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Abstract: Dengue is a continuous health burden in Laos and Thailand. We assessed and mapped
dengue vulnerability in selected provinces of Laos and Thailand using multi-criteria decision ap-
proaches. An ecohealth framework was used to develop dengue vulnerability indices (DVIs) that
explain links between population, social and physical environments, and health to identify exposure,
susceptibility, and adaptive capacity indicators. Three DVIs were constructed using two objective
approaches, Shannon’s Entropy (SE) and the Water-Associated Disease Index (WADI), and one
subjective approach, the Best-Worst Method (BWM). Each DVI was validated by correlating the index
score with dengue incidence for each spatial unit (district and subdistrict) over time. A Pearson’s cor-
relation coefficient (r) larger than 0.5 and a p-value less than 0.05 implied a good spatial and temporal
performance. Spatially, DVIWADI was significantly correlated on average in 19% (4–40%) of districts
in Laos (mean r = 0.5) and 27% (15–53%) of subdistricts in Thailand (mean r = 0.85). The DVISE

was validated in 22% (12–40%) of districts in Laos and in 13% (3–38%) of subdistricts in Thailand.
The DVIBWM was only developed for Laos because of lack of data in Thailand and was significantly
associated with dengue incidence on average in 14% (0–28%) of Lao districts. The DVIWADI indicated
high vulnerability in urban centers and in areas with plantations and forests. In 2019, high DVIWADI

values were observed in sparsely populated areas due to elevated exposure, possibly from changes
in climate and land cover, including urbanization, plantations, and dam construction. Of the three
indices, DVIWADI was the most suitable vulnerability index for the study area. The DVIWADI can also
be applied to other water-associated diseases, such as Zika and chikungunya, to highlight priority
areas for further investigation and as a tool for prevention and interventions.
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1. Introduction

Dengue fever is a rapidly spreading arboviral disease globally and is of public health
concern in many tropical and subtropical countries, and in some temperate countries. The
disease is caused by the dengue virus (DENV), which belongs to the genus Flavivirus
transmitted to humans principally by Aedes aegypti and Aedes albopictus mosquitoes through
blood feeding. The number of dengue cases reported to the World Health Organization
(WHO) has increased eightfold over the past two decades, from 505,430 cases in 2000 to
over 5.2 million in 2019 (WHO, 2021) and modelling estimates suggest there may be as
many as 96 million apparent and 294 million inapparent dengue infections [1,2]. The risk of
exposure to vector-borne disease is spatiotemporally heterogeneous due to the variability
of climate, mosquito densities, and the physical environment [3,4]. Dengue outbreaks
in South East Asian countries are exacerbated by climate change and modification in
landcover because of urbanization, deforestation, and agricultural intensification [5,6]. The
dengue burden has been disproportionately affecting socioeconomically disadvantaged
populations, who often have less capacity to invest in resilience-building and adaptation
activities [7–9].

To lessen the burden of disease, it is crucial to identify populations who are vulnerable
to the high burden of dengue, whether it is because of their socio-environmental living
conditions or because of poor health systems. Vulnerable populations can be defined as
those who are economically underprivileged, have low income, are elderly or children,
have chronic health conditions, and who face significant disparities in healthcare [10].
A vulnerability assessment is an approach used to describe the potential for harm from
existing hazards in susceptible populations, and their adaptive capacity on a local to
an international scale to help relevant decision-making processes [11]. Dengue risk has
predominantly been estimated and mapped both retrospectively and prospectively at
global [12,13], country or provincial levels [14]. However, vulnerability studies at smaller
administrative levels such as the district/subdistrict level are scarce in South East Asia.
Fine scale vulnerability mapping can help communities to act and create awareness about
vector control and dengue prevention.

The vulnerability of populations to infectious disease has been mapped at the global
level by the Infectious Disease Vulnerability Index (IDVI) [13] and the Water-Associated Dis-
ease Index (WADI) [12,14]. The WADI was first used for dengue vulnerability in Malaysia
using freely available published data such as living conditions, population characteris-
tics, climate, land use, and landcover. The WADI index has also been effectively used to
map dengue vulnerability in Vietnam [15], Brazil [16], and Jamaica [17]. Several other
dengue vulnerability assessment studies have been conducted in Bhutan [18], India [19],
Malaysia [20], and Thailand [21], but using few criteria and excluding human habitation
conditions including housing, water and hygiene, and literacy rates.

A vulnerability assessment approach for dengue fever is needed that can also be used
to map vulnerabilities at different spatial scales. The objectives of this study were to develop
and compare dengue vulnerability indices using objective and subjective approaches and
to select the best index to map dengue vulnerability in four provinces of Laos and Thailand.

2. Materials and Methods
2.1. Study Area

The selected study areas were Savannakhet and Champassak provinces in Lao PDR
(Laos) and Mukdahan and Ubon Ratchathani provinces in northeastern Thailand (Figure 1).
There were 25 administrative units in the Lao provinces (10 districts in Champasak and
15 in Savannakhet) and 272 in Thailand (53 subdistricts in Mukdahan and 219 in Ubon
Ratchathani). These four provinces are quite similar in terms of culture, language, and
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history; however, they differ in socioeconomic and political conditions and are expected
to vary in climate vulnerability, adaptive capacity, geographical and ecological diversity,
and socioeconomic status. The region has a tropical climate with a dry cool season from
mid-October to mid-February, a dry hot season from mid-February to mid-May and a
monsoon rainy season from mid-May to mid-October with higher rainfall, humidity,
and temperatures.

Figure 1. Study provinces in Central and Southern Laos and in Northeastern Thailand (+ grid ticks).

2.2. Conceptual Framework

We used the three components that vulnerability consists of, i.e., exposure, suscepti-
bility, and adaptive capacity, including indicators of each component that were specifically
selected for this study (Figure 2). In this framework, exposure illustrates conducive condi-
tions for the survival of the vector and transmission of DENV in the environment. Individ-
ual susceptibility explains the physical sensitivity of an individual, including factors such as
age and gender. Community susceptibility includes factors of housing quality/conditions,
water, and sanitation. Adaptive capacity includes the conditions that impact the resilience
of populations, a concept described here as the capacity to prevent, respond to, and cope
with dengue exposure [22].
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Figure 2. Conceptual framework for constructing the dengue vulnerability indices. Indicators of exposure, sensitivity, and
adaptive capacity were combined using weights corresponding to the available evidence from the literature.

