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Ticks are blood-sucking parasites that are harmful to humans and animals. MicroRNAs
are a class of conserved small noncoding RNAs that play regulatory roles in the expression
of many genes at the posttranscriptional level. Here, a novel miRNA (nov-miR-17) was
identified from a small RNA data library of Hyalomma asiaticum by next-generation
sequencing. PCR was used to obtain precursor nov-miR-17 by RACE using mature
loop primers. The secondary structure was predicted with UNAFold. The interaction of
nov-miR-17 with its target gene TAB2 was predicted using RNAhybrid software and
identified in vitro by luciferase assays. Moreover, the interaction was confirmed in vivo by
phenotype rescue experiments in which dsTAB2 was used for RNA interference (RNAi)
and an antagomir of nov-miR-17 was used for miRNA silencing. The expression levels of
nov-miR-17 and TAB2 in ticks at different developmental stages and the expression of
nov-miR-17 in different tissues were analyzed by real-time qPCR. All data were analyzed
using GraphPad Prism version 5. Results: The results showed that TAB2 was a target
gene of nov-miR-17. When the blood-sucking process of larval, nymph and adult ticks
was prolonged, the expression of nov-miR-17 was decreased, and TAB2 expression was
increased. However, the level of nov-miR-17 in the midgut of engorged ticks was highest
at all stages. Therefore, nov-miR-17 plays an important role in the blood-sucking process.
The overexpression of nov-miR-17 indicated that this miRNA affected the engorged
weight (P < 0.001) and spawn rate (P < 0.001) of female ticks. RNAi of TAB2 also had the
same effect. dsRNA not only impacted the weight (P < 0.01) but also reduced the spawn
rate (P < 0.001) of the ticks. Furthermore, significant recovery was observed in nov-miR-
17-silenced ticks after TAB2 silencing by RNAi. nov-miR-17 silencing by antagomir not
only impacted the engorged weight of the female ticks (P < 0.001) but also the number of
days that the females needed to progress from engorgement to spawning (P < 0.001).
The study showed that nov-miR-17, as a new miRNA, plays an important role along with
its target gene TAB2 in the blood-sucking and spawning processes in female ticks.
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INTRODUCTION

Ticks are obligatory, blood-sucking parasites found on the body
surface of animals. Tick species are widely distributed worldwide
(1), and their hosts include mammals, birds, reptiles and
amphibians. For tick hosts, the major concern is not severe
blood loss but rather the ability of ticks to carry and transmit
miscellaneous pathogens (2). A variety of bacteria, viruses and
parasites are spread by ticks and can result in many important
tick-borne diseases that can seriously affect human health (3).
Hyalomma asiaticum is an Acari: Ixodidae that can exchange
three hosts in a life cycle (three-host tick) and is found in North
China, Russia, Kazakhstan and Mongolia (4). H. asiaticum has
caused harm to human populations and has resulted in economic
losses to livestock through the transmission of pathogens (5).

MicroRNAs (miRNAs) are noncoding RNAs with a length
of approximately 19-24 nucleotides. Many studies have
demonstrated that miRNAs regulate target genes at the
posttranscriptional level and are involved in many physiological
processes (6, 7). In animals, miRNAs recognize sites of 2-7
nucleotides in target genes and bind through incomplete base
pairing. The binding sites are located in 5’ untranslated regions (5’-
UTRs) (8, 9), open reading frames (ORFs) (10, 11) or 3’
untranslated regions (3’-UTRs) (12).

TGF-beta-activated kinase 1 and M3K7-binding protein 2
(TAB2, KF828757.1) are conserved genes found in plants
and animals. As an adaptor protein, TAB2 is involved in many
pathways, such as the IL-1, MAPKs (13), JNK and NF-kappa B
pathways (14). In the IL-1 pathway, TAB2 is an intermediate
that mediates TAK1 activation by linking TAK1 and TRAF6
in response to IL-1 (15, 16). In the MAPK pathway, miR-142-3p
negatively regulates Mycoplasma gallisepticum-induced
inflammatory cytokine product ion via NF-kB and
MAPK signaling by targeting TAB2 (17). Additional
constitutive activation of TAK1 by HTLV-1 tax-dependent
overexpression of TAB2 induces activation of JNK-ATF2 but
not IKK-NF-kappa (18).

