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Abstract: The liver is an irreplaceable organ in the human body, maintaining life activities and
metabolism. Malignant tumors of the liver have a high mortality rate at present. Computer-aided
segmentation of the liver and tumors has significant effects on clinical diagnosis and treatment.
There are still many challenges in the segmentation of the liver and liver tumors simultaneously,
such as, on the one hand, that convolutional kernels with fixed geometric structures do not match
complex, irregularly shaped targets; on the other, pooling during convolution results in a loss of
spatial contextual information of images. In this work, we designed a cascaded U-ADenseNet with
coarse-to-fine processing for addressing the above issues of fully automatic segmentation. This
work contributes multi-resolution input images and multi-layered channel attention combined with
atrous spatial pyramid pooling densely connected in the fine segmentation. The proposed model
was evaluated by a public dataset of the Liver Tumor Segmentation Challenge (LiTS). Our approach
attained competitive liver and tumor segmentation scores that exceeded other methods across a wide
range of metrics.

Keywords: CT images; convolutional neural network; channel attention; cascaded; liver segmentation

1. Introduction

Since the liver is a reasonably significant organ for abdominal metabolism, liver tu-
mors in particular, malignancy certainly poses a serious threat to human health. Statistics
from the World Health Organization have also shown that commonly occurring liver
cancer was accompanied by a high mortality rate worldwide. How to accurately identify,
locate and segment lesions has become the primary step in the development of subsequent
precision treatment and individualized protocols. Accurate diagnostic treatment has a
significant positive effect on reducing the number of patients suffering from diseases and
improving disease prognosis [1]. The computed tomography (CT) image analysis technique
is the main solution for diagnosis, and plays a vital role in the treatment of hepatoma [2].
Precise description of the area of the liver and the lesions on CT images allows for bet-
ter assessment of liver function and for producing more appropriate surgical plans [3].
Traditional manual segmentation is tedious and time-consuming. In terms of time and
efficiency, semi-automatic segmentation is obviously superior to manual segmentation.
Semi-automatic segmentation algorithms of CT images mainly rely on information distri-
bution and often use model-driven algorithms such as region growth [4], thresholding [5],
active contour model [6], graph cut [7], shape statistical model [8], etc. Although these
image segmentation approaches can speed up the time-consuming manual segmentation
process, it still suffers from over-reliance on prior knowledge. Recently, great advances
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have facilitated the development of typical image processing tasks in computer vision,
such as image classification [9], object detection [10], image segmentation [11], etc. Fully au-
tomatic segmentation with powerful self-learning capabilities stands out in medical image
analysis. This method can assist clinicians to perform follow-up analysis of lesions rapidly
and stably based on the morphological characteristics of lesions with maximum fidelity,
providing an objective basis for the precise formulation of lesion treatment plans [12].

Medical image segmentation algorithms based on deep-learning convolutional neural
networks are especially representative in fully automated segmentation of the liver and
liver tumors. Long et al. [13] from Berkeley proposed a fully convolution neural network
(FCN) for the semantic segmentation of images, which extends image-level classification to
pixel-level classification. A FCN replaces the fully connected layers of VGG [14] with decon-
volution layers for upsampling, so that the feature maps can be returned to their original
size. Sun et al. [15] applied a fully convolutional network (FCN) to CT images for segmenta-
tion of the liver and the accuracy exceeded that of numerous semi-automatic segmentation
methods. Chlebus et al. [16] improved an FCN and utilized a conditional random field
(CRF) in post-processing for the refinement of segmentation. Ben-Cohen et al. [17] have
trained an FCN by adding weight parameters to the loss function, allowing the model to
better focus on the target region of liver segmentation. Badrinarayanan et al. [18] proposed
an encoder–decoder structure network. This method addressed the lack of response infor-
mation in upsampling by using pooling indices. Almotairi et al. [19] modified the SegNet
for efficient segmentation of the liver and lesions. Ronneberger et al. [20] presented U-Net
by combining an FCN with an encoder–decoder structure. U-Net adds a skip connection
structure that can fuse the low-level features together with the high-level features. Compar-
atively excellent segmentation results were achieved in the ISBI Cell Tracking Challenge via
the model. Seo et al. [21] added residual modules with de-convolution layers and activated
U-Net to improve the accuracy of segmentation.