Two new dengue vulnerability indices were developed by applying different weight-
ing systems (for the indicators) based on an objective approach (Shannon’s Entropy, SE,
explained in Section 2.5.3) and a subjective approach (Best-Worst Method, BWM explained
in Section 2.5.2). These approaches were then compared with an existing dengue vulnerabil-
ity index (WADI, explained in Section 2.5.1) that uses an objective equal-weighting system.
To assess the effectiveness of the developed vulnerability indices (SE and BWM) to identify
the areas at risk and the existing WADI index, the Pearson correlation (p-value < 0.05)
between the indices and dengue incidence was assessed.

2.3. Data Collection

Historical daily reported dengue case data were acquired from 2003 to 2019 from
provincial health departments in the study provinces. For Thailand, subdistrict level
dengue cases were reported as dengue fever (DF), dengue hemorrhagic fever (DHF), and
dengue shock syndrome (DSS). In Laos, dengue cases at the district-level were reported as
DF, DHF, and DSS up to and including 2009 and thereafter followed the new classification
of dengue with or without warning signs and severe dengue [7]. District and subdistrict
level population data from 2002 to 2019 for Laos and Thailand were acquired from official
web portals of the national departments of statistics [23,24]. Monthly dengue incidence per
100,000 persons was calculated for each spatial unit by dividing the number of cases by
its total population and multiplying it by 100,000. Socioeconomic data for Laos including
toilet type, living conditions or housing quality, mean distance to hospital (km), literacy
rate (%), and poverty incidence (%) were acquired from census data available at official
web portals of the national departments of statistics [23]. A detailed description of collected
datasets for constructing dengue vulnerability indices is presented in Table 1.

Monthly cumulative precipitation and mean temperature data were obtained from
the fifth-generation European Centre for Medium-Range Weather Forecasts atmospheric
reanalysis (ERA5) of the global climate and aggregated at the district/subdistrict level [42].
Land use and land cover data were obtained from Landsat ETM+ for 2002–2003, Landsat
TM for 2004–2011, and Optical Land Imager (OLI) and from Thermal Infrared (TIR) for
2013–2015 [30] (Figure 3) (Supplementary File, Figure S2: Land use and landcover change
in Champasak and Savannakhet provinces in Laos and Mukdahan and Ubon Ratchathani
provinces in Thailand between 2002 and 2019).
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Table 1. Determinants, indicators, and rationale for selection of data and their sources for vulnerability assessment.

Determinants Indicators Rationale for Selection Data Source

Exposure

Climate

Mean Monthly
Temperature (◦C)

Higher temperatures favor vectorial reproduction
such as the laying of eggs, egg hatching, and
development of larva and pupa. The inverse
relationship of temperature with the extrinsic
incubation period of DENV in Aedes mosquitoes
promotes viral transmission at higher temperatures
(Carrington et al., 2013; Kuno, 1995).

Copernicus Climate
Data Store [25,26]
https://cds.climate.
copernicus.eu/#!/home
(accessed on
5 September 2021)

Monthly Rainfall
(mm) Generation of aquatic habitats for oviposition [27].

Land
environment

Forest, Plantations,
cropland, or
built-up land uses
(%)

Human environments are favored by Aedes aegypti
[28] and natural environments such as plantations by
Aedes albopictus [29].

United States Geological
Survey (USGS) [30],
https://earthexplorer.
usgs.gov (accessed on
5 September 2021)

Human
environment

Population density
(person/km2.)

Availability of host reservoirs of virus, required for
dengue transmission [31,32].

Total population [24]
divided by Area

Determinants Indicators Rationale for selection Data source

Susceptibility

Individual
Age under 15 years
and greater than 60
years (%)

In Laos and Thailand, children 0–15 years have been
reported to have a higher susceptibility to dengue
than the adult population [33,34]. According to past
17 years of data used in this study, an increase in
dengue cases is observed in the elderly population of
an age greater than 60 years old (Supplementary File,
Figure S1: Age group distribution of reported dengue
cases (DF, DHF, and DSS) in Savannakhet and
Champasak provinces in Laos and Mukdahan and
Ubon Ratchathani provinces in Thailand between
2003 and 2019).

National censuses Laos
in 2005 and 2015 [23].
National annual
socio-economic survey
in Thailand in
2003–2019 [24].

Community

Housing quality (%)
Houses with porous floors, unplastered walls, and
bathrooms without tiles can cause increased indoor
humidity, conducive to vector survival [35].

National censuses Laos
in 2005 and 2015 [23].
Not available for
Thailand at the
subdistrict level

Water and
sanitation (%)

Unavailability of reliable piped water supply, water
storage for drinking, and flush toilets increase
oviposition sites [36–38].

Determinants Indicators Rationale for selection Data source

Adaptive
Capacity

Female literacy rate
(%)

Families with increased female education and literacy
possess higher adaptive capacities [39].

National censuses Laos
in 2005 and 2015 [23].
Not available for
Thailand at
subdistrict level

Health facility in
proximity/Mean
distance to hospital
(km)

Delay in medical attention of infant and child dengue
patients; poor diagnosis and lack of appropriate care
cause hospitalization and deaths [40,41].

National censuses Laos
in 2005 and 2015 [23].
For Thailand mapped
and calculated using
Google Earth.

Poverty incidence % Households with low family income have low
capacity to invest in health care [38].

National censuses Laos
in 2005 and 2015 [23].
National annual
socio-economic survey
in Thailand in
2003–2019 [24].

https://cds.climate.copernicus.eu/#!/home
https://cds.climate.copernicus.eu/#!/home
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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Figure 3. Land use and landcover in study provinces in Laos and Thailand from 2003 and 2019 mapped from Landsat
satellite data.