However, studies of ticks have demonstrated that TAB2 is
involved in tick innate immunity after pathogen infection (19).
During the blood-sucking process, some translated genes exhibit
increased expression compared with the levels found in unfed
ticks (20). Here, we showed that TAB2 is closely related to the
blood-sucking and spawning processes.

Although blood feeding plays an important role in ticks, only
a small number of miRNAs have been shown to be involved in
this process. Previous studies have shown that parasites can
release miRNAs containing extracellular vesicles, and the vesicles
can transfer these miRNAs to modulate host cell functions (21).
In addition, antagonists of miR-2a and miR-279 have been
injected in Dermacentor silvarum ticks, and their respective
target genes were upregulated or downregulated after injection
Abbreviations: CAAS: Chinese Academy of Agricultural Sciences; DNA:
deoxyribonucleic acid; ORF: open reading frame; miRNA: microRNA; H.
asiaticum: Hyalomma asiaticum; 3′-UTR: 3′-untranslated region; NC: negative
control; RT–qPCR: real-time quantitative PCR; RNAi: RNA interference; DLR:
dual luciferase reporter assay.
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with agonists, which indicates that these two miRNAs and their
target genes may be involved in the cold response of D. silvarum
ticks (22). At present, miR-275 and its target vitellogenin are
known to regulate the physiological process of blood digestion,
which has a major effect on ovary development inHaemaphysalis
longicornis (23). However, another study showed that five
miRNAs (miR-34, miR-989, miR-277, miR-1174, and miR-
219) were found at high expression levels in midgut tissues
and were involved in innate immunity and oxidative stress
during blood feeding in female mosquitoes (24).

As high-throughput sequencing technology has become
increasingly common, an increasing number of small RNA
databases have been established (25). As observed in a recent
study, the known miRNAs comprise approximately 2.86% of a
total small RNA database, and unidentified small RNAs
comprise approximately 90.75% of the total in H. asiaticum
(26). Novel-mir-17 was derived from a small RNA database of
H. asiaticum, but little information is available on this novel
miRNA. Thus, we investigated this novel miRNA with the aim to
further elucidate tick physiology and control.
MATERIALS AND METHODS

Tick Collection
Hyalomma asiaticum ticks were collected from Gansu Province
and have been maintained in our laboratory since 2006. The ticks
were reared by feeding on rabbits for various generations in the
laboratory. The ticks at all developmental stages were maintained
at a temperature of 30 ± 2°C and a relative humidity of 80 ± 5%
(27). Under this condition, ticks can survive for 6 months
without sucking blood. If engorged, ticks molt within
approximately 10 days and develop to the next unfed state.

Cloning of Novel MiRNAs and the
TAB2 Gene
Total RNA was isolated from the blood of partially engorged
adult female ticks on the fourth day using TRIzol reagent
(Invitrogen, Cat No. 15596-026). The concentration of RNA
was 400 ng/mL (260/280 = 2.00). The synthesis of first-strand
cDNAs was performed according to the protocol for
transcriptase XL (Avian Myeloblastosis Virus, AMV) (TaKaRa,
Shiga, Japan) with a loop primer of nov-miR-17 and oligo dT18.
PCR was performed to obtain the sequence of nov-miR-17. The
PCR product was ligated into the PMD 19-T vector (TaKaRa,
Japan), and the modified vector was transformed into JM109
(TaKaRa, Japan). The sequence was obtained from GenScript
(Nanjing, China).

A 3’-RACE cDNA amplification kit (Invitrogen, CA, USA)
was used to obtain the 3’-UTR of the TAB2 genes in
H. asiaticum. The gene-specific primers 3GSP-1 and 3GSP-2
were used for 3’-RACE. A nested PCR was performed to obtain
the sequence of the 3′-UTR. The 5’-UTR of TAB2 was obtained
using the SMARTer® RACE 5’/3’Kit (TaKaRa, Japan). The gene-
specific primers 5GSP-1 and 5GSP-2 were used for 5’-RACE in
nested PCR to obtain the sequence of the 5′-UTR. The primers
July 2022 | Volume 13 | Article 930532
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used in this study are shown in Table 1. The precursor of nov-
miR-17 (pre-nov-miR-17) was obtained by 3’-RACE. The gene-
specific primers pre-3GSP-1 and pre-3GSP-2 were used for 3’-
RACE, and nested PCR was performed to obtain the sequence of
the 3′-UTR. The precursor secondary structure prediction was
performed using mfold software (http://www.unafold.org/mfold/
applications/rna-folding-form.php).

