substituted for LCMV GPC. This rLCMV was highly attenuated but able
to induce a strong protective immunity (Bergthaler et al., 2006). This
finding led to examine the potential of LCMV as a viral vector system
for immunization against non-LCMV antigens of interest. These
studies showed that LCMV GPC could be replaced by a protein
antigen of interest and the corresponding rLCMV, grown in cells
expressing GPC, were able to induce good immune responses against
the foreign protein while immunized mice remained free of disease
symptoms (Flatz et al., 2010). However, the potential problem
associated with pre-existing immunity against LCMV in human
populations may limit the use of this system. Tri-segmented rLCMV
able to stably express at high levels non-LCMV genes of interest have
been found to exhibit attenuation in vivo while exhibiting sufficient
levels of replication to induce strong protective immunity against a
subsequent LCMV lethal challenge (Emonet et al., 2009). A similar
strategy could be implemented to increase the safety Candid #1.

Among HF arenaviruses, LASV poses the main concern due to its
vast endemic region and size of the population at risk. The geographic
and socio-economic conditions intrinsic to the LASV endemic regions
would pose significant difficulties for individuals at risk to have ready
access to medical care, including antiviral drugs, to be treated against
symptoms of LASV induced disease. Therefore, vaccination of the
population at risk would be likely to provide a more effective strategy.
However, a vaccination approach against LF similar to the one used
against AHF is currently unfeasible because an attenuated strain for
LASV has not been established. Nevertheless, a variety of approaches
have been pursued aimed at the development of a LASV vaccine
including DNA immunization approaches (Rodriguez-Carreno et al.,
2005) and different vector-based vaccines. Recombinant vaccinia
viruses expressing LASV NP or GP have been shown to provide cell-
mediated immunity against LASV in guinea pigs and non-human
primates (Fisher-Hoch et al., 2000). However, this approach would
face the problem of the risk of using a vaccinia virus based vector in a
population with high HIV prevalence. Alphavirus-based vectors have
been used to induce protective immunity against LASV in guinea pigs
(Pushko et al., 2001), and more recently a recombinant VSV where
LASV GP substituted for the VSV G was shown to provide protection
against a lethal challenge with LASV (Geisbert et al., 2005). Likewise,
the alphavirus Venezuelan equine encephalitis virus (Lee et al., 2005),
and the 17D Yellow fever vaccine (Bredenbeek et al., 2006) have
shown promising results. Whether these recombinant vaccines
provide long-term protection remains to be determined, an issue
highly relevant in the case of LF due to a cumulative lifetime risk of
exposure to LF vaccine within the West Africa human population. The
induction of heterologous immunity by using a closely related but less
pathogenic virus has been also explored for the development of a
LASV vaccine. Thus, a reassortant (called ML29) between Mopeia, an
OW arenavirus considered to be non-pathogenic to humans, and LASV
has shown some promising results (Carrion et al., 2007), but detailed
safety and efficacy studies have not been completed. An alternative
approach for the development of a LF vaccine would be the use of
reverse genetics to generate biologically contained versions of LASV in
a similar way as described for Ebola virus (Halfmann et al., 2008) and
influenza (Martinez-Sobrido and Garcia-Sastre, 2010). Recent work
with LCMV has provided strong support for the feasibility of this
approach (Flatz et al., 2010) to generate a safe and effective LASV
vaccine. Likewise, the use of live-attenuated tri-segmented Candid #1
expressing relevant LASV T-cell epitopes could be used to induce
protective immunity against JUNV and LASV.

Concluding remarks and perspectives

The development of reverse genetic systems for several arena-
viruses has opened new research avenues to study basic aspects of the
biology of this virus family, as well as the identification of viral
determinants and mechanisms by which several arenaviruses cause
HF disease in humans. Moreover, over the years the prototypic
arenavirus LCMV has proven to be a superb model system to study
virus–host interactions and associated disease. The ability to manip-
ulate the LCMV genome and generate rLCMV with predetermined
mutations would allow investigators to gain a detailed understanding
of the roles played by the different viral genes in virus–host
interactions resulting in very different phenotypic outcomes ranging
from an acute and fatal meningitis to immunosuppression and chronic
infections that although clinically silent can be associated with
neurobehavioral abnormalities. On the other hand, the use of
arenavirus MG cell-based assays, or single-cycle infectious arena-
viruses, offers a number of benefits in the discovery and character-
ization of antiviral drugs against arenaviruses. These assays allow
investigators to examine the effect of an antiviral drugs in the context
of living cells, which facilitates the rapid identification of antiviral
compounds with obvious undesirable cytotoxicity. In addition,
because these assays do not involve the production of life virus,
they overcome the difficulties posed by the need of BSL4 facilities to
handle HF arenaviruses like LASV and JUNV. Likewise, the implemen-
tation of siRNA-based screens in the context of cell-based MG assays
should facilitate the identification of host cell proteins that play key
roles in arenavirus RNA replication and gene expression and thereby
open potential for discovering novel targets that could be used in the
development of effective anti-arenaviral drugs.
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