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Objectives: The COVID-19 pandemic has been a serious worldwide public

health crisis since 2020 and is still challenging healthcare systems. New tools

for the prognosis and diagnosis of COVID-19 patients remain important issues.

Design: Here, we studied the metabolome of plasma samples of COVID-19

patients for the identification of prognosis biomarkers.

Patients: Plasma samples of eighty-six SARS-CoV-2-infected subjects and

24 healthy controls were collected during the first peak of the COVID-19

pandemic in France in 2020.

Main results: Plasma metabolome fingerprinting allowed the successful

discrimination of healthy controls, mild SARS-CoV-2 subjects, and moderate

and severe COVID-19 patients at hospital admission. We found a strong effect

of SARS-CoV-2 infection on the plasma metabolome in mild cases. Our

results revealed that plasma lipids and alterations in their saturation level are

important biomarkers for the detection of the infection. We also identified

deoxy-fructosyl-amino acids as new putative plasma biomarkers for SARS-

CoV-2 infection and COVID-19 severity. Finally, our results highlight a key

role for plasma levels of tryptophan and kynurenine in the symptoms of

COVID-19 patients.

Conclusion: Our results showed that plasma metabolome profiling is an

efficient tool for the diagnosis and prognosis of SARS-CoV-2 infection.
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Introduction

Since 2020, we have been facing the global pandemic of
coronavirus disease 19 (COVID-19), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). The main
difficulties associated with COVID-19 are the lack of general
specific symptoms, ranging from asymptomatic forms to acute
respiratory distress syndrome (ARDS), its contagiousness and
its morbidity and mortality rate (1). Despite rapid vaccine
developments, COVID-19 is still a major health threat. COVID-
19 vaccines are efficient tools for limiting the spread and
severity of the disease but in many countries vaccination
rates are still low for economic or ideological reasons. The
development of efficient drugs for COVID-19 treatment (2)
may improve the outcome of SARS-CoV-2 infection in the
future. However, efficient global medical management of the
COVID-19 pandemic requires a better understanding of the
pathophysiological mechanisms of the disease. More tools are
needed to help the clinician to establish a reliable prognostic and
thus, to rapidly apply adequate treatment.

SARS-CoV-2 infections are commonly detected by RT-
PCR and antigen testing on nose-throat swabs. RT-PCR tests
are based on viral gene detection and reliable results can
be obtained after several hours (3). Antigen tests based on
viral antigen detection are more rapid with results available
after approximately 20 min. The diagnosis of moderately and
severely affected patients is now codified with combined clinical,
biological and CT scan assessments. However, progress is still
required in terms of prognostic and screening evaluation.
Therefore, new approaches using molecular analyses are needed.
Metabolomics, which had already been used to study several
viral infections such as influenza (4) and EBOLA (5), was
recently also used for studies with COVID-19 patients (6, 7).
These metabolomic studies were mainly used with patients
suffering moderate to severe symptoms with the aim to develop
tools for screening severe patients and for predicting their
outcome. The studied cohorts included few patients with mild
or asymptomatic forms of COVID-19 (8, 9).

The aims of this study were to identify plasma metabolome
signatures that enable the robust classification of asymptomatic,
mildly, moderately, and severely affected COVID-19 patients,
to predict the course of the patient’s medical condition,
and to assess new insights in the underlying biological
mechanisms of the disease.

Materials and methods

Patient selection and procedure

The analyses were conducted on a cohort of plasma
samples previously used in the study of Ruetsch et al. (10).

These blood samples were obtained from 86 SARS-CoV-2-
infected and 24 healthy control volunteers. All samples were
collected during the first peak of the COVID-19 pandemic
in France in 2020. Patients were considered to be COVID-
19 cases according to the WHO classification: presence of
chilblain or CT scan characteristic of COVID-19 or two
consecutive positive RT-PCR tests for SARS-CoV-2 virus or
positive serological tests. To evaluate whether the metabolomic
approach is suitable for discriminating subjects in terms of
diagnosis and/or prognosis, patients were separated into three
groups according to the severity of the infection: patients with
mild symptoms of COVID-19 (chilblains or flu-like symptoms
not requiring hospital monitoring), patients with moderate
symptoms (patients hospitalized in infectious disease units)
and patients with a severe form of COVID-19 (requiring
hospitalization in an intensive care unit). Plasma samples of
the Moderate and Severe groups were obtained from patients
at hospital admission. Non-infected subjects with a negative
serological test for SARS-CoV-2 comprised the control group.
An informed consent was obtained for all participants. The
study protocol conformed to the ethical guidelines of the 1975
Declaration of Helsinki and was approved by the appropriate
institutional review committee (NCT04355351).

Collection and processing of plasma
samples for omic analyses

A volume of 100 µL plasma was mixed with 100 µL
H2O (HPLC grade, Merck Millipore, USA), and 600 µL
methanol (HPLC grade, Merck Millipore, USA) was added.
Samples were vortexed and incubated overnight at −20◦C for
protein precipitation. After centrifugation (13.000 × g, 15 min,
4◦C), the supernatant was removed, dried using a SpeedVAC
concentrator (SVC100H, SAVANT, Thermo Fisher Scientific,
Illkirch, France), resuspended in 80 µL 20:80 acetonitrile-H2O
mixture (HPLC grade, Merck Millipore) and stored at −20◦C
until use for metabolomic analyses.