Dual Luciferase Reporter Assays
The mature miRNA sequences were obtained from the
microRNA databases (https://mirbase.org), and the 3’-UTR of
the HasTAB2 sequence was obtained from H. asiaticum. Both
TAK1 and TAB2 are conserved activators of the TGF-beta
protein in TGF-beta signal transduction. TAK1, TAB2 and
HasTAB2 were assessed using the RNAhybrid (28, 29)
program to predict the binding sites for nov-miR-17.

nov-miR-17 agomir and negative control (NC) were
synthesized by RiboBio (Guangzhou, China). miRNA mimics
are small, chemically modified double-stranded RNAs that
mimic endogenous miRNAs and enable miRNA functional
analysis by enhancing miRNA activity. The miRNA NC is a
mimic, and the sequence was based on a Caenorhabditis elegans
miRNA that was not similar to mammalian or tick miRNAs.

For high transfection efficiency and low background
expression of nov-miR-17, the mammalian BHK cell lines were
Frontiers in Immunology | www.frontiersin.org 3
used for the DLR assay. The wild-type (WT) or mutant (MUT)
3’-UTR of TAB2 was cloned and inserted into the pmirGLO
vector using PmeI and XhoI restriction sites (Promega, Madison,
WI, USA). BHK cells were transfected with 50 nM miRNA
agomir (final concentration) and 0.8 ng of pmirGLO reporter
plasmid mixed with 1 mL of Lipofectamine® 2000 Transfection
Reagent (Invitrogen, USA) in 50 mL of Opti-MEM Reduced
Serum Medium (Gibco, USA) in each well of a 24-well plate.
Forty-eight hours after transfection, the Dual-Luciferase®

Reporter Assay (Promega, USA) was performed according to
the manufacturer’s protocol. However, both MUT with the
mimic and WT with miRNA-NC were used as negative
controls in this study. The experiment was performed three
times, and each replicate included three technical repeats.

Overexpression of MiRNA
To confirm the roles of the novel miRNA, miRNA
overexpression in vivo was performed using an agomir.
Agomirs are chemically modified miRNAs that can be used to
deliver miRNA to cells and tissues. The modifications possess
advantages such as increased serum stability, improved cellular
uptake and increased stability in cells, and these advantages make
agomirs popular for in vivo applications (30). The miRNA
agomir and the miRNA-NC (RiboBio, Guangzhou, China)
were microinjected into the hemocoel of unfed female adult
TABLE 1 | Primers used in this experiment.

Name Sequence (5’-3’)