However, the locations and shapes of the liver and liver lesions are highly variable
in the different CT images [22]. It is worth mentioning that most malignant tumors of the
liver are caused by the presence of underlying liver lesions, which result in variable liver
morphology and irregular morphology of liver lesions. Thus, some researchers have made
use of cascaded structures to form coarse-to-fine segmentation patterns. Christ et al. [22]
used two FCN-8s in a cascade to first obtain the region of interest (ROI) of the liver and
then to segment liver lesions in the ROI, which improved the accuracy compared to the
direct method. Bi et al. [23] utilized ResNet [24] in a multiscale fusion cascade to infer
boundaries of the liver and tumors. Kaluva et al. [25] applied a cascaded DenseNet [26] for
to independently segment the liver and tumors to improve the precision. Segmentation
of the liver and tumors still has multiple challenges at present, such as a low contrast
between the organs and the high complexity of target shapes [26]. Rundo et al. [27]
applied squeeze-and-excitation blocks concerning the channel attention. Jin et al. [28] used
multiple attention hybrid connection blocks, combining soft and hard attention mechanisms
together with long and short jump connections. Lu et al. [29] designed two stages of liver
localization and tumor segmentation. The superficial spatial information is first used to
improve liver identification, and the 2D image features and 3D spatial features of CT image
slices are used to accurately identify liver tumors. They used attentional mechanisms to
improve the segmentation performance of small liver tumors. In general, the ensemble
in the convolution process results in the loss of spatial background information of the
image, and convolutional kernels with fixed geometry cannot match complex, irregularly
shaped targets.

In this work, we propose a cascaded U-ADenseNet network to segment CT images
for the liver and its lesions. The network is designed to reduce the difficulty of segmenting
areas concerning targets that involve diverse locations and complex shapes. So as to
minimize the loss of spatial information during down sampling from feature extraction,
U-ADenseNet replaces down sampling with dilated convolution. We innovate a multi-
layered channel attention module, subtly combining atrous spatial pyramid pooling. The
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structure uses U-Net to initially extract the feature information of the liver and tumors,
cascading our designed ADenseNet for fine segmentation afterward. The model makes use
of densely connected modules to realize the feature interaction of multiple receptive fields,
effectively unifying global spatial information with local depth semantic information. Our
experiments applied the dataset from the Liver Tumor Segmentation Challenge competition
(LiTS) [30]. Experimental results showed the improvement of the Dice similarity coefficient,
volumetric overlap error and relative volume difference compared to the baseline methods,
which verified the efficiency of this model.

2. Related Theories
2.1. U-Net

Earlier convolutional layers tend to learn lower-level concepts more, while the later
convolutional layers produce higher-level feature maps. The number of feature maps needs
to be increased when the network reaches deeper levels. A simple way to build the neural
network architecture for this task is to simply stack many convolutional layers and output
the final segmentation mappings. Corresponding segmentation mappings are learned from
the input images by direct, successive transformations of the feature maps [31]. Therefore,
the researchers often compressed the spatial resolution to moderate the computational
pressure. U-Net can use a small amount of data to learn a model that is robust to edge
extraction. More specifically, the U-Net architecture consists of a contracting path for
capturing content and an expanding path for precise localization. The contracting path still
uses the convolutional pooling component of a traditional convolutional neural network, in
which channels become twice as large after a down sampling process. The expanding path
consists of a 2 × 2 deconvolution, where output channels of the deconvolution machine
are half of the original number of channels and then concatenated with the original feature
map to obtain a feature map with the same number of channels as the original, followed
by two convolutions of size 3 × 3 and the action of Relu. Cropping the feature map is
necessary because there is a loss of boundary pixels during the convolution process. The
desired target species are obtained in the last layer by the action of convolution with a
convolution kernel size of 1 × 1. There are 23 convolutional layers in U-Net. However,
this network needs to choose the size of the input images carefully to ensure that all max
pooling operations act on feature maps with even length and width. This architecture has
already been commonly used in medical segmentation tasks.