2.4. Determinants and Indicators of Vulnerability Index

Due to the multidimensionality of determinants, indicators are commonly used as
proxies to simplify and integrate the diverse measures into a composite index (Table 2). To
overcome this multidimensionality, the indicators used in BWM and WADI were catego-
rized and given a score between 0 and 1, representing a range from low to high exposure,
susceptibility, and adaptive capacity (Table 2). For SE, indicators were divided into sub
classes according to their importance for dengue vector and virus development and trans-
mission based on current literature. Weights for each indicator were calculated based on
the number of cases occurring in each subclass out of the total population (Supplementary
File, Tables S1 and S2). For SE, the population of each district was categorized into classes
according to the values of indicators, e.g., for temperature the population was divided
into two subclasses, 1 = population living in districts with suitable temperature range of
24–29 ◦C and 0 = population living in districts with a lower suitable temperature range
<24 ◦C and >29 ◦C [43] (Supplementary File, Tables S1 and S2).
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Table 2. Thresholds/Scores of indicators of determinants for Water Associated Disease Index [14] and Best-Worst Method.
The dimensions of each indicator identify threshold values suitable for dengue transmission and given a score between
0 and 1 accordingly. A score of 1 indicates highest suitability for dengue transmission. Fractions of scores, e.g., 0.25 or
0.5, indicate lower transmission suitability. Zero indicates the least transmission suitability. Thresholds for rainfall and
temperature were selected based on a retrospective analysis in study provinces and given a score of 1 for temperatures a
suitable for dengue transmission and zero otherwise [43]. Scores for the indicators of each determinant were selected based
on existing findings and from models of DENV transmission risk available in the literature [14,18,19].

Determinants Indicators (Unit) Dimensions Thresholds and Scores

Exposure

Temperature (◦C)
Monthly mean temperature,
1-month lag

24–29 ◦C: linear increase in
exposure up to 1

<24 ◦C or >29 ◦C: 0 Exposure

Rainfall (mm)
Monthly cumulative rainfall,
1-month lag

<300 mm precipitation: linear
increase in exposure up to 1

>300: 0 Exposure

Land use/Land cover (km2)

Built-up area 1

Wetland area 0

Rubber/cassava/cashew/coffee
plantation area 0.5

Forest area 0

Disturbed forest area 0.25

Rice and sugarcane crop area 0.25

Population density
(person/km2)

0–200 0.25

200–400 0.5

>400 1

Susceptibility

Age (%)

The proportion of population <15 to
>60 years 1

The proportion of population >15 to
<60 years 0.5

Living conditions/Housing
quality (%)

The proportion of houses made of both
concrete and wood 0.25

The proportion of houses made
of wood 0.5

The proportion of houses made of
bamboo and both bamboo and wood 1

Toilet type (%)

The proportion of households with
modern toilet 0

The proportion of households with
squat and pit toilet 1

Adaptive Capacity

Female literacy rate (%)
0–50 1

50–100 0.25

Mean distance to hospital
(km)

0–5 0.25

10–15 0.5

>15 1

Poverty incidence (%)

0–20 0.25

20–40 0.5

>40 1
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2.4.1. Exposure

We considered climate, land use/land cover, and the human environment and their
change as the major exposure indicators from 2003 to 2019 (Table 2). Climatic variables
including temperature and rainfall are the major drivers of dengue infection and directly
affect the vector life cycle, feeding activity, biting rates, and virus incubation period [44–47].
Precipitation provides outdoor oviposition sites for vectors and humid conditions favor
mosquito survival. By contrast, heavy rainfall can flush breeding sites of mosquito imma-
tures [48].

Mean temperatures between 24 ◦C and 29 ◦C and total precipitation between 0 mm
and 300 mm were given a value of 1 and values outside of these specified ranges were
categorized as 0. A one-month lag time was used in the analysis due to the delayed effect
of climatic parameters found in a retrospective study of dengue and environment that we
carried out in the same provinces [43].

Land use and landcover modified by humans, such as built-up areas, contribute to
exposure by providing indoor oviposition sites in artificial containers for the primary
vector Aedes aegypti. Trees and other plantations provide oviposition sites for the secondary
vector Aedes albopictus. All land use and landcover determinants were ranked on the
continuous scale from 0 to 1: built-up areas were considered highly vulnerable and rated
as “1”, agricultural lands/paddy fields were rated as “0.25”, rubber plantation as “0.5”,
and deforested area as “0.25”, while forest and wetlands were considered not vulnerable
to dengue and rated as “0” (Table 2) [14]. Densely populated human environments create
ideal conditions for dengue outbreaks [49,50]. The population density was calculated for
each district in selected provinces based on population census data [23,24], and classified
into zero, low (0–200 people per km2), moderate (200–400 people per km2), and high
density (>400 people per km2). The geographical distribution of indicators of exposure are
presented as maps in Figure 2 and Supplementary File, Figure S3.

2.4.2. Susceptibility

In this study, we considered individual and collective factors of population susceptibil-
ity to dengue and their change from 2003 to 2019 (Table 2). Socioeconomic and demographic
factors have been reported to affect dengue transmission [51]. Physiological parameters
such as the individual’s immunity and previous exposure are also important, but such
data are usually not published or easily accessible. Therefore, age was used as a proxy for
immunity and previous exposure. Age is related to serious forms of dengue; children less
than 15 years and adolescents are relatively more susceptible to dengue hemorrhagic fever
and dengue shock syndrome (DHF/DSS), independently of other factors [52]. Historically,
dengue cases occurred in the age groups less than 15 years and over 60 years, as is shown
in the Supplementary Figure S1. Dengue cases increase in the age group >60, suggestive of
decreasing immune competence and higher frailty.

Living conditions such as poor housing quality, defined as the lack of window and
door screens, commonly found in underprivileged areas, allows free passage for mosquitoes
between the indoor and outdoor areas [2]. Houses built with bamboo and wood, porous
floors, unplastered walls, and bathrooms without tiles can cause increased indoor humidity,
conducive to vector survival [35]. We calculated percentage housing categories for each
district—the districts were assigned with the most abundant housing category value [35].
Districts with most houses constructed with concrete and wood were given the lowest score
of 0.25, a score for houses with wood 0.5, and houses with wood and bamboo were assigned
the highest score of 1. Dengue susceptibility is increased in urban areas, particularly in
slums with inadequate waste disposal and toilets, and in peri-urban areas with slower
economic development and poor housing quality [9,53,54]. The geographical distribution
of susceptibility indicators in 2003 and 2019 are presented as maps in the Supplementary
File, Figure S4.
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2.4.3. Adaptive Capacity

We considered women’s literacy rates, proximity to health care centers, and poverty
and their change from 2003 to 2019 as collective factors of the population’s adaptive capacity
towards dengue. The adaptive capacity indicators reflect the ability of populations to cope
with or prevent dengue outbreaks [22]. Women play important roles in households. They
commonly manage house conditions, waste, water, the family’s health care management,
etc. Households with low female literacy rate were associated with increased risk of
Aedes oviposition sites around households [55]. Good access to healthcare can reduce
the susceptibility especially to complications, and increase early diagnosis of disease and
immediate medical care to reduce morbidity and thus can reduce the susceptibility of
the population; therefore, distance to a hospital was included as an indicator of adaptive
capacity [56]. The geographical distribution of adaptive capacity indicators in 2003 and
2019 are presented as maps in Supplementary File, Figure S5.