TAB2-890-F AGCCAGRACCAGYTGTACAG
TAB2-890-R ACTTCCACCGGTTGTCSTCC
TAB2-3GSP1 TGCCATCTTCCCGGCTGTTC
TAB2-3GSP2 AGCTGCTGCAGCGAATGTAC
TAB2-5GSP1 GGACTGGAGGCGAGTGGTGAAGCCG
TAB2-5GSP2 GGAAGATGGCAGCTGCGATCCCTCC
TAB2-WT-mut-F AGCTTTGTTTAAACTCAGATGTGTGACTGGTGAAG
TAB2-WT-R CTAGTCTAGACTGTACAATGTTCAGCACACTG
TAB2-MUT-R CTAGTCTAGAGACATGTTAGTTCAGCACACTGTGTGC
ds-NC-F GGATCCTAATACGACTCACTATAGGGTAGCAGGTGTGGTTCATCC
ds-NC-R GGATCCTAATACGACTCACTATAGGCTGATGCATTGCCTTCGTCC
ds-TAB2-F GGATCCTAATACGACTCACTATAGGGATGACATGATCCAAGCTCTCC
ds-TAB3-R GGATCCTAATACGACTCACTATAGGGTGTGTTAGAGTGGACCAATCG
TGFbR-1250-F1 CASTTTGCCATAGAGTGCTGCCG
TGFbR-1250-R1 TCCTGGGCWCCCAGGTTGGCAA
TGFB-700-F2 GCTGGTGCAGAGGAGCATAG
TGFb-700-R2 CCACCTTGCGCATCTCCTCA
TGFB- qPCR -F GTGGCTCATCACAGACTACC
TGFB- qPCR -R CCATTGGCAATGGAGTAAGC
b-action CGTTCCTGGGTATGGAATCG
b-action TCCACGTCGCACTTCATGAT
nov-mir-17-mature UGUACAAUCGGCACUUUCUCCU
nov-mir-17-loop GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGGAGAAA
nov-mir-17- qPCR -F ACACTCCAGCTGGTGTACAATCGGCACTT
MiR-2a-loop GTC GTA TCC AGT GCA GGG TCC GAG GTA TTC GCA CTG GAT ACG AC GCTCATCA
MiR-2a- qPCR-F ACACTCCAGCTGGTATCACAGCCAGCTT
MiR-8-loop GTC GTA TCC AGT GCA GGG TCC GAG GTA TTC GCA CTG GAT ACG AC GACATCTT
MiR-8- qPCR-F ACACTCCAGCTGGTAATACTGTCAGGTA
miRNA-URP-R GTCGTATCCAGTGCAGGGTCC
TAB2- qPCR -F GCTTCACCACTCGCCTC
TAB2- qPCR -R TTCCTCCTTCGCAGGGTC
R = A/G, W = A/T, Y = T/C.
July 2022 | Volume 13 | Article 930532
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ticks at a dose of 400 mM in a volume of 0.5 mL (23). A total of
150 unfed female adult ticks were randomly divided into three
groups as replicates and injected with the agomir. Twenty-four
hours later, miRNA expression in five female ticks from each
group was tested. Another 150 uninjected ticks were used as
controls. The survival of the ticks was then assessed while feeding
on a cow without any tick-borne diseases. The ticks were
observed, and their survival was determined.

RNA Interference of TAB2 and Phenotype
Rescue Experiments
For the synthesis of dsRNA, primers (dsTAB2-F and dsTAB2-R)
were used to amplify a fragment of HasTAB2. As a negative
control, a fragment from a potato gene was amplified using
appropriate primers (dsNC-F and dsNC-R). PCR was performed
using the above conditions. The dsRNA was prepared using the
T7 RiboMax Express RNAi system (Promega, USA) following
the instructions.

Antagomirs, which are also known as anti-miRs or blockmirs,
are a class of chemically engineered oligonucleotides that prevent
other molecules from binding to a desired site on an mRNA
molecule. Antagomirs are used to silence endogenous
microRNAs (miRs) (31).

In the phenotype rescue experiments, a nov-miR-17
antagomir (ant-17) was used to knock down the expression of
nov-miR-17. A total of 0.5 mL of dsRNA (4 mg/mL) was injected
into each tick. In this experiment, each unfed female tick was
injected with 1 mL. The miRNA antagomir and the miRNA-NC
(RiboBio, China) were microinjected into the hemocoel of unfed
female ticks at a dose of 400 mM in a volume of 0.5 mL. The forty
ticks in each of the six groups were administered the following
treatments: no treatment, injection of nov-miR-17 antagomir
(ant-17), injection of TAB2-dsRNA (dsTAB2), injection of NC-
dsRNA (dsNC), coinjection of TAB2-dsRNA and tm-17
antagomir (dsTAB2/ant-17), and coinjection of NC-dsRNA
and tm-17 antagomir (dsNC/ant17). The specific group
information is displayed in Table 2.

Real-Time PCR
The expression levels of nov-miR-17 and HasTAB2 in H.
asiaticum ticks were estimated by RT–qPCR. Total RNA from
ticks at different developmental stages and from different tissues
of ticks was extracted using TRIzol reagent, and first-strand
cDNA was synthesized from total RNA. The PrimeScript™ RT
reagent Kit with gDNA Eraser (TaKaRa) was used following the
manufacturer’s instructions.
Frontiers in Immunology | www.frontiersin.org 4
The RT-qPCRs for miRNA or mRNA analyses were
performed using a common program following the instructions
provided for SYBR® Premix Ex Taq™ II (TaKaRa) with the
MX7500 system (US). The relative expression of miRNA and
TAB2 was calculated with the formula 2-DDCt.