Metabolomic analyses

Chromatographic analyses were performed with the
DIONEX Ultimate 3000 HPLC system coupled to a
chromatographic column (Phenomenex Synergi 4 u Hydro-RP
80A 250 × 3.0 mm) set at 40◦C and a flow rate of 0.9 mL/min.
Gradients of mobile phases (mobile phase A: 0.1% formic acid in
water and mobile phase B: 0.1% formic acid in acetonitrile) were
performed over a total of 25 min. MS analyses were carried out
on a Thermo Fisher Scientific Exactive Plus Benchtop Orbitrap
mass spectrometer. The heated electrospray ionization source
(HESI II) was used in both positive and negative ion modes. The
instrument was operated in full scan mode from m/z 60 to m/z
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FIGURE 1

Identification of putative biomarkers of SARS-CoV-2 infection. PLS-DA analyses based on untargeted plasma metabolomic profiling
discriminated healthy control subjects (CTRL) from all SARS-CoV-2 infected subjects (All, including mild, moderate and severe cases). Green and
red dots represent CTRL and SARS-CoV-2 infected subjects, respectively. The score plot is represented with a confidence ellipse of 95% (A).
Loading plots of the top 15 features (metabolites) selected on the average of the first five components of the PLS-DA model. Identified
metabolites were validated by MS2 analyses and are shown as chemical names (B). Pairwise comparisons of areas under multivariate ROC
curves (AUC) from each prognosis predictor (C).

FIGURE 2

Heatmap of the top 15 metabolites of SARS-CoV-2 infection. Metabolites were clustered using the ward method on t-test and ANOVA values.
The molecular structures of the lipids are given.

900. Data post-treatment was performed using the MZmine2
version 2.391 (11). Typical Total Ion Chromatograms for

1 http://mzmine.github.io/

positive and negative modes are illustrated in Supplementary
Data 1C. Gap filling was performed using the “Same RT and
m/z range gap filler” method of the MZmine software. The m/z
tolerance was set up at 0.001 m/z or 10.0 ppm. Metabolites
were putatively annotated [corresponding to level 2 of the
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Metabolomics Standard Initiative (MSI)]2 using the Human
Metabolome Database version 5.03 (12). Only ions identified as
[M + H]+ adducts in the positive mode and [M-H]− adducts
in the negative mode and ions found in all the samples after
gap filling were included. Metabolites identified as drugs or
exogenous compounds were omitted. Full data sets (raw data)
are available upon request.

Statistical analyses

Statistical analyses of the untargeted metabolomic studies
were processed using statistical analysis modules (one factor)
proposed by MetaboAnalyst 5.04 (12). For each comparison,
all samples of the data sets were median normalized and
peak intensities were Log transformed. Using Partial Least
Squares-Discriminant Analysis (PLS-DA), we analyzed loadings
(average) of features selected by the PLS-DA model to identify
discriminative metabolites. PLS-DA is considered particularly
effective for biological systems to select discriminative features.
The data identities of the top features shown in Figures 1–
4, 6 were verified by the comparison of the obtained
MS2 spectra with those of online data banks (Human
Metabolome, MassBank Europe).5 MS2 matches are illustrated
in Supplementary Data 1D, 2C, 3C, 4C. However, most of MS2
spectra that we found in the HMDB were predicted spectra.
Therefore, MS2 matches are not corresponding to the level 1
of the MSI. Statistical tests to measure the association between
major metabolites and clinical outcome such as Receiver-
Operating Characteristic curves (ROC) were performed using
the biomarker analysis module of MetaboAnalyst. The datasets
of the four comparisons (see below) of the different groups of
this study are given in the Supplementary Data 1A–4A. For
each comparison, the data are ranked according to the PLS-
DA average score (as per the loading plots in Figures 1B, 3B,
4A,C). Values and graphs are illustrated in the Supplementary
Data 1B–4B. Several identified ions are putative biomarkers. To
simplify the study, we mainly describe and discuss the top 15
metabolites from the PLS models.

Pathway analyses

Analyses of related pathways were processed using pathway
analysis modules proposed by MetaboAnalyst 5.0 (see text
footnote 4) (12). Venn diagrams were performed to calculate
and draw the intersections of pathway lists using a webtool.6

2 https://github.com/MSI-Metabolomics-Standards-Initiative/CIMR

3 http://www.hmdb.ca

4 https://www.metaboanalyst.ca

5 https://massbank.eu/MassBank/

6 http://bioinformatics.psb.ugent.be/webtools/Venn/

Results

Group characteristics

In this study, plasma metabolomes from 110 RT-PCR-tested
subjects were analyzed. Epidemiological and clinical data are
reported in Supplementary Table 1. The group (named “Mild”)
of patients with only mild symptoms comprised 39 subjects; the
group (named “Moderate”) of patients with moderate symptoms
comprised 22 subjects; and the group (named “Severe”) of
patients with severe symptoms comprised 25 subjects. Plasma
samples from 24 health-care workers with additional negative
serological test results and no apparent symptoms constitute
the healthy control group (named “CTRL”). The Mild COVID-
19 patients did not suffer any respiratory syndrome, however,
one patient was treated by oxygen therapy (see Supplementary
Table 1). Aiming the identification of biomarkers for the
prognosis of COVID-19 severity, plasma samples of the
Moderate and Severe groups were obtained from patients
at hospital admission for respiratory illness and COVID-19
diagnosis via a positive RT-PCR test result. These patients
were then divided into the two subgroups, i.e., Moderate or
Severe through a follow-up, with those whose medical condition
progressed to acute respiratory distress being assigned to the
Severe group. All samples of the healthy control donors with a
negative serological test for SARS-CoV-2 were obtained at the
beginning of 2020 and were therefore from subjects supposedly
never exposed to SARS-CoV-2 infection.