Normalization of determinants was performed by standardizing the data to a value
from 0 to 1 based on an approach used for the human development index (HDI). The
HDI was developed to measure key dimensions of human development, including health,
education, and standard of living [57].

The contribution in percent of each of the three determinants—exposure, susceptibility,
and adaptive capacity—to the total vulnerability score (DVIWADI) in each country was
calculated by dividing their final average scores with the respective DVI average for Laos
and Thailand.

2.5. Index Construction

An index was constructed using estimated weights for each indicator using the three
different approaches, i.e., WADI, BWM, and SE. The index was constructed using linearly
weighted averages (LWA) to combine the indicators of the determinants Equation (1) [58].
The estimated weights of each index were used along with standardized criteria as input
for the LWA. The total score was obtained as the product sum of each indicator and its
weight as follows:

DVIindexname =
n

∑
i=1

wixi (1)

where DVI is the Dengue Vulnerability Index, wi is the weight of factor i, and xi is the
criterion score [59]. Equation (1) is the common expression for all three indices, where the
index name represents either WADI, BWM, or SE.

2.5.1. Index Based on Water Associated Disease Index (DVIWADI)

We used the conceptual framework of WADI developed by Dickin et al. (2013). In the
WADI framework, the vulnerability index was developed based on the exposure, suscepti-
bility, and adaptive capacity indicators with weights of 3, 1, and 1, respectively [14]. All
the indicators within exposure, susceptibility, and adaptive capacity were assumed to have
an equal weight and aggregated to form a composite index using an arithmetic average.

2.5.2. Index Based on Best-Worst Method—BWM (DVIBWM)

Subjective approaches to map vulnerability have been criticized for two reasons. First,
they can be subjectively biased by the decision makers’ opinions, and second, they compare
indicators among different domains such as exposure and sensitivity, i.e., rubber plantations
versus female literacy rates. Similarly, objective-based approaches are criticized for not
including expert knowledge in developing such indices, even though expert opinions can
also be biased. The BWM is an advanced form of the most frequently used subjective
approach, the analytical hierarchy process, which allows comparisons in specific domains
by reducing the comparisons of criteria and limiting subjectivity bias [60].

This method is used to solve different real-world problems and is comparable to the
Analytical Hierarchy Process that uses several evaluation criteria [60]. Weights calculated
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using BWM are based only on the reference comparisons (comparing the best and the
worst indicators to the others). To calculate the weights using BWM, the following steps
are required.

i. Define a set of decision indicators that will be used to derive a decision process,
{C1, C2 . . . , Cn} where C indicates the multiple indicators of each determinant (ex-
posure, susceptibility, and adaptive capacity) (Table 2).

ii. Define the best (most important) and the worst (least important) indictor for
each determinant.

iii. Experts determine the preference of the best and worst indicator over all the other
indicators using a number between 1 to 9 (1 = Worst and 9 = Best). The resultant
vector of Best-to-Others would be

AB = (aB1, aB2, . . . ..aBn)

where aBj indicates the preference of the best criterion B over criterion j, and aBB = 1.
iv. Preference of all the criteria over the worst criterion was determined using a value

between 1 and 9. The resultant vector for Others-to-Worst would be

AW = (a1W , a2W , . . . , anW)T ,

where ajW indicates the preference of the criterion j over the worst criterion W and
aWW =1.

v. Estimate the optimal weights w∗1 , w∗2 , . . . , w∗n. The optimal weight for the indicator is
the one where, for each pair of wB

wj
and

wj
ww

, we have wB
wj

= aBj and wB
ww

= ajW . To find

an optimal solution, the maximum absolute differences
∣∣∣ wb

wj
− aBj

∣∣∣ and
∣∣∣ wj

wW
− ajW

∣∣∣
for all j is minimized. Based on the non-negativity characteristic and sum condition
of the weights, the following problem was also formulated:

minmax
j

{∣∣∣∣∣wb
wj
− aBj

∣∣∣∣∣,
∣∣∣∣ wj

wW
− ajW

∣∣∣∣
}

s.t.
∑

j
wj = 1 (2)

wj ≥ 0, for all j. Hence, the problem in Equation (2) can be transferred to the
linear problem: ∣∣∣wb

wj
− aBj

∣∣∣ ≤ ξ, for all j∣∣∣ wj
wW
− ajW

∣∣∣ ≤ ξ, for all j

∑
j

wj = 1

wj ≥ 0, for all j

(3)

Solving Equation (3), the optimal weights (w∗1 , w∗2 , . . . .., w∗n) and ξ∗ are obtained [60].
The pairwise comparisons that we carried out in this research using BWM methods

were integrated with linear weighted average to construct the index. The contributing
weight for each determinant of vulnerability (exposure, susceptibility, and adaptive capac-
ity) was also calculated (Table 3).
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Table 3. Weight calculations of indicators using the Best-Worst Method (BWM).

Exposure

Best to others: Temperature (◦C) Others to the Worst: Landcover (km2) Weights Consistency Index

Temperature (◦C) 1 Temperature (◦C) 2 0.39

0.07

Rainfall (mm) 2 Rainfall (mm) 2 0.23

Landcover (km2) 2 Landcover (km2) 2 0.15

Population density
(person/km2) 2 Population density

(person/km2) 1 0.23

Susceptibility

Best to others: Population
(Density person/km2) Others to the Worst: Age

0.04Living conditions 2 Living conditions 2 0.54

Toilet type 3 Toilet type 2 0.29

Age <15 and >60 4 Age <15 and >60 1 0.17

Adaptive
capacity

Best to others: Literacy Rate (%) Others to the Worst: Mean Distance
to Hospital (km2)

0.04

Female literacy rate
(%) 1 Female literacy rate

(%) 3 0.54

Poverty incidence
(%) 2 Poverty incidence

(%) 2 0.29

Mean distance to
hospital (km2) 3 Mean distance to

hospital (km2) 1 0.17

Vulnerability

Best to others: Exposure Others to the Worst: Adaptive
Capacity

0.04Exposure 1 Exposure 3 0.54

Susceptibility 2 Susceptibility 3 0.32

Adaptive capacity 3 Adaptive capacity 1 0.17

The BWM method was not used for Thailand due to the unavailability of the data for
comparisons to calculate indicator weights.