Statistical Analysis
All datasets are shown as the means ± SEMs (n ≥ 3). The dual
luciferase reporter (DLR) assay and quantitative real-time PCR
results were analyzed by a two-tailed unpaired Student’s t test as
detailed in the figure legends using GraphPad Prism 6 software
(GraphPad Software, San Diego, CA, USA). Significance was set
to P < 0.05.
RESULTS

Analysis of the MiRNA and
TAB2 Sequences
As next-generation sequencing has become increasingly
common, an increasing number of novel microRNAs have
been discovered in ticks. nov-miR-17 was identified from a
small RNA library of H. asiaticum (unpublished data) but was
not found in other species.

The PCR results identified an 81-bp segment (Figure 1A),
and the mature miRNA length was 22 bp. Pre-nov-miR-17
comprises 91 nt, and the secondary structure of pre-nov-miR-
17 predicted using mfold software (Initial DG = -29.90 kcal/mol)
is shown in Figure 1B. The sequence of HasTAB2, which is
approximately 1644 bp, including the 1086-bp CDS and the 393-
bp 3’-UTR, was obtained in this study. The 3’-UTR of HasTAB2
was predicted to have a miRNA-binding site.

The MiRNA Targets HasTAB2 In Vitro
RNAhybrid software showed that one binding site in the 3’-
UTR of HasTAB2 had seed sites consistent with the binding
rules for nov-miR-17 (Figure 2A). Based on these results, this
binding site (WT) or a mutated site (MUT) was cloned and
inserted into the multiple cloning site of the pmirGLO vector.
Recombinant WT or MUT plasmids were cotransfected into
BHK cells with a miRNA agomir. Cotransfection of the
miRNA agomir decreased the luciferase expression ratio
from the constructs with the 3’-UTR sequences of HasTAB2
by approximately 37% in BHK cells compared with that found
in untreated cells (Figure 2B).
TABLE 2 | Specific groups in the phenotype rescue experiments.

groups Injection dose/ml Number of ticks notes

Untreated 0 40 Blank control
Ant-17 400mM 40 experimental
dsTAB2 2mg 40 experimental
dsNC 2mg 40 experimental
dsTAB2/ant-17 2mg+400mM 40 experimental
dsNC/ant17 2mg+400mM 40 negative control
July 2022 | Volume 13
 | Article 930532

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Luo et al. MicroRNA Regulate Sucking Blood, Spawning
Analysis of the Expression of MiRNA and
HasTAB2 at Different Developmental
Stages and in Different Tissues
In the RT–qPCR analysis, regardless of whether the samples were
obtained from the larval, nymphal or adult stages, the highest
expression of nov-miR-17 was found at the unfed stage, and the
lowest expression of HasTAB2 was found at this stage. However,
when unfed ticks began sucking blood, the miRNA expression
level decreased, and the expression of TAB2 increased
(Figure 3A). To investigate the function, the expression of
miRNA and HasTAB2 in different tissues was analyzed. We
rapidly isolated the tissues (salivary glands, ovary, epidermis and
midgut) from engorged adult ticks. In this experiment, the host
blood (rabbit) was also examined by qPCR to determine the nov-
miR-17 expression levels, and insignificant levels were detected
in rabbit blood. The highest miRNA expression level was found
in the midgut, and the expression level in this tissue was more
than 50.15 times that in the ovaries and approximately 40.08
Frontiers in Immunology | www.frontiersin.org 5
times that in the salivary gland (Figure 3B). The expression of
nov-miR-17 did not show differences among the ovary, salivary
glands or epidermis. However, the RT–qPCR results revealed no
expression of nov-mir-17 in the blood of rabbits. These findings
indicate that this miRNA can regulate gene function in
the midgut.