Gender (p = 0.004), mean age (p < 0.001), presence of
cardiovascular history (p < 0.0001), diabetes (p = 0.0003),
and cancer history (p = 0.04) were statistically different
between the groups.

Comparison of untargeted plasma
metabolomic fingerprintings of healthy
controls (CTRL) and severe acute
respiratory syndrome coronavirus
2-infected (mild, moderate, and severe
groups) subjects revealed that
important metabolome changes occur
in all infected patients (All)

The plasma metabolomes of non-infected control subjects
were compared to those of the infected volunteers. After data
post-treatment of the LC-MS analyses (see section “Materials
and methods”), 605 metabolites were selected from the ions
(m/z) obtained in both, positive and negative electrospray
ionization modes. Metabolomics data (ranked according to the
loading, see below) are available in Supplementary Data 1A.

We performed supervised multivariate analyses [Partial
Least Squares-Discriminant Analysis (PLS-DA)] on these data
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FIGURE 3

Identification of putative biomarkers of mild SARS-CoV-2 infected subjects compared to healthy control subjects. PLS-DA analysis based on
untargeted plasma metabolomic profiling discriminated healthy control subjects (CTRL) from mild SARS-CoV-2-infected cases (Mild). Green
and red dots represent CTRL and mild SARS-CoV-2-infected subjects, respectively. The score plot is represented with a confidence ellipse of
95% (A). Loading plots of the top 15 features (metabolites) selected on the average of the first five components of the PLS-DA model. Identified
features were MS2 validated and are shown as chemical names (B). Pairwise comparisons of areas under multivariate ROC curve (AUC) from
each prognosis predictor (C).

FIGURE 4

Identification of the putative biomarkers of moderate and severe COVID-19 patients compared to mild SARS-CoV-2 infected subjects (A,B) and
severe compared to moderate COVID-19 patients (C,D). PLS-DA analyses are shown in Supplementary Figure 2A and Figure 3A. Loading plots
of the top 15 metabolites selected on the average of the first five components of the PLS-DA model. Identified features were MS2 validated and
are shown as chemical names (A,C). Pairwise comparisons of areas under multivariate ROC curve (AUC) from each prognosis predictor (B,D).

using the MetaboAnalyst website. As illustrated in the score
plot of Figure 1A, the plasma metabolomes of the control
group (CTRL) could clearly be discriminated from those

of the SARS-CoV-2-infected groups (All). The diagnostic
performance of the model was evaluated by cross-validation.
High accuracy values (1.0) for the PLS-DA model were
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FIGURE 5

Heatmap of plasma levels of published putative biomarkers of SARS-CoV-2 infection and COVID-19 severity. The values are available in
Supplementary Data 5–13.

obtained with 2 or more components. The most relevant
model was obtained with five components (Q2 value of
0.99, for details see Supplementary Data 1B). Figure 1B
shows the loading plots of the top 15 features ranked
according to their overall coefficient scores of the PLS-
DA model. This feature top list of 15 metabolites with
highlighted lipids as the main contributors of the PLS-DA
model.

As illustrated by the loading plots (Figure 1B) and the
heatmap of these top 15 features (Figure 2), the levels of
saturated lipids were lower in the plasma of SARS-CoV-
2-infected subjects when compared to the control samples,
whereas the levels of unsaturated lipids were higher. In addition,
two N-(1-deoxy-1-fructosyl) amino acids (leucine and valine)
were found among the top 15 features. The levels of these two
amino acids were higher in the plasma of COVID-19 infected
subjects compared to the control samples (Figures 1B, 2).
Figure 1C shows that the area under the combined Receiving
Operating Characteristic curve (ROC) for the prediction of
SARS-CoV-2 infection of the top 15 features identified by the
PSL-DA model that reached the score 1. This score remained
unchanged even when considering only two metabolites from
this top list [AUC = 1, CI 95% (1–1)].

Comparison of untargeted plasma
metabolomic fingerprintings of the
control group samples and mild group
samples revealed important
differences

The main goal of this comparison was to determine if a
metabolomic signature could be identified and used for the
diagnosis of mild forms of COVID-19 infection. After post-
treatment of the LC-MS/MS analyses data, 574 metabolites were
selected (Supplementary Data 2A).