2.5.3. Index Based on Shannon’s Entropy—SE (DVISE)

Shannon’s Entropy has recently been used to map the susceptibility of dengue in
Chicago, IL, USA [61]. SE relies on objective base information that can be used to determine
the disorder degree of the information in the decision space of the variables for a particular
decision problem and can minimize the subjective bias of decision maker opinion. Shan-
non’s Entropy is a measure of the amount of information held in data using probability
theory. It indicates that a broader distribution contains more uncertainty than a sharply
peaked one does. In other words, the most important factor is the discriminating density
dij of the subclasses among all indicators (Supplementary File, Tables S1 and S2). The
determination of weight for each indicator was objectively assessed because it was decided
by the distribution of dengue cases and not by personal opinions, as in the BWM method.
According to entropy theory, the dengue case densities (dij) in each class were calculated
by Equation (4).

dij =
DPij

TPij
i = (1, 2, . . . ., m), j = 1, 2, . . . ., n) (4)

where DPij is the number of dengue cases in jth class of indicator i and TPij is the average
population in subclass ij.
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The densities of the subclasses (dij) were normalized to yield a non-negative index,
denoted by pij, Equation (5).

pij =
dij

∑n
j dij

(5)

The entropy value Hj is given by Equation (6).

Hj = −e ∑m
j=1 pijln(pij) i = (1, 2, . . . ., m) (6)

where e = 1/ln(n) is a constant that guarantees 0 ≤ Hj ≤1.
The objective weight (wij) of each factor is given by Equation (7).

wij =
1− Hj

m−∑m
j=1 Hj

(i = 1, 2, . . . ., m; j = 1, 2, . . . ., n; ) (7)

The value of 1 − Hj is known as the degree of diversification dij of the jth index,
which describes the divergence degree of the inherent information of each indicator of the
determinant. The larger the value of dij, the higher the variation in the jth index.

According to entropy theory, if the dengue case densities (dij) of the subclasses of an
indicator are the same, the indicator can be excluded from the causative system because the
frequency of historical dengue cases does not change in various subclasses. The DVIWADI
was used to create aggregate maps of vulnerability at five-month intervals (April and
September) and the change in vulnerability was also mapped for similar months for the
years 2003 and 2019.

2.6. Validation

Validation of a vulnerability index for dengue is a challenging task because vulnerabil-
ity is a composite of exposure, susceptibility, and adaptive capacity that can prevail without
virus transmission. However, monthly dengue incidence per 100,000 persons was used
as a proxy measure of vulnerability in this analysis. The three of the developed indices
were validated, by evaluating the association between dengue incidence and vulnerability
values, and aggregated at the district level. Pearson’s correlation coefficients and p-values
were used to identify the significant association.

3. Results
3.1. Dengue Incidence

There were 48,852 cases of dengue recorded during the study period with an annual
average of 2874 cases and an annual incidence of 12.7 cases per 100,000 persons in selected
provinces of Laos. Based on an outbreak definition of >300 cases per 100,000 persons [62],
there were four major outbreaks in Laos, namely in 2003, 2010, 2013, and 2016, with greater
intensity as compared to other years. The two provinces in Thailand recorded relatively
fewer cases than the Lao provinces with a total of 39,444 cases with an annual average
of 2320 cases (Table 4). Using the same outbreak definition as above, 2003, 2010, 2013,
2015–2016, and 2018–2019 were classified as the outbreak years in Thailand.
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Table 4. Number of reported dengue cases and mean incidence rate (IR) and maximum incidence rate (IR) in two selected
provinces in Laos and Thailand during 2003–2019. Outbreak years are those when maximum incidence rates exceeded 300
per 100,000 population in any month in any district. Months of highest IR are indicated in parentheses.

Year
Laos Thailand

Observed Cases Average IR Maximum IR Observed Cases Average IR Maximum IR

2003 5075 24.2 405.9 (October) 3709 13.5 340.4 (May)
553.8 (June)

2004 1452 6.6 349.3 (July) 1013 4.0 245.8

2005 2282 10.6 203.8 978 3.9 260.6

2006 1501 7.4 128.9 1021 3.9 277.8

2007 2146 10.9 132.4 1379 5.9 247.0

2008 3468 19.5 160.6 871 3.3 170.3

2009 1087 5.2 70.2 1059 4.5 533.0 (July)

2010 5391 26.2 345.4 (September) 2704 10.8
481.0 (June)
481.4 (July)
350.0 (August)

2011 572 3.0 73.5 1197 4.9 295.7

2012 1163 6.0 159.3 1135 4.3 160.8

2013 9294 44.0
487.0 (June)
578.9 (July)
312.0 (August)

4102 15.9

316.0 (March)
303.0 (May)
1404.2 (June)
637.0 (July)
405.0 (August)

2014 116 0.6 25.8 601 2.6 400.0 (June)

2015 210 1.0 98.9 5370 19.7
554.0 (July)
724.6 (August)
329.0 (September)

2016 1998 9.5 433.1 (June) 2644 10.1 402.9 (September)

2017 1688 9.0 148.4 1056 4.0 263.8

2018 1944 8.8 203.9 2284 8.8 418.7 (May)
395.0 (June)

2019 9465 33.0
336.0 (July)
575.3 (August)
411.0 (September)

8321 30.3

303.4 (April)
510.0 (May)
730.0 (June)
434.0 (July)
372.0 (August)

Mean 2874 12.6 – 2320 8.9 –

3.2. Associations between Vulnerability Indices and Dengue Incidence

The association between the calculated indices and monthly dengue incidence per
100,000 persons per administrative area (district in Laos and subdistrict in Thailand) varied
substantially from year to year and among indices. In Laos, all indices were generally poor
with mean correlations varying between 0.23–0.5 (Figure 4). In Thailand, DVIWADI was an
exception where the mean significant correlation was 0.85 (Figure 4 and Supplementary
File, Table S3). For Laos, susceptibility indicators (Table 2) were used at the community
and individual level, but in Thailand, the DVIs were developed only with individual
susceptibility because of limited available data. SE performed well with comprehensive
data in Laos, but WADI produced relatively good results with limited data in Thailand.
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Figure 4. Scatter plot of average monthly dengue vulnerability indices and dengue incidence rate per 100,000 persons
and (a) Dengue Vulnerability Index–Water Associated Disease Index (DVIWADI) and (b) Dengue Vulnerability Index–
Shannon’s Entropy (DVISE), (c) Dengue Vulnerability Index–Best-Worst Method (DVIBWM), in Laos (first row) and Thailand
(second row).