Overexpression of This MiRNA Affects the
Blood Sucking Process
Twenty-four hours after ticks were infected with the agomir, the
expression levels of nov-miR-17, mir-2a, mir-8 and TAB2 were
tested. The infected ticks showed approximately 354-fold higher
nov-miR-17 expression, approximately 63% lower TAB2
expression, and unchanged expression levels of miR-2a and miR-
8 compared with the untreated controls (Figure 4A). The
expression level of TGF-beta receptor type I in engorged female
ticks belonging to the nov-miR-17 group 24 h after overexpression
was tested, which revealed that the expression was approximately
A B

FIGURE 2 | (A) TAB2 was identified based on predictions of a binding site for nov-mir-17 in this experiment using RNAhybrid software. (B) TAB2 is a target of nov-
miR-17. Dual luciferase reporter assay results are presented as the means ± SEMs of triplicate samples.
A B

FIGURE 1 | (A) An 81-bp segment of mature nov-mir-17 was obtained by PCR, and the mature miRNA length was 22 nt. (B) The length of pre-nov-miR-17 was
found to be 91 bp by PCR. The secondary structure of pre-nov-miR-17 was predicted using mfold software (Initial DG = -29.90 kcal/mol).
July 2022 | Volume 13 | Article 930532
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28% lower than that of the untreated group, and this difference was
significant. The expression levels of TGF-beta in the agomir control
group were not significantly different from those of the uninjected
miRNA-NC group (Figure 4B). The weight of fed ticks injected
with agomir was 0.9811 ± 0.04533 g (N = 33), but the untreated
and control groups weighed 1.269 ± 0.0313 g (N = 33) and 1.247 ±
0.04519 g (N = 34) after engorgement. However, the bite rate
during the 24-h period after injection did not differ between the
experimental and control groups. Under in-house laboratory
conditions, injected agomir ticks needed 7.182 ± 0.4221 days
(N = 33) to progress from the unfed to engorged stages, whereas
Frontiers in Immunology | www.frontiersin.org 6
corresponding periods of 9.191 ± 0.1897 days (N = 34) and 9.702 ±
0.2438 days (N = 33) were found for injected NC-miRNA ticks and
untreated ticks, respectively (Figure 4C). A spawn rate of 48.48%
was obtained for agomir-injected females, and rates of 69.70% and
67.64% were found for untreated and control ticks, respectively
(Figure 4D). The results are shown in Table 3.

Inhibition of Nov-miR-17 by Antagomir
To explore the effect of nov-miR-17 on ticks, a nov-miR-17
antagomir (ant-17) was used in this experiment to knock down
the expression of nov-miR-17. The missense sequence of nov-
A B

FIGURE 3 | (A) Expression of nov-mir-17 and TAB2 at different developmental stages. (B) miRNA expression in different tissues of fed ticks. The data are presented
as the means ± SEMs of triplicate samples.
A B

DC

FIGURE 4 | (A) Expression of miR-2a, miR-8 and TAB2 24 h after injection of the agomir. (B) The weight of fed ticks was recorded after overexpression of nov-miR-17.
(C) Number of days during which the ticks overexpress nov-miR-17. (D) Spawn rate of ticks overexpressing nov-miR-17. The data are presented as the means ± SEMs
of triplicate samples. *P < 0.05, **P < 0.01, ***P < 0.001.
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miR-17 was used as the negative control of the antagomir.
Compared with NC, the nov-miR-17 expression of the
antagomir injection group was undetectable after 24 h in
unfed ticks, and the expression levels of hasTAB2 and TGF-
beta receptor type I (TbR-I) were increased 1.8 times and 1.5
times, respectively (Figure 5A). The weight of engorged female
ticks in the ant-17 group was 1.313 ± 0.0.0362 g (N = 32),
whereas weights of 1.190 ± 0.0206 g (N = 34) and 1.107 ±
0.0416 g (N = 31) were obtained for the untreated and NC
groups, respectively (Figure 5B). Under in-house laboratory
conditions, injected antagomir ticks needed 11.32 ± 0.3151
days (N = 32) to progress from the unfed to engorged
stages, whereas corresponding periods of 9.357 ± 0.3252
Frontiers in Immunology | www.frontiersin.org 7
days (N = 31) and 9.540 ± 0.1679 days (N = 34) were
obtained for injected NC-miRNA ticks and untreated ticks,
respectively (Figure 5C).

A spawn rate of 69.61% was obtained for ant-17-injected
females, and rates of 61.46% and 59.14% were fond for untreated
and control ticks, respectively (Figure 5D). The spawn rate did
not differ between the untreated group and the NC group. The
results are shown in Table 4.