The score plot in Figure 3A shows the accuracy of the
plasma-metabolome PLS-DA model to differentiate between
the control and the mild group of SARS-CoV-2-infected
patients. High accuracy values (1.0) of the PLS-DA model are
obtained with 1 or more components. The highest scores were
obtained with five components (Q2 value of 0.99) (details in
Supplementary Data 2B). The top 15 metabolites identified
by the PLS-DA model are shown in Figure 3B and in the
heatmap of Supplementary Figure 1. Similar to the CTRL
vs. All analysis, the metabolic profile shows variations in
the levels of several lipids and two N-(1-deoxy-1-fructosyl)
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amino acids [N-(1-deoxy-1-fructosyl)tyrosine and N-(1-
deoxy-1-fructosyl)leucine]. As expected, most metabolites
of the top lists of the two comparisons were identical (see
also CTRL vs. All in Figure 1B). Three metabolites of the
CTRL vs. All top list, i.e., N-(1-deoxy-1-fructosyl)valine, the
phosphatidylcholine PC[18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)]
and gamma-glutamyltyrosine were not found in the CTRL vs.
Mild top list, which instead included 7,9-dimethyluric acid,
PC (14:0/14:0) and N-(1-deoxy-1-fructosyl)tyrosine. As found
for saturated lipids of the CTRL vs. All top list, the levels
of PC (14:0/14:0) were significantly lower in the plasma of
SARS-CoV-2-infected patients with mild symptoms compared
to samples from the healthy control subjects. Similar to the
findings of the amino acids of the CTRL vs. All top list, N-(1-
deoxy-1-fructosyl)tyrosine levels were higher in samples of the
mild group compared to those of the control group. Figure 3C
shows the areas under the ROC curve to predict the presence
of SARS-CoV-2 infection in asymptomatic subjects or patients
with mild symptoms. The AUC values are 1 [95% CI (1–1)]
when using two or more metabolites from the top list.

Comparison of untargeted plasma
metabolomic fingerprintings from
subjects with mild symptoms (mild)
with those of subjects of the moderate
and severe group (moderate and
severe)

This comparison aimed to determine if metabolomic
signatures could be identified and used for the diagnosis
and prognosis of moderate and severe forms of COVID-19.
After post-treatment of the LC-MS/MS analyses data, 547
metabolites were selected (Supplementary Data 3A). The most
relevant plasma metabolome PLS-DA model for the robust
differentiation of samples of the mild group from those of the
moderate and severe groups was obtained with five components
(AUC = 0.99; Q2 value of 0.86) (see score plot in Supplementary
Figure 2A and details in Supplementary Data 3B).

The top 15 metabolites identified by the PLS-DA model are
shown in Figure 4A (heatmap in Supplementary Figure 2B).
We observed that the levels of unsaturated lipids were lower in
the plasmas of the moderate and severe group compared to those
of the mild group. The N-(1-deoxy-1-fructosyl) leucine level was
found to be higher in the plasmas of the moderate and severe
group compared to those of the mild group. Indole, oxindole,
indole-3-propionic acid, 3-methylindole levels were lower in
the plasmas of the moderate and severe group compared to
those of the mild group, as well as the L-dehydroascorbic acid,
phenylalanyl-tryptophan, and citrulline levels. The areas under
the ROC curve to predict the moderate or severe forms in
SARS-CoV-2-infected patients are shown in Figure 4B. The

AUC value is 0.988 [95% CI (0.928–1)] when using only two
metabolites from the top list and the AUC values are 0.994 [95%
CI (0.979–1)] when using the 10 or 15 top metabolites.

Comparison of untargeted
metabolomic fingerprintings of plasma
from subjects with moderate
symptoms (moderate) with those of
subjects with severe symptoms
(severe)

This comparison aimed to determine if metabolomic
signatures could be used for the diagnosis and prognosis
of severe forms of COVID-19. After post-treatment of the
LC-MS/MS analyses data, 527 metabolites were selected
(Supplementary Data 4A). The most relevant plasma-
metabolome PLS-DA model to discriminate the moderate
group from the severely affected patient group was obtained
with four components (AUC = 0.94; Q2 value of 0.72) (score
plot in Supplementary Figure 3A and details in Supplementary
Data 4B). The top 15 metabolites identified by the PLS-DA
model are shown in Figure 4C (heatmap in Supplementary
Figure 3B).

We observed that the levels of two saturated lipids [PC
(18:1(9Z)/18:1(9Z)) and PC (16:0/16:0)] were lower in the
plasmas of the severe group compared to those of the
moderate group. The levels of the two amino acids, N-(1-
deoxy-1-fructosyl)alanine and N-(1-deoxy-1-fructosyl)leucine
were higher in the plasmas of the severe group compared
to those of the moderate group. In contrast, 3-methylindole
levels were lower in the plasmas of the severe group compared
to those of the moderate group, as were L-tryptophan,
tiglylcarnitine, gamma-glutamylglutamic acid and L-arginine
levels. N-acetyl-L-phenylalanine, N-lactoyl-phenylalanine and
gamma-glutamyltyrosine levels were higher in plasmas of the
severe group. The areas under the ROC curve to predict plasma
from patients with moderate or severe forms of COVID-19 are
shown in Figure 4D. The AUC values are 0.965 [95% CI (0.805–
1)] when using only two metabolites from the top list, and 0.998
[95% CI (0.986–1)] when using 15 metabolites.

Comparisons of the pathway analyses
of untargeted plasma metabolomic
fingerprintings for CTRL vs. all, CTRL
vs. mild, and mild vs. moderate and
severe

Using the MetaboAnalyst website, we studied the pathways
related to the three comparative analyses described above. Only
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significant pathways were considered (p-value < 0.05). All the
results are shown in the Supplementary Data 5–10.

A Venn diagram showing the intersections of the
pathway lists for three comparisons (CTRL vs. All, CTRL
vs. Mild and Mild vs. Moderate and Severe) is illustrated in
Supplementary Figure 4 shows the Venn diagram for all
four comparisons including Moderate vs. Severe. The Venn
diagram (Supplementary Figure 4) highlights the major
effects of SARS-CoV-2 infection that were already detected
in the plasma samples from COVID-19 patients with mild
symptoms compared to that of healthy control subjects. The
major pathways found to be altered in mild COVID-19 patients
included amino acid biosynthetic pathways, and lipid and
energy metabolism.