2.2. DenseNet

Convolutional networks can be significantly deeper, more accurate and easier to train
if they contain shorter connections between the layers closer to the input and the layers
closer to the output. The traditional structure is delivered from layer to layer, and some
information is changed whilst some information is retained in the delivered information.
DenseNet starts with features and achieves better results and fewer parameters by making
the best use of features. DenseNet improves the efficiency of information and gradient
transfer in the network. Each layer obtains the gradient directly from the loss function
and obtains the input signal directly, so that a deeper network can be trained, and this
structure also has the effect of regularization [26]. This connection allows for a more
efficient transfer of features and gradients. Other networks are dedicated to improving the
network performance from depth and width, but DenseNet is dedicated to improving the
network performance from the feature reuse perspective. It creates short paths from early
layers to later layers.

2.3. Atrous Spatial Pyramid Pooling

The benefit of down sampling the feature mapping is the extended perceptual field
for the fixed, constant convolutional kernel size. The approach makes more sense than
increasing the size of the convolutional kernel because of the lower parametric efficiency of
large-size convolutional kernels. However, this expansion is involved in the reduction in
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spatial resolution. Dilated convolution provides an alternative method to obtain a wide
field of view while preserving the full spatial dimensionality. Dilated convolution separates
the space with values based on a specified dilation rate. The pooling layers are replaced
by dilation convolutions with continuously increasing dilation rates, which can prevent
the loss of spatial details while maintaining the same perceptual field [32]. Atrous spatial
pyramid pooling (ASPP) is based on dilated convolution and spatial pyramid pooling.
ASPP samples the given input in parallel with null convolution at different sampling
rates, which is equivalent to capturing the context of the image at multiple scales. ASPP is
actually a version of spatial pyramid pooling. In ASPP, parallel cavity convolution with
different rates is applied in the input feature mapping and fused together. Since objects
of the same class may have different scales of images, ASPP helps to consider different
object scales [33].

3. Proposed Method
3.1. Cascaded U-ADenseNet Network Architecture

In order to extract more effective features from the liver and liver tumors, this work
is conducted by using the method of coarse-to-fine segmentation. Multiple network
architectures are utilized to implement liver and tumor image segmentation tasks. The
general steps of such a coarse-to-fine segmentation can be illustrated in Figure 1. The main
steps of this work include pre-processing, coarse segmentation and fine segmentation.
Pre-processing is an indispensable part of the medical image segmentation before the
feature extraction. The output of the first stage is used as the input of the second stage,
which combines multi-level information and extracts more image features to improve the
segmentation accuracy. The first stage of coarse segmentation uses a U-shaped network
structure to obtain contextual and location information, which is called U-Net. That is an
initial prediction of the liver and tumor region in the image. The second stage applies our
designed ADenseNet for the fine segmentation. The final results of refined segmentation
of the liver and liver tumors is obtained.

Figure 1. Main steps of this work for the segmentation of the liver and tumors.

In detail, pooling will lead to the excessive loss of spatial information of images. A
mismatch between convolutional kernels with a fixed geometric structure and complex,



J. Pers. Med. 2021, 11, 1044 5 of 15

irregularly shaped targets of the liver and tumors limits segmentation performance. In
order to address these problems, this new network is designed with a coarse-to-fine
principle and applies to the segmentation of the liver and tumors. Figure 1 shows the
structure of the cascaded U-ADenseNet network proposed in this paper. It mainly consists
of two major parts. After being trained by the feature extraction network in the form of
U-Net, a feature enhancement extraction network in the form of ADenseNet was designed
in a cascade. The probability maps of the liver and its lesions obtained from the first-
stage segmentation were fused with the original map using addition. Afterward, they are
entered into the second-stage segmentation network and processed to output optimized
segmentation predictions. This network is designed to reduce the impact of the complex
and irregular characteristics of the liver and its tumors by narrowing the region of interest
(ROI) and unifying global spatial information with local depth semantic information.