RNAi and Phenotype Rescue Experiments
To further confirm that HasTAB2 is an authentic nov-miR-17
target gene in vivo, we explored the function of HasTAB2 using
dsRNA of HasTAB2 for RNAi. Compared with the results
TABLE 3 | Physiological index of ticks in the nov-mir-17 overexpression experiment.

Physiological index untreated agomir miRNA-NC

recycle Ticks number 33 33 34
the bite rate after 24h 93.94% 94.73% 90%
the number days of engorgement 9.702 ± 0.2438 7.182 ± 0.4221* 9.191 ± 0.1897
the weight after engorgement (g) 1.269 ± 0.0313 0.9811 ± 0.0453*** 1.247 ± 0.0451
the spawning rate 69.70% 48.48%*** 67.64%
July 2022 | Volume 13
Each data point is the mean ± SEM of three independent experiments (n = 3). Different letters on the same line indicate significant differences (P < 0.05). The bold values indicate significant
differences between untreated and experimental group.
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FIGURE 5 | (A) The expression of nov-miR-17, HasTAB2 and TGF-beta receptor type I (TbRI) in engorged ticks was tested after the injection of ant-17 by RT–
qPCR. (B) Weight of fed ticks recorded in the nov-miR-17 inhibition experiment. (C) Number of days during with ticks were monitored in the nov-miR-17 inhibition
experiment. (D) Spawn rate of the ticks in the nov-miR-17 inhibition experiment. The data are presented as the means ± SEMs of triplicate samples. *P < 0.05, **P <
0.01, ***P < 0.001.
TABLE 4 | Physiological index of ticks in the nov-mir-17 silencing experiment.

Physiological index untreated Ant-17 miRNA-NC

recycle Ticks number 34 32 31
the number days of engorgement 9.540 ± 0.1679 11.32 ± 0.3151 9.357 ± 0.3252
the weight after engorgement (g) 1.190 ± 0.02059 1.313 ± 0.03618 1.107 ± 0.04161
the spawning rate 61.46% 69.61% 59.14%
Each data point is the mean ± SEM of three independent experiments (n = 3). Different letters differences on the same line indicate significant (P < 0.05). The bold values indicate significant
differences between untreated and experimental group.
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obtained with dsNC, dsRNA injection reduced the expression of
HasTAB2 by 39% at 24 h and reduced the expression in engorged
female ticks by 17% (Figure 6A). The analysis of the expression
of HasTAB2 at 24 h after nov-miR-17 inhibition in engorged
female ticks revealed that the expression of nov-mir-17 was
downregulated, the expression of the TAB2 gene was
significantly downregulated, and significant differences were
observed between the dsNC group and dsTAB2 group
(Figure 6B). The weight of engorged female ticks in the
dsTAB2 group was 1.0232 ± 0.0176 g (N = 32), whereas
weights of 1.2500 ± 0.0222 g (N = 33) and 1.2649 ± 0.0176 g
(N = 32) were found for the untreated and dsNC groups,
respectively (Figure 6C). Significant differences in the weight
of engorged ticks were detected between the dsTAB2 group and
the dsNC group (t(62) = 9.061, P < 0.0001). However, the
phenotype of ticks in the dsTAB2 group was similar to that of
ticks in the dsNC group.

To further confirm that TAB2 is an authentic nov-miR-17
target gene in vivo, we conducted a phenotype rescue experiment
by TAB2 RNAi in female ticks with an ant-17 background. We
expected that the RNAi-mediated knockdown of the
physiologically relevant target of nov-miR-17 would alleviate
Frontiers in Immunology | www.frontiersin.org 8
the adverse phenotypes caused by nov-miR-17 depletion. The
dsTAB2/ant-17 female tick body weight (1.211 ± 0.02023, N = 34)
was significantly increased after a blood meal compared with that
of dsTAB2 ticks (1.023 ± 0.02024, N = 32) (Figures 6C, D), and
the coinjection of dsTAB2/ant-17 partially rescued this phenotype.
The results are shown in Table 5.