Correlation analyses between plasma
untargeted metabolomic
fingerprintings and IL-6 levels

In a previous study with blood samples from the same
patient cohort as those used for the present analyses, Ruetsch
et al. (10) revealed a correlation between plasma IL6 levels and
the patient outcome. As illustrated in Supplementary Figure 5,
our results showed that amino acid (tryptophan, glutamine, and
threonine) levels are inversely correlated to plasma IL6 levels
(sample correlation coefficient values of −0.616, −0.585, and
−0.0551, respectively). In addition, six unidentified metabolites
appeared to be positively correlated to plasma IL6 levels (sample
correlation coefficient values of 0.779, 0.739, 0.725, 0.721, 0.717,
and 0.705) (Supplementary Figure 5).

Discussion

This study aims to identify plasma metabolomic
signatures for the diagnosis of SARS-CoV-2 infection and
the prognosis of COVID-19 disease severity. The identification
of new biomarkers may also offer unique insights into the
physiopathology of the disease.

All blood samples from this study were obtained during
the first wave of the SARS-CoV-2 infections in France in
2020. Therefore, all samples of the infected subjects were most
probably primary infections and the healthy control subjects had
never been exposed to the SARS-CoV-2 virus. No vaccine was
available at that time. Plasma samples of COVID-19 patients
with moderate and severe symptoms were collected at hospital
admission. At that point, patients had not yet benefited from
specific drug administration or respiratory treatments.

Our results showed that untargeted metabolomic profiling
of plasma samples from healthy control and SARS-CoV-2-
infected subjects enabled the identification of new biomarkers
and new metabolomic signatures for the diagnosis and

prognosis of COVID-19. In the following section, we discuss
the potential biological origins of the observed changes in the
plasma levels of the identified metabolites due to SARS-CoV-
2 infection.

Healthy control subjects (CRTL, n = 25) were hospital
health-care workers with negative serological test results
and no apparent symptoms. Mild subjects (n = 39) with
positive serological test were patients with chilblains or flu-
like symptoms that did not require hospital monitoring. The
subjects of these two groups had no underlying diseases
or chronic conditions, so we were able to conduct the
analysis without having to include additional interfering factors.
Therefore, we assumed that the changes in the plasma
metabolite levels observed in the comparison CRTL vs. Mild
(and, to a lesser extend in CRTL vs. All) were mainly evoked
by SARS-CoV-2 infection. The baseline characteristics of the
Moderate COVID-19 patients were not significantly different
from those of the Severe subjects. Furthermore, the number
of samples was low, 22 Moderate cases and 25 Severe cases,
respectively. Therefore, we could not form subgroups. However,
we assumed that the changes in the plasma metabolite levels
found in the comparison Moderate vs. Severe were mainly
caused by the severity of COVID-19 symptoms. In contrast, the
baseline characteristics of the subjects in the Mild group differed
from those in the Moderate and Severe groups. Corrections for
the patient’s baseline characteristics were not performed as this
would require a larger number of subjects in each group and
subgroup. Therefore, the results of this comparison should be
treated with caution. Thus, we have them carefully discussed
here, focusing mainly on metabolites that have already been
described in other publications.

We found that metabolome fingerprinting of control
subjects were significantly different from those of all SARS-
CoV-2-infected subjects independent of the severity of the
disease (CTRL vs. All, illustrated by the PLS-DA score plot
and multivariate ROC curves in Figures 1A,C, respectively
and CTRL vs. Mild, illustrated by the PLS-DA score plot
and multivariate ROC curves in Figures 3A,C, respectively).
For both comparisons CTRL vs. All and CTRL vs. Mild,
we identified a top list of metabolites that allow one to
assign each subject to a specific class, i.e., CTRL, ALL, or
Mild (illustrated in Figures 1B, 2, 3B and Supplementary
Figure 1). The most frequent metabolites of both lists were
lipids. In the top metabolite lists of the PLS models of
the comparisons between infected subjects suffering from the
disease at different severities (Mild vs. Moderate and Severe
and Moderate vs. Severe), the elevated lipids were not found
(see loading plots in Figures 4A,C). This result shows that the
alteration of lipid metabolism is an early event in the SARS-
CoV-2 infection. Fraser and collaborators performed targeted
LC-MS/MS analyses with plasma samples of COVID-19 patients
(13) and report the presence of LysoPCs in the top metabolite
list.
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FIGURE 6

Venn diagram of significantly altered pathways in samples from healthy control subjects compared to SARS-CoV-2 infected subjects (CTRL vs.
All), healthy control subjects compared to mild SARS-CoV-2 infected subjects (CTRL vs. Mild) and mild SARS-CoV-2 infected subjects compared
to moderate and severe COVID-19 patients (Mild vs. Moderate and Severe). A value of p < 0.05 was considered significant.