3.2. Preprocessing

The purpose of image pre-processing is to reduce the interference of complex back-
grounds on the target area. The publicly available dataset used in our experiments of this
study was CT images from the Liver Tumor Segmentation Challenge (LiTS) [30]. These
CT slices contained two foreground classes (i.e., liver and liver tumors) and a background
class consisting of unrelated organs. The initial effects of image enhancement and noise
reduction were achieved by performing mainly HU windowing and Gaussian filtering on
the images. The formula for HU windowing is shown below:

HU = pixel ∗ slope + intercept (1)

These images have different slope and intercept values. The parts we want are
filtered according to HU, and all other parts are blacked out or whitened. This reduces the
interference of the complex background on the target areas. In addition, Gaussian filtering
is a linear smoothing filter that is suitable for eliminating noise. Gaussian filtering is realized
by a discretization window and sliding window convolution with a Gaussian template.

3.3. ADenseNet
3.3.1. ADenseNet Network Architecture

The information on multiple image resolutions is critical to capturing target location
details, so the interactions between multiple image resolutions need to be learned to obtain
more feature information. The second stage of the cascaded U-ADenseNet network in the
study of the segmentation of the liver and its tumors is demonstrated in Figure 2. The coarse
segmentation prediction images were obtained after the first stage of U-Net. These images
fused original, pretreated CT slices to acquire the coarse positioning of CT images. The
resolution of these coarse positioning images was 512× 512, and the data were scaled down
to 256 × 256 and 128 × 128 when expanded. Convolution and ADense block operation
were carried out after the input of CT images with three different resolutions, followed by
bi-linear difference sampling and feature image fusion. Finally, convolution and softmax
operations were implemented to output the predicted segmentation results. Our approach
captures the interactions between the multiple image resolutions simultaneously in a fully
learned end-to-end optimization. This work involves the ADense block in the ADenseNet
for fine segmentation of the liver and tumors. Figure 3 shows the technical principles of
the ADense block. In general, long-distance contextual information and information at
different scales were important for results.
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Figure 2. The specified structure of the ADenseNet network.

Figure 3. The detailed technical principles of an ADense block.

In order to increase the receptive field, the extracted feature map is often pooled to
achieve the effect of increasing the receptive field, combined with the multi-scale infor-
mation by jumping connections. Since pooling is conducted in a direct and crude way,
the spatial resolution will be sacrificed after each pooling, leading to the loss of spatial
information after multiple pooling, even doing harm to the segmentation effectiveness.
The emergence of dilated convolution is to solve the problem of enhancing the receiver
field without a loss of information. Atrous spatial pyramid pooling will parallel or cascade
the convolution of different dilation rates to obtain multi-scale information gain. Due to
its mechanism of dilated convolution, only a small number of pixels are selected for each
calculation and the sampling is not intensive, resulting in a large amount of discarded
spatial information. Therefore, Adense_block applies the ideology of dense connection to
atrous spatial pyramid pooling.
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3.3.2. Multi-Layered Channel Attention