3.2.1. Laos

In Laos, on average, annually 19% (6 out of 25) and 22% (6 out of 25) of the districts
had significant correlations (p-value < 0.05) when applying the DVIWADI and DVISE, re-
spectively (Supplementary File, Table S4) and respective percentages out of the 25 districts
of Savannakhet and Champasak in Laos and the 272 sub-districts of Mukdahan and Ubon
Ratchathani in Thailand during 2003–2019. These two indices were also good in associating
dengue incidence during outbreak years in Laos (2003, 2010, 2013, and 2019) as assessed by
the percentage of districts with a significant association, which were 21% for DVISE and
14% for DVIWADI (Supplementary File, Table S4). The DVISE was significantly associated
with dengue incidence during all the outbreak years except in 2010 (Figure 4a, and Supple-
mentary File, Table S3). In contrast, DVIBWM and DVIWADI showed significant association
in 2010 (outbreak year) and years other than outbreak (Supplementary File, Table S3).

3.2.2. Thailand

In Thailand, on average 27% (73 out of 272) and 13% (35 out of 272) of the subdistricts
had significant correlations (p-value < 0.05) when applying the DVIWADI and DVISE, re-
spectively (Supplementary File, Table S4). Only DVIWADI was found to be significantly
associated with dengue incidence during outbreak years in Thailand (2003, 2010, 2013,
2015, 2016, 2018, and 2019) (Supplementary File, Table S3). For Thailand, DVIWADI was
developed with only individual susceptibility indicators due to lack of data at the commu-
nity level (living conditions and water and hygiene) and with two indicators of adaptive
capacity (mean distance to hospital and poverty). However, even when the DVIWADI was
developed with limited data, it showed a significant association with dengue incidence in
all years (Figure 4 and Supplementary File, Table S3).
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3.3. Spatiotemporal Variation of Dengue Vulnerability
3.3.1. Spatial Differences

Dengue vulnerability varied temporally and spatially over the study period (Figures 5–7).
Generally, the highest vulnerability clusters were observed in administrative units with a high
proportion of built-up areas and those undergoing new developments, such as establishing
new settlements, improved road networks, and dam constructions in forests with associated
resettlement of workers and inhabitants in remote areas. There was moderate to low vulnera-
bility observed in sparsely populated areas mostly covered with forest and crops (compare
Figures 2 and 5b).

Figure 5. (a) Average dengue incidence rate per 100,000 persons and (b) Average Dengue Vulnerability Index–Water Associ-
ated Disease Index (DVIWADI) and (c) Average Dengue Vulnerability Index–Shannon’s Entropy (DVISE), and (d) Average
Dengue Vulnerability Index–Best-Worst Method (DVIBWM), in Laos and in Thailand from 2003–2019.
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Figure 6. Average monthly vulnerability based on Water Associated Disease Index (DVIWADI) and incidence rate per
100,000 persons per month in selected provinces during 2003–2019.

In Laos, the highest vulnerabilities were observed in the provincial capitals of Savan-
nakhet and Pakse. The western district of Champasak and southern districts of Savannakhet
showed significant changes in vulnerability due to the recent development activities in
these areas reducing forest cover (Figures 2 and 7). In Thailand, the highest vulnerabilities
were also observed in the provincial capitals of Mukdahan and Ubon Ratchathani. Central
parts of Mukdahan that underwent extensive deforestation and creation of rubber planta-
tions and a shift in agriculture from crops to rubber or other tree plantations also showed
high dengue vulnerability. The impact of land cover change was not visible in the overall
vulnerability of Ubon Ratchathani, but there was an increase in exposure over the study
period due to changes in temperature and rainfall indicators (Figures S3 and S6).
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Figure 7. Dengue Vulnerability Index–Water Associated Disease Index (DVIWADI). (a) The upper panels show average
DVIWADI in 2003 (left), 2019 (middle), and change between 2003 and 2019 (right). (b) The middle panels show DVIWADI in
April 2003 (left), April 2019 (middle), and change between April 2003 and April 2019 (right). (c) The lower panels show
DVIWADI in September 2003 (left), September 2019 (middle), and change between September 2003 and September 2019
(right). DVIWADI 0 = lowest and 1 = highest.
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3.3.2. Temporal Differences

Dengue vulnerability varied seasonally, similarly to dengue incidence, with higher
vulnerability in the rainy season in all provinces (Figure 6). In Lao provinces, mean
vulnerabilities remained high throughout the year compared to the Thai provinces, with
maximum vulnerability values during July in Champasak and August in Savannakhet.
In both provinces of Thailand, the vulnerability started to increase from January towards
the highest vulnerability during June. Maximum vulnerability and dengue incidence
were observed from May to July (Figure 6). In Ubon Ratchathani, the lowest vulnerability
values were noted in the post-monsoon months from October to December. In Mukdahan
province, relatively higher vulnerability was also recorded in November.

Over the study period, average dengue vulnerability in Lao provinces remained
higher than Thai provinces (Figure 7a). Compared to 2003, dengue vulnerability in 2019
decreased in the northern, north-eastern, and central districts of Savannakhet and northern
and north-eastern districts of Champasak. In Savannakhet, dengue vulnerability increased
in western districts and the western district of Champasak in 2019 compared to 2003.
Overall vulnerability in the Lao provinces generally decreased except for an increase in
western districts of both provinces. In the Thai provinces, during 2003, high dengue
vulnerability values were observed in north-western Mukdahan and central and eastern
Ubon Ratchathani. In 2019, average vulnerability decreased in both provinces. In Ubon
Ratchathani, average vulnerability remained high in eastern districts bordering Champasak.
The overall average vulnerability decreased in both provinces.