Figure 5 (top lines) shows the heat map of the peak
intensities of some of these LysoPCs of our dataset. Although
these lipids are not part of our top list, we also detected higher
levels in plasma from infected subjects. Wu and collaborators
(7) report variations of the plasma lipid concentrations in
COVID-19 patients. We detected similar changes in the plasma
concentration of two of these lipids in our dataset (see Figure 5
and Supplementary Figure 6). Dei Cas and collaborators report
a correlation between lipid signatures and prognostic factors
for SARS-CoV-2 infected subjects (14). Only one of the lipids
described in this study was also identified in our dataset
(variation illustrated in Figure 5). Thomas and collaborators
describe changes in free fatty acids and acylcarnitine levels
in the plasma of COVID-19 patients when compared to
control subjects (15). In addition, Bruzzone et al. show altered
regulation of lipoproteins in the plasma of COVID-19 patients,
with a reduction in HDL size, an increase in LDL size, and an
increase in the level of intermediate VLDL subclasses (16). Song
and collaborators report that plasma levels of sphingomyelins
(SMs) are enhanced, and GM3s and those of diacylglycerols
(DAGs) are reduced in COVID-19 patients (17). Several other
groups suggest that certain fatty acids, including arachidonic
acid and other unsaturated fatty acids play a key role in the
cytokine storm during the initial phase of the infection and later
in the inactivation and inhibition of SARS-CoV-2 proliferation
(18, 19). Altered plasma lipid levels were also found in recovered
COVID-19 patients (20) and during COVID-19 progression as
shown by longitudinal metabolomic analyses (21). It will be
interesting to assess if the levels of the lipids identified in this
study also remain altered in recovered patients.

We performed LC-MS/MS experiments for untargeted
metabolomic analyses of polar but also of hydrophobic
compounds leading to the identification of new lipid biomarkers
for SARS-CoV-2 infection. Interestingly, the top lists of our
classification models revealed that the majority of lipids with

lower levels in the plasma of SARS-CoV-2 infected subjects, i.e.,
CTRL vs. All and CTRL vs. Mild were mainly saturated lipids (as
illustrated in Figures 2, 5 and Supplementary Figures 1, 6). In
contrast, the majority of lipids with higher levels in the plasma of
SARS-CoV-2 infected patients vs. healthy control subjects were
unsaturated lipids. This finding could be related to an increased
level of oxidative stress in SARS-CoV-2 infected subjects as has
been suggested by other metabolomic studies (14, 15). Lipid
metabolic remodeling of the host cell is a key feature of virus
infection (22) and has been described and discussed for SARS-
CoV-2 infection in several reviews (18, 23, 24). Recent study
also indicates that expression of Spike protein impairs lipid
metabolism of the host cells (25). This remodeling could evoke
most variations in the endogenous lipid levels that we reported
here. But, we also found that 2 odd-chain PCs were putative
biomarkers of the SARS-CoV-2 infection and severity of the
disease: PC[15/0/20:1(11Z)] for the comparison of CRTL vs.
Mild (Figure 3B) and PC[15:0/18:1(11Z)] for the comparison
Mild vs. Moderate and Severe (Figure 4A). Odd-chain lipids are
considered as exogenous lipids mainly from milk consumption.
The presence of odd-chain lipids could be related to exogenous
(ingested) compounds and, in this case, should be removed
from datasets in metabolomics studies. But, PC[15/0/20:1(11Z)]
was detected at lower level in plasma samples of Mild COVID-
19 patients compared to CRTL subjects. These 2 groups
have many similarities (age and sex). The subjects of these
groups were healthy. It is difficult to guess that in the
Mild subjects had mainly diet with low odd-chain lipids. In
addition, low levels of PC[15/0/20:1(11Z)] was also detected in
plasma samples of COVID-19 patients (Moderate and Severe).
These results indicate that PC[15/0/20:1(11Z)] is a putative
biomarker of the SARS-CoV-2 infection. More experiments
are needed to confirm this finding. PC[15:0/18:1(11Z)] was
also detected at lower level in plasma samples of Moderate
and Severe COVID-19 patients compared to Mild subjects.
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For this comparison Mild vs. Moderate and Severe, baseline
characteristics of the subjects are different (Supplementary
Table 1). The Moderate and Severe patients had COVID-19
symptoms and were hospitalized. But plasma samples were
collected at hospital admission. All the subjects are living in
the same area and they could have a similar diet. However, we
cannot exclude an effect of the baseline characteristics when
Mild (and CRTL) subjects are compared to Moderate and Severe
patients. Therefore, further experiments are required to confirm
that PC[15:0/18:1(11Z)] is a biomarker of disease severity.

Our study showed that N-(1-deoxy-1-fructosyl)amino
acids were also putative biomarkers for SARS-CoV-2 infection
(see Supplementary Figure 6). Leucine, valine and tyrosine
derivatives were found in the top lists of our PLS models for the
comparisons of CTRL vs. Mild and CTRL vs. ALL. N-(1-deoxy-
1-fructosyl)leucine was detected in the top list of all the PLS
models of this study and N-(1-deoxy-1-fructosyl)phenylalanine,
as well as other phenylalanine derivatives (N-acetyl-L-
phenylalanine and N-lactoyl-phenylalanine), were found in
the top list of the PLS model of the comparison Moderate
vs. Severe. To our knowledge, N-(1-deoxy-1-fructosyl)amino
acids are poorly described in the literature and further
studies are needed to understand the altered plasma levels
of these amino acids in SARS-CoV-2 infected subjects.
As discussed for odd-chain lipids, the presence of N-(1-
deoxy-1-fructosyl)amino acids could be related to exogenous
(ingested) compounds and, in this case, should be removed
from datasets in metabolomics studies. Here, we included
the N-(1-deoxy-1-fructosyl)amino acids in our analyses
because these compounds were identified in all subject classes
allowing us to assume that if they were exogenous, they
were ingested randomly by all volunteers. Four N-(1-deoxy-
1-fructosyl)amino acids were detected at a higher level in
plasma samples of mild COVID-19 patients compared to
healthy control subjects and were even higher with increasing
severity of the disease.