For the purpose of reducing the loss of important features of the CT images in the
training process and causing segmentation results to be more accurate, it must enhance
the features of complex segmentation targets via multi-layered channel attention. The
design of multi-layered channel attention is aimed at reducing the difficulty of segmenting
the complex liver and tumors, by selecting information of different spatial scales across
channels. Figure 4 demonstrates the whole process of multi-layered channel attention.
Feature maps, after three kinds of convolutions, respectively formed three branches. Each
branch carries out the maximum pool and global average pool operation, then shared
a network layer to obtain the weight of the channel feature. In detail, we changed the
feature map from C × H ×W to C × 1 × 1 through the global average pooling and max
pooling method, and we used K × 1 × 1 convolution to process information and obtain a
C-dimensional vector. We used the sigmoid function to normalize data and obtained the
corresponding weights. Finally, through channel-wise multiplication, the feature map after
information calibration is obtained. The feature maps of the original branch channel feature
calibration; finally it will be treated as a three-branch operation after processing additive
operation feature maps, obtaining more accurate features. In conclusion, this multi-layered
channel attention mechanism can focus the updating direction of the weights in the model
to the information which was helpful to the segmentation tasks.

Figure 4. Mechanism of the multi-layered channel attention.

3.4. Cross-Entropy Adaptive Weight Loss Function

Since this article has dealt with the task of multi-class segmentation of the liver and
liver tumors, the loss function of adaptive, weighted cross-entropy was used. The error
value of the loss function was calculated at the endpoint of the forward propagation, and
the loss layer was also the starting point of the back propagation. Different weights can
be assigned to the different categories when the unbalanced categories were in the sam-
ples. Cross-entropy measures the degree of difference between three different probability
distributions for the same random variable, and can be expressed in machine learning
as the difference between the true probability distribution and the predicted probability
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distribution. The smaller the value of cross-entropy, the better the model prediction. The
formula of the adaptive weighting method was as follows:

L(y, ŷ ) = − 1
N ∑N

i=1 ∑3
c=1 wc

i yc
i logŷc

i , (2)

Among the formula, yc
i means the probability that an image, i, falls into category, c,

which included background, liver or liver tumors. wc
i stands for weight, ŷc

i represents the
truth tag for an image, i. Moreover, the weighting of the categories was defined by the
following formula:

ωclass =
1

ln(t + Pclass)
, (3)

Here, Pclass can be seen as the proportion of the sample of that class. Additionally,
we set t, which was a hyper-parameter, to 1.02. Then, we limited ωclass to (1.0, 50). The
implementation of weighted cross-entropy is to add weights to the different categories so
that the network gives importance to the categories with smaller sample sizes.

4. Experimental Results
4.1. Dataset and Implementation Details

We adopted Pytorch to implement this model for medical CT images segmentation
of the liver and tumors through running the Linux Ubuntu 16.04 64-bit operating system.
Our experimental instrument was equipped with an NVIDIA RTX 2080 Ti 11 GB GPU on
an Intel Core i7-7700K 4.20 GHz with 16 GB RAM. The cascaded U-ADenseNet network
training performed by 300 epochs on a single GPU with a constant initialized learning rate
was 0.0001 and the initialized alpha was 0.33.

The LiTS dataset contained 131 cases of enhanced abdominal CT scans with labels
in the formal way, originally in a neuroimaging informatics technology initiative (NIFTI)
format. Because these CT volumes were acquired from multiple clinical sites by different
scanners and protocols, the images varied widely in their appearance. The data were
divided into a training set of 105 cases and a testing set of 26 cases, which were processed
into axial slices in a portable network graphics (PNG) format. Each CT slice has a resolution
of 512 × 512. The all-black images that did not contain the liver and tumors were removed
from the training set, speeding up the training process for the liver and tumors in order
to reduce the training burden. Considering the problems of blurred boundaries and low
contrast between the targets and other surrounding organs in the medical images of the
LiTS dataset, the images needed to be processed to reduce the interference of extraneous
noise and enhance the contrast. Figure 5 illustrates the typical comparison of the original
images and the processed images. Due to the special nature of medical CT images, it can
be seen that the details of the edges of the organs and the contrast of the images were more
distinct after data preprocessing. In the experiment, these processed CT images were fed
into the cascaded U-ADenseNet, and then the network produced the predicted results of
segmentation concerning the liver and tumors.