In Laos, dry season dengue vulnerability (represented by the month of April) (Figure 7b)
decreased between 2003 and 2019 in eastern districts and increased in western and southern
districts of Savannakhet. The rainy season vulnerability (represented by the month of
September) decreased during the same period in northern Savannakhet, but significantly
increased in southern districts (Figure 7c). In Champasak province, both dry and rainy
season vulnerabilities remained unchanged between 2003 and 2019, except for increases in
one eastern district (Figure 7b,c). In Thailand, dry season dengue vulnerability decreased
between 2003 and 2019 in northern Mukdahan and Ubon Ratchathani provinces (Figure 7b).
However, the rainy season dengue vulnerability increased in Mukdahan province except
for a decrease in one northern subdistrict. In Ubon Ratchathani, the largest decreases in
rainy season vulnerability were observed in eastern and southern subdistricts over the
study period (Figure 7c).

3.3.3. Change in DVIWADI Components

Over the study period, exposure to dengue increased in some western districts of
both provinces in Laos, while in Thailand, dengue exposure remained unchanged in Ubon
Ratchathani and increased in northern Mukdahan (Figure S6). Susceptibility of the pop-
ulation towards dengue also increased in most districts/subdistricts in both countries
(Figure S6). Adaptive capacity decreased in northern and north-western districts of Savan-
nakhet and in Champasak. Adaptive capacity remained unchanged in southern districts
of Savannakhet except for a decrease in one. In Ubon Ratchathani, adaptive capacity de-
creased in most subdistricts and increased only in a few subdistricts. The adaptive capacity
in northern Mukdahan increased but decreased in southern Mukdahan (Figures S5 and S6).

In Laos, the exposure component score contributed on average 11%, the susceptibility
score 47%, and adaptive capacity 42% to the full vulnerability score. In Thailand, the
exposure component score contributed 56%, the adaptive capacity 27%, and susceptibility
17% to the vulnerability score.

4. Discussion

We developed and compared three dengue vulnerability indices using objective and
subjective weighting approaches and selected the best index to map dengue vulnerability
in border areas between Laos and Thailand. The three vulnerability indices were DVIWADI,
DVISE, and DVIBWM. Of the three indices assessed here, the DVIWADI performed best with
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a significant correlation with dengue incidence (Pearson correlation coefficient, r > 0.5 and
p < 0.05) in areas with high dengue incidence during outbreak and non-outbreak years.
The DVISE performed better than DVIBWM, but not in the highly vulnerable provincial
capitals of Laos (Figure 5). The DVIBWM overestimated vulnerability in administrative
units that experienced very low dengue incidence and underestimated in highly vulner-
able provincial capitals with high dengue incidences (Figure 5). However, DVI includes
conditions of exposure, susceptibility, and adaptive capacity that can also occur without
DENV transmission [50,63].

The DVIWADI was a better index compared to DVISE and DVIBWM to map vulnerabil-
ities because it presented higher spatio-temporally significant correlations with dengue
incidences (r> 0.5 and p < 0.05) in the study areas in both countries. The validation of
DVIWADI results showed better performance in Thailand than in Laos with a significant
positive correlation between vulnerability and dengue incidence in 16 out of 17 years in
27% (15–53%) of the subdistricts on average in non-outbreak years and 36% (22–53%) in
outbreak years.

4.1. DVIWADI Spatial Variations

The highest annual average DVIWADI was observed in districts with major urban
centers and high population densities (Figure 5). In the Thai provinces, clusters of highly
vulnerable districts were in and around the provincial capitals, and in districts that mostly
consisted of forest and tree plantations of cashew and rubber. In Laos, the provincial
capitals were highly vulnerable, and the rest of the districts were moderately to highly
vulnerable. The temporal variations during 2003–2019 in vulnerability (Figure 7) also
highlighted the impact of land covers and their change.

4.2. Change in DVIWADI during 2003–2019

The combination of socioeconomic and environmental indicators affect dengue vul-
nerability [64,65]. Environmental indicators of exposure including climate and land cover
play a role at a larger scale, while socioeconomic indicators of susceptibility and adaptive
capacity define the risk of communities toward dengue infection.

In the selected provinces, vulnerability decreased in 67% of districts in Laos and in
87% of the subdistricts in Thailand between 2003 and 2019 (Figure 7). This likely reflects the
general improvement in indicators of susceptibility, specifically hygiene facilities, and an
increase in adaptive capacity with a decrease in poverty incidence because of better socioe-
conomic status and increased female literacy rates (Supplementary File, Figures S3 and S4).
A study from southern Mexico [55] also indicated that the households with poor socioeco-
nomic conditions and low educated mothers tend to have high risk for dengue with more
larval breeding containers.

Dengue vulnerability increased in the remaining areas, i.e., in 33% of the Lao districts
and 13% of the Thai subdistricts (Figure 7). This increase in dengue vulnerabilities was
mainly linked with the increase in exposure in the eastern districts of Savannakhet and
Champasak and in the whole of Mukdahan.

In Laos, the significant land cover modification included forest clearing, forest and
agriculture land conversion to rubber plantations, dams, settlements, and road construction
(Figures 2 and 7) [66]. In 2003, the southern district of Savannakhet province consisted of
forest and experienced low vulnerability in the dry season and high vulnerability in the
monsoon season. In 2019, these forests were cleared mainly for dams construction and
other land-uses [67], which ultimately increased the human population density, causing
an increase in vulnerability in this district. The increase in vulnerability in the southern
districts of Savannakhet was pronounced when comparing the rainy season in 2003 to that
of 2019 (Figure 7c). Similarly in Malaysia [68], deforestation was found to be associated
with increased dengue cases.

In Thailand, Mukdahan province was the least affected by dengue, although the rainy
season vulnerability increased between 2003 and 2019 while remaining unchanged in the
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dry season. Changes in dengue vulnerability in Mukdahan were associated with climatic
changes and extreme climatic events (Figure S3), especially flooding in the rainy season
from 2011 onwards (Table S5b). Land cover in Mukdahan also changed, for example, with
increased deforestation and conversion to agriculture and rubber plantations (Figure 2) [69].

4.3. DVIWADI Temporal Variations

DVIWADI presented strong seasonal variations in dengue vulnerability, driven by the
climate variation in both countries across the year. In both countries, high vulnerability
was related to the rainy season that spans from May to October; this seasonal cycle differs
among selected provinces (Figure 6). This seasonality of dengue is widely reported in
South East Asian countries [12,70,71].