In the CTRL vs. Mild comparison, lower levels of gamma-
glutamyltyrosine and homovanillic acid sulfate were found for
samples of infected subjects (Figure 1B and Figure 2). The levels
of these compounds decreased even further in samples from
the moderate group and especially in those from the severe
group (see heat map in Figure 2). Gamma-glutamyltyrosine
is produced when protein digestion or protein catabolism is
incomplete. Homovanillic acid is a putative marker of metabolic
stress (26). The role of these compounds during SARS-CoV-2
infection is still unclear and remains to be investigated. Likewise,
the levels of 7,9-dimethyluric acid, a methyl derivative of uric
acid, were found to be lower in the plasma of infected subjects
than in the plasma of healthy control subjects (Figure 3B and
Supplementary Figure 1).

The plasma levels of the amino acids, glutamine, arginine,
citrulline, and tryptophan and their derivatives, indole-3-
propionic acid and phenylalanyl-tryptophan, were found to be

lower in samples of the moderate and severe groups than in
samples of the mild group (Figure 3A and Supplementary
Figure 2) suggesting an effect of disease severity on amino acid
metabolism. Indole and indole-3-propionic acid are microbial
metabolites and the observed effects on these metabolite levels
could result from COVID-19-associated digestive disorders.
The effects on dehydroascorbic acid levels could be linked to
oxidative stress.

For the comparison of the Mild vs. Moderate and
Severe groups (Figure 4C and Supplementary Figure 3),
the metabolite top list of the PLS model contained N-
(3-acetamidopropyl)pyrrolidin-2-one, an intermediate of
spermidine catabolism and bilirubin, a degradation product of
heme. Bilirubin degradation products are also found by Shen
et al. (6) in the sera of COVID-19 patients. Similar to findings
by Fraser and collaborators (13), we detected lower levels of
arginine in samples of the severe group when compared to those
of the moderate group. Kynurenine is a potential biomarker
for COVID-19 reported in several studies (6, 13, 27–30) and
Fraser et al. propose the use of an arginine vs. kynurenine ratio
to predict the severity of the COVID-19 disease.

In our study, kynurenine was not found among the top
lists of 15 metabolites of our four PLS models. However,
kynurenine occupied the 29th, 24th, and 60th rank of the PLS
models of the comparisons CTRL vs. All, CTRL vs. Mild and
Mild vs. Moderate and Severe, respectively (see Supplementary
Data 1A–4A). Although kynurenine did not appear in our top
lists, this metabolite could still be considered as an interesting
biomarker of SARS-CoV-2 infection.

As illustrated in the heatmap in Figure 5 and the box plot
in Figure 6, lower plasma kynurenine levels were found for
mild COVID-19 patients when compared to healthy control
subjects and to moderate and severe COVID-19 patients.
Kynurenine is described as a suppressor of the tumor-induced
immune response in cancer patients (31, 32). The lower levels
of kynurenine in the plasma of patients with mild COVID-
19 symptoms, when compared to CTRL, could stimulate
the immune response. Consequently, SARS-COV-2 infection
and symptoms are reduced. In contrast, kynurenine levels in
the plasmas of moderate and severe COVID-19 patients are
like those in healthy control subjects and may contribute to
limit the “cytokine storm” induced by SARS-CoV-2 infection
and thus prevent inflammation and the appearance of more
severe symptoms. The kynurenine precursor is tryptophan,
and two enzymes catalyze the transformation of tryptophan to
kynurenine [see (33) for review], indoleamine-2,3-dioxygenase
(IDO) and tryptophan-2,3-dioxygenase (TDO). The plasma
levels of tryptophan were decreased in the mild group compared
to CTRL, but, in contrast to kynurenine, tryptophan levels were
lower in the moderate group and lowest in the severe group
(Figure 6). Our tryptophan level data corroborate the findings
of Thomas et al. (15) and Lawler et al. (27). The two groups
also report altered plasma tryptophan levels in the plasma of
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COVID-19 patients. We found that the levels of tryptophan
decreased with the severity of the symptoms. Our results also
showed that plasma kynurenine levels are only decreased in
mild COVID-19. Therefore, we propose that the lower levels
of kynurenine in mild COVID-19 patients compared to healthy
control subjects could be a consequence of lower tryptophan
levels in mild COVID-19 patients without activation of IDO
or TDO. In contrast, increased transformation of tryptophan to
kynurenine should be evoked in moderate and severe COVID-
19 patients. This transformation stimulation should restore
kynurenine levels in the presence of lower tryptophan levels
but also contribute to lower the tryptophan level. Higher IL-6
levels (as reported in plasma of moderate and severe COVID-
19 patients, see Supplementary Figure 5) could be responsible
for the activation of IDO (34). Therefore, we propose that IL-
6 could mediate an induction of tryptophan to kynurenine
transformation for these patients via IDO activation. The raised
levels of pro-inflammatory cytokines evident in SARS-CoV-2
infected patients have a number of important consequences,
including the induction of IDO and the conversion of
tryptophan to kynurenine, which can then activate the aryl
hydrocarbon receptor (AhR), thereby dysregulating the immune
response, including suppressing natural killer cell activation
(35). Pro-inflammatory cytokines also increase gut permeability
and gut dysbiosis, leading heightened levels of circulating
LPS and suppressed levels of the short-chain fatty acid,
butyrate (35). The suppression of butyrate heightens histone
acetylation-driven epigenetic regulation, thereby altering the
nature of patterned gene expression, including as driven by
kynurenine activation of the AhR (36). Given the clinical utility
of melatonin in the management of SARS-CoV-2 infection
severity and mortality (37), it is important to note that the
conversion of tryptophan to kynurenine will suppress serotonin
levels, and therefore serotonin as the necessary precursor for
the induction of the melatonergic pathway in body cells,
including immune cells (38). Given that melatonin production
and autocrine effects are necessary to shift macrophages and
microglia from an M1-like pro-inflammatory phenotype to an
M2-like pro-phagocytic phenotype (39, 40), such alterations
in tryptophan availability will significantly dysregulate the
patterned immune response. The data in the current study may
therefore link to wider systemic aspects of immune regulation
involving the gut microbiome/permeability, AhR activation and
suppressed mitochondrial melatonergic pathway activity, as
recently proposed (41).