Figure 5. Comparison of the original images and the processed images.
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4.2. Performance Metrics

To validate and measure the accuracy of predicted results and the effectiveness of
the segmentation algorithm, this section used three evaluation metrics to validate the
segmentation results of the liver and liver tumors. The Dice similarity coefficient (DSC)
can be seen as the most common evaluation metric in the field of segmentation algorithms.
The Dice similarity coefficient can be calculated by the following formula:

DSC =
2|A + B|
|A|+ |B| , (4)

Here, A denotes the predicted segmentation result and B indicates the ground truth.
Furthermore, volumetric overlap error (VOE) and relative volume difference (RVD) were
used as evaluation metrics. VOE represents the overlap between the segmentation result
and the actual segmentation result. RVD indicates the difference between the splitting
results and the volume between markers. The specific calculation formulas are as follows:

VOE = 1− TP
TP + FP + FN

, (5)

RVD =
FP

TP + FN
, (6)

Here, TP, FP and FN denote the number of pixels that are predicted with the correct
foreground label (true positive), the number of background pixels that are erroneously
predicted as foreground pixels (false positive) and the number of foreground pixels that
are erroneously predicted as background pixels.

4.3. Experimental Results and Analysis
4.3.1. General Comparison on Ablation Experiments

To verify the effectiveness of the algorithm concerning the simultaneous segmentation
of the liver and liver tumors in this paper, we implemented several experiments. The
ablation results are shown in Table 1. The core idea of a cascading U-Net is to use the
output of the previous network as the input of the next network, combining multi-level
information and extracting more sets of image features to improve segmentation accuracy.
Densely-CNN used DenseNet to independently train segmentation models of the liver
and tumor in addition to precisely locate the liver region in the CT images to assist the
tumor model, thus producing a joint segmentation of the liver and tumors as a way to
improve segmentation accuracy. ADenseNet1 in Table 1 represents the second stage of
fine segmentation merely using multi-resolution inputs without the attention mechanism.
ADenseNet2 denotes a model using the attention mechanism, without the adoption of
a multi-resolution input pattern during the second stage. ADenseNet1 was similar in
structure to the second stage of Densely-CNN. The outstanding advantage of DenseNet
was that it can encourage feature reuse. Experimental results of the U-Net-cascaded
ADenseNet2 will prove the necessity to use attention mechanisms of segmentation.

Table 1. Segmentation results of the liver and liver tumors on ablation analysis.

Models
Liver Liver Tumors

Dice VOE RVD Dice VOE RVD

U-Net 0.938 0.165 0.057 0.659 0.493 −0.381
U-Net + ADenseNet1 0.953 0.124 0.025 0.717 0.371 −0.193
U-Net + ADenseNet2 0.961 0.103 0.029 0.731 0.387 −0.175

Cascaded U-ADenseNet 0.963 0.086 0.023 0.745 0.353 −0.124
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We propose the model of cascaded U-ADenseNet for the coarse-to-fine segmentation
with the addition of dilated convolution and a channel attention mechanism. The goal is
to increase the receptive field and reduce the loss of spatial resolution information. We
implemented the ablation experiments to study the effect of different technical points
of this cascade network on the performance of the segmentation network. Specifically,
Table 1 shows the evaluation scores of experiments. Cascaded U-ADenseNet means that
the network contains the technologies mentioned above.

4.3.2. Analysis of Results in Three Patterns

We have implemented experiments for different patterns of liver tumors. Pattern one
refers to predicting large liver tumors, pattern two represents the prediction of small liver
tumors and pattern three indicates predicting multiple liver tumors.