4.4. Change in Determinants of DVIWADI

The three determinants of dengue vulnerability independently changed over the
study period.

i. Exposure: All four indicators of exposure including land cover, temperature, rainfall,
and population density changed over the study period. An increase in exposure/risk
with landcover and climate is also reported in other South East Asian countries such
as Malaysia [68], Vietnam [72], Indonesia [73], and Timor-Leste [74]. The increasing
risk with climate is also well reported for different parts of Thailand [21,51,75–78].
On average, exposure contributed 56% to the DVIWADI score in Thailand and only
11% in Laos. The relatively higher contribution of exposure to dengue vulnerability
in Thailand could be a reason for the overall high correlation between DVIWADI and
dengue incidence (R2 = 0.73 and r = 0.85), even if data for susceptibility and adaptive
capacity determinants were limited (Figure 4). On average, exposure contributed
56% to the DVIWADI score in Thailand and 11% in Laos. Both countries went through
similar environmental changes, but there were marked differences in population
density; for example, population densities remained low in Savannakhet (below
100 person/km2 between 2003–2019). The low exposure in Laos can be an artifact
because of larger spatial units considered as compared to Thailand where subdistricts
are much smaller than districts in Laos.

ii. Susceptibility: People’s susceptibility to dengue decreased in both countries with
improved water and hygiene facilities (Supplementary File, Figure S5). In Laos, the
population with improved access to water and sanitation increased by 18% between
2005 and 2010 alone and from 45% to 63% nationwide, exceeding the Millennium
Development Goals target of 54% [79]. Similarly, in Thailand, nearly 93% of the
population has access to improved hygiene and 96% to drinking water [80]. In Laos,
susceptibility on average contributed 47% and in Thailand, only 17% to the DVIWADI
score, which underlines the different living conditions and vulnerable population age
groups in the study sites of these two countries. The relatively higher contribution of
susceptibility and limited data (censuses in 2005 and 2015) in Laos might be the reason
for an overall lower correlation between DVIWADI and dengue incidence (R2 = 0.22
and r = 0.5) (Figure 4).

iii. Adaptive capacity: In Laos, the adaptive capacity on average contributed 42% to total
DVIWADI score and in Thailand only 27%. Poverty and female literacy rates were the
most critical indicators of adaptive capacity that can effectively help to reduce the
dengue burden. Research from southern Brazil [81] reported 23–32% reduction in
dengue cases with an increase in mean income from approximately USD 100–200 to
USD 200–300. Poverty incidence rates decreased in Laos provinces between 2005 and
2015 (Supplementary File, Figure S5). In Champasak, poverty incidence dropped to
21% from 28% and in Savannakhet from 49.3% to 32.2%. In Thailand, the poverty
incidence rate also decreased between 2003 and 2019, from 8% to 1.3% in Mukdahan
and from 2.5% to 1.1% in Ubon Ratchathani [24]. The average female literacy rate
between 2005–2015 increased from 44.6% to 48.7% in Champasak province and from
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38.8% to 42.6% in Savannakhet province [23]. The average female literacy rates
in Mukdahan and Ubon Ratchathani in 2000 were 86% and 90%, respectively, and
increased to 95% in both provinces in 2019 [24]. The average distance to a hospital or
health care facility is a crucial indicator of community adaptive capacity. However,
this distance remained unchanged in Laos between the 2005 and 2015 censuses [23].
In Laos, except for urban centers, the minimum average distance to the nearest
health facility was 10–20 kilometers. The lack of geographical coverage of the health
system was due to a sparse population in the country, with approximately 80% of the
population living in rural areas and engaged in agriculture [82]. The current health
facility network in Thailand showed good coverage, with the nearest health care
facility between 1 and 10 kilometers.

Vulnerability indices simplify the complex real-world information and provide a
science–policy interface for decision makers. The DVI maps developed in this study
(Figure 7) identified areas needing vector control and communities with deprived health
services. Such maps could inform the health department on areas in most need of pre-
vention and intervention activities. Along with previous studies [12,15,16], this study
emphasizes the role of the WADI as a holistic tool to highlight key factors and linkages that
play a role in DENV transmission.

Interpretation of the results from our study highlights the need for intersectoral
collaboration, especially among health, urban planning, water, and agriculture/forestry
sectors. Deforestation for city development, crops, and dams should be accompanied by
the health and environment sectors to conduct the impact assessments, considering the
anticipated detrimental impacts on public health. Moreover, these interconnected sectors
should work together to define mitigation and adaptation strategies to reduce the effect
of damage already inflicted. This is already part of the Constitution of the Kingdom of
Thailand (2007), Article 672 [83,84], and also needs to be developed in Laos.

Vulnerability index development depends on spatiotemporal socio-economic data
and their quality. This study was limited by lack of spatial details since dengue case
data used for validation were aggregated at the district and subdistrict levels and a finer
scale georeferencing of individual patients’ households was not possible. The continuous
spatio-temporal availability of climate and earth observation records from satellites im-
proved the reliability of data for eco-environmental factors. However, fine scale temporal
socioeconomic and demographic data remain challenging to access in endemic regions
of South East Asia. A detailed annual socioeconomic and living conditions database was
available for Thailand, but only for municipal and non-municipal areas without further
division into subdistricts or villages. The performance of DVIWADI could be improved by
including detailed socioeconomic data for more time steps in Laos and Thailand at the
village, subdistrict, and district levels.

5. Conclusions

Despite vector control and dengue prevention activities, dengue represents a signifi-
cant disease burden in Laos and Thailand, indicating the need for further improvement
of centralized national databases, understanding relevant environmental processes, and
disseminating dengue-related knowledge in different socioeconomic settings. The vulnera-
bility assessment using multiple approaches improves understanding of crucial dengue
determinants and facilitates communication of complex interactions. The DVIWADI ap-
proach in this study described changing conditions at a regional scale. It provided a visual
tool that can support public health sectors and decision makers in allocating resources for
interventions and prevention measures to reduce population susceptibility and enhance
resilience. Further development of an interactive web-based platform of the WADI would
be a practical step to facilitate communication of vulnerability trends to decision makers
locally and globally.
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ing quality (left panels), toilet type (middle panels) and vulnerable populations (right panels) in
Savannakhet and Champasak provinces in Laos in 2003 and in Mukdahan and Ubon Ratchathani
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Thailand between 2002 and 2019.
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