We also studied the pathways related to the obtained
metabolome fingerprintings. As shown in Supplementary Data
5–8, we used MetaboAnalyst to identify significant pathways
(p-values > 0.05) by performing two-class comparisons (45
pathways for the comparison CTRL vs. All; 31 pathways
for CTRL vs. Mild; 42 pathways for Mild vs. Moderate
and Severe; 22 pathways for Moderate vs. Severe). We then
established Venn diagrams (see Supplementary Data 9, 10) to

identify common pathways among the different comparisons
(Supplementary Figure 4). The Venn diagram obtained for
the three comparisons, CTRL vs. All, CTRL vs. Mild and Mild
vs. Moderate and Severe, is given in Supplementary Data 10.
It showed that the majority of pathways that were altered by
SARS-CoV-2 infection were detected in samples from subjects
with only mild symptoms. These pathways mainly belonged to
lipid and amino acid metabolism (Supplementary Figure 4).
These results clearly indicate that SARS-CoV-2 infection caused
strong alterations of the plasma metabolome even though the
infected subjects suffered only very mild symptoms. Further
studies are now needed to obtain a better understanding of the
physiopathology of the mild form of COVID-19 and possible
side effects the virus infection. In this context, it will be
interesting to elucidate the effect of COVID-19 vaccination on
the plasma metabolome response to SARS-CoV-2 infection.

All samples of our cohort were collected in the hospital of
Nice during the first COVID-19 wave of the pandemic. This
means there was a restricted coverage area for sample collection
but also guaranteed that all subjects that participated in the
study (healthy controls and COVID-19 patients) were never
exposed to SARS-CoV-2 infection or vaccination prior to sample
collection. The limited number of samples of each class did
not allow for both a training set and a validation set. However,
as described above and illustrated in Figure 6, our results are
supported by metabolomic analyses published by other groups.

Based on our studies and those of the other groups,
several robust metabolome plasma biomarkers for COVID-19
diagnosis and prognosis have been identified. These plasma
biomarkers could be used for targeted LC-MS/MS analyses
which are fast, low-cost, and suitable for routine clinical testing.
Metabolomic studies of other biological fluids such as urine
(42) or exhaled breath (43) already gave interesting results
and could also be very useful for rapid COVID-19 diagnosis
and prognosis. However, further studies are now needed to
identify biomarkers for the diagnosis of specific SARS-CoV-
2 variants. It would also be beneficial to compare the plasma
metabolome fingerprintings of SARS-CoV-2-infected subjects
and patients infected by other viruses that evoke flu-like or
COVID-like symptoms. In this context, Sun and collaborators
studied the levels of serum fatty acids related to disease severity
after infection with H7N9, an avian-origin influenza A virus
that can lead to severe lung damage (44). As illustrated in
Figure 6, and similar to the findings of Sun et al., the plasma
levels of the identified biomarkers for H7N9 decrease with
increasing COVID-19 severity. Here, aiming the identification
of biomarkers for the prognosis of COVID-19 severity, we
studied plasma samples of COVID-19 patients with moderate
and severe symptoms that were collected at hospital admission.
For better understanding of the physiopathology of COVID-19,
further studies will focus on metabolome analyses of samples
that were collected repeatedly over the whole period in which
our patient cohort stayed at the hospital. Finally, this study
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will be complemented by metabolomic analyses on samples
from subjects infected with other SARS-CoV-2 variants (delta,
omicron, etc.) and with samples from infected subjects who were
previously vaccinated.

In conclusion, our results showed that plasma metabolome
profiling is an efficient tool for the diagnosis and prognosis
of SARS-CoV-2 infection. We found that modifications in the
plasma levels of lipids and amino acids were the main features
of these metabolomic signatures. In particular, high levels of
unsaturated lipids and fructosyl amino acids, and low levels
of saturated lipids were identified in the plasma of infected
subjects and serve as robust biomarkers for the diagnosis of
SARS-CoV-2 infection and the prognosis of COVID-19 severity.
Our results also show that major alterations of metabolite levels
due to SARS-CoV-2 infection occurred primarily in the plasma
of subjects with only mild symptoms and that the kynurenate
pathways play a key role in the symptoms of COVID-19.
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