In this paper, a pixel ratio of liver-to-tumor greater than 10% is defined as a large
tumor and one less than 10% is defined as a small tumor. The threshold value is selected
according to the pixel ratio of liver-to-tumor, which can be adjusted according to specific,
actual scenes. Some typical examples of ground truths and the segmented predicted images
of the training model for several cases are shown in the following figures. These cases
refer to those from Table 1 and they are arranged in five columns from left to right in
Figures 6–8. The red parts refer to the liver regions and the green parts denote the region of
the liver tumors. At first, from Figure 6 we can analyze that the segmentation results using
the cascaded U-ADenseNet are closer than others to the contours of the ground truths
when the morphologies of liver tumors are large. The main change is in the way of data
input. Learning of convolutional networks is usually based on a single, fixed-resolution
image. However, according to some studies, this single resolution may not be optimal
and depends on the size of the objects in the image. Information from multiple image
resolutions may be crucial to capture details, especially in the field of medical images. It
obtains more feature information by learning the interactions between multiple image
resolutions of the same image.

Figure 6. Segmentation results for the liver and tumors of pattern one. (a) Ground truths, (b) U-Net,
(c) U-Net + ADenseNet1, (d) U-Net + ADenseNet2 and (e) cascaded U-ADenseNet.

Moreover, Figure 7 demonstrates the segmentation results of applying these different
networks in pattern two, which refers to the segmentation prediction of small liver tumors.
Long-distance contextual information and information of different scales are important
for segmentation results. Therefore, in order to increase the perceptual field, the extracted
feature map is often pooled to achieve the effect of increasing the perceptual field, and
the multi-scale information is combined by jumping connections. Since pooling is a direct
and brutal way, the spatial resolution is sacrificed after each pooling, and multiple pooling
may cause information loss and affect the segmentation effect. Dilation convolution
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emerged to solve the problem, by not losing information while improving the perceptual
field. ASPP stacks nulls of different dilation rates in parallel or in a cascade to gain
multi-scale information.

Figure 7. Segmentation results for the liver and tumors of pattern two. (a) Ground truths, (b) U-Net,
(c) U-Net + ADenseNet1, (d) U-Net + ADenseNet2 and (e) cascaded U-ADenseNet.

Figure 8. Segmentation results for the liver and tumors of pattern three. (a) Ground truths, (b) U-Net,
(c) U-Net + ADenseNet1, (d) U-Net + ADenseNet2 and (e) cascaded U-ADenseNet.

Furthermore, in Figure 8 we find that the predicted results of utilizing cascaded U-
ADenseNet are obvious superior to others during the processing and predicting of CT
images containing multiple liver tumors. Dilation convolution is not densely sampled
because only a small number of pixels are selected for each calculation, and a large amount
of information is discarded; when the null rate increases to a certain degree (e.g., dilation
rate > 24), null convolution becomes less effective or even ineffective. Therefore, the
ADense block applies the idea of dense concatenation to ASPP, and the input of each
hole convolution layer is the stitching of the output and input feature map of all previous
convolution layers. Therefore, the addition of multi-resolution image input and the multi-
layered channel attention has significantly greater advantages.

In pattern one, the pixels of each tumor account for more of the total pixels of the liver.
The difference between U-Net + ADenseNet2 and U-ADenseNet is whether the input is
performed in the way of multi-resolution in the second stage, and a single-resolution input
will be better than a multi-resolution input when the liver is large, so the Dice metrics using
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the cascaded U-ADenseNet in pattern one are slightly lower than U-Net + ADenseNet2. It
can be seen clearly in Table 2 that there are higher Dice metrics in pattern two and pattern
three when using the cascaded U-ADenseNet. From the evaluation of these experimental
results and the comparison of segmentation images, the multi-resolution input and the
attention mechanism in this cascaded network definitely play a great advantage. In
particular, the multi-layered channel attention module has the most obvious effect of
enhancing model performance.

Table 2. Comparison of results in the different patterns of morphological liver tumors.

Models Dice (Pattern One) Dice (Pattern Two) Dice (Pattern Three)

U-Net 0.913 0.675 0.628
U-Net + ADenseNet1 0.924 0.683 0.641
U-Net + ADenseNet2 0.931 0.711 0.663

Cascaded U-ADenseNet 0.928 0.719 0.687

4.3.3. Comparison of Various Algorithms

Meanwhile, the algorithm proposed in this work was compared to other typical
segmentation algorithms, such as Densely-CNN [25], USE-Net [27], RA-UNet [28] and
DCU-Net [29]. It can be seen from Table 3 that the algorithm presented in this paper has
obvious advantages under various evaluation metrics compared to other counterparts.
DCUNet is also a two-stage segmentation and applies attention mechanisms; the imple-
mentation is related to the training of 2D slices and 3D images, and our paper uses 2D slices
for training all the time. DCUNet adds the attention module to the skip connections; our
method of multi-layered channel attention is added to atrous spatial pyramid pooling. In
addition, the second stage of the method in this paper adopts a multi-resolution approach
and atrous spatial pyramid pooling to achieve the interaction of feature information. In the
experimental results, although the liver Dice of our method was not as high as for DCUNet,
the tumor Dice of our method was higher than for DCUNet. This indicates that our method
performs better for complex regions.

Table 3. Segmentation performance and comparison of various algorithms.

Models
Liver Liver Tumors

Dice VOE RVD Dice VOE RVD

Densely-CNN [25] 0.923 0.015 −0.008 0.625 0.411 19.705
USE-Net [27] 0.956 0.090 0.0703 0.741 0.240 −0.190
RA-UNet [28] 0.961 0.074 0.002 0.595 0.389 −0.152
DCUNet [29] 0.967 - - 0.725 - -

Cascaded U-ADenseNet 0.963 0.086 0.023 0.745 0.353 −0.124

The segmentation accuracy has been improved to a certain extent, which can verify
the effectiveness of the cascaded U-ADenseNet. Some examples of results, referring to
the images that were predicted by the processing of our proposed network. It can be
demonstrated in Figure 9.

Results of the liver segmentation contours are marked in light-green and the ground
truths are marked in light-red. The predicted results of liver tumor segmentation contours
are marked in dark-green and the ground truths are marked in dark-red. In Figure 9,
the first row shows the original CT images before entering the network. The second row
demonstrates the coloring visualization of the predicted image: the red parts represent the
liver and the green parts represent the tumors. The third row displays the comparison of
predicted image contours and the ground truths. These images clearly show the proposed
cascaded U-ADenseNet network, whose performance is quite close to the corresponding
ground truth, and few problems concerning over-segmentation and under-segmentation
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can be observed. This model, based on U-Net and DenseNet for coarse-to-fine segmentation
of the liver and tumors, will better facilitate smart healthcare and diagnosis.

Figure 9. Typical segmentation results of the cascaded U-ADenseNet for the liver and tumors.

5. Conclusions

Fully automated medical image segmentation has become a key research technology
for clinical disease diagnosis and treatment. In this study, patterns concerning the accu-
racy of various segmentation methods for different morphological cases of liver tumors
were found. This study presented the novel U-ADenseNet network in a cascade. The
techniques of dilated convolution and the multi-layered channel attention module enabled
the network to extract more discriminative image features, which helps to improve the
overall segmentation performance of the liver and tumors. At the same time, this two-step
cascade method also solved the problem of unbalanced tumor segmentation data caused
by the small proportion of liver tumors in the whole image. These experimental results
on the publicly available LiTS dataset confirmed the effectiveness of the liver and tumors
segmentation. For precision medicine, suitable automatic segmentation methods can be
selected in the future based on the general characteristics of the liver lesions. The method
of the cascaded U-ADenseNet is the most suitable one for the segmentation of multiple
liver lesions, with the highest accuracy compared to some other methods. This method
has some gaps in the performance of the state-of-the-art method of segmenting the liver
and tumors separately, but this method has the advantages of simultaneous segmentation.
Our method can be efficiently used for the segmentation of multiple lesions. Since the
algorithm in the paper may cause the loss of some information during pre-processing for
the given CT images, more pretreatment before feature extraction will be incorporated in
future work, which can better assist the diagnosis of liver tumors together with treatment
and other clinical application tasks in the liver.
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