RNAi of TGF-Beta Receptor Type I
dsTbRI was used to silence TbRI. The expression of TbRI in the
group injected with dsTbRI was approximately 58.36% lower
than that in the dsNC group (Figure 7A). The weight of
engorged female ticks in the dsTbRI group was 0.4044 ±
0.0270 g (N = 33), whereas those of the untreated and NC
groups were 1.095 ± 0.0174 g (N = 31) and 1.098 ± 0.0190 g (N =
32), respectively (Figure 7B). Significant differences (t(63) =
20.84, P < 0.0001) in the weight of engorged ticks were found
between the dsTbRI group and the dsNC group.

Under in-house laboratory conditions, injected dsTbRI ticks
needed 8.234 ± 0.3849 days (N = 3) to progress from the unfed to
engorged stage, and injected dsNC and untreated ticks needed
11.69 ± 0.4000 days (N = 3) and 10.78 ± 0.2290 days (N = 3),
respectively (Figure 7C).
A
B

DC

FIGURE 6 | (A) The expression of HasTAB2 in unfed and engorged female ticks was tested 24 h after RNA silencing. (B) The expression of HasTAB2 and nov-miR-
17 in engorged female ticks was tested 24 h after miRNA silencing. (C) Number of days during which ticks were monitored in phenotype rescue experiments. (D)
Spawn rate of the ticks in the phenotype rescue experiments. The data are presented as the means ± SEMs of triplicate samples. *P < 0.05, **P < 0.01, ***P < 0.001.
TABLE 5 | Physiological index of ticks in the phenotype rescue experiments.

Ticks number the weight after fed (g) the spawning rate(number)

Untreated 33 1.2500 ± 0.0222 72.73%(24)
ds-NC 32 1.2649 ± 0.0176 68.75%(22)
ds-TAB2 32 1.0232 ± 0.0176 53.12%(17)
ds-TAB2/ant-17 34 1.2111 ± 0.0187 67.64%(23)
ds-NC/ant17 33 1.3125 ± 0.0077 63.63%(21)
Ant-17 33 1.3227 ± 0.0160 66.67%(22)
July 2022
Each data point is the mean ± SEM of three independent experiments (n = 3). Different letters on the same line indicate significant differences (P < 0.05).
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The dsTbRI ticks had a 39% higher spawn rate than the dsNC
ticks (Figure 7D). The spawn rate differed between the dsTbRI
group and the NC group (t(4) = 4.655, P = 0.0096). The results are
shown in Table 6.
DISCUSSION

Ticks are exclusively hematophagous ectoparasites, and blood
meals from vertebrates are important throughout their lifecycle.
Therefore, ticks must suck blood for extended periods from one
stage to the next stage, with the exception of the egg stage.
During the blood-sucking process, ticks must address the defense
reactions of hosts, such as inflammation, hemagglutination, and
immune responses (32, 33). To adapt to a new environment,
ticks must undergo physio-biochemical changes, and these
changes involve the synthesis of saliva (34), blood
consumption (35), the expansion of the exoskeleton (36), and
the appearance of reproductive cells (37).

The analysis of the expression of nov-miR-17 and HasTAB2 at
different developmental stages showed that nov-miR-17
expression was highest in unfed ticks and lowest at the engorged
Frontiers in Immunology | www.frontiersin.org 9
stage, which suggests that nov-miR-17 can maintain internal
environment stability in the midgut during the unfed stages
and regulate its target genes to adapt to changes during the
blood-sucking process. As the blood-sucking process continues,
nov-miR-17 and HasTAB2 expression show opposite changes,
which reveals a relationship between these genes and the function
of the midgut. Therefore, this process may indicate that the
expression of TAB2 regulated by nov-mir-17 is involved in the
blood-sucking process in ticks. To elucidate this relationship,
we used RNAhybrid software to predict the binding sites.
However, in the 3’-UTR, only HasTAB2 had a binding site with
a strong 7-mer seed match site at positions 2-8 for nov-miR-17.
DLR assays showed that the binding site for nov-miR-17 is located
in the 3’-UTR of TAB2, which suggested that HasTAB2 was a
target gene of nov-miR-17 in H. asiaticum and that the binding
site of nov-miR-17 was located in the 3’-UTR of TAB2.
Furthermore, HasTAB2 was confirmed to be a target gene of
nov-miR-17 in phenotype rescue experiments. Recent studies of
mosquitoes and Drosophila (38, 39) have shown that antagomirs
can knock down miRNA, resulting in gene silencing, which can
lead to phenotypic changes. The coinjection of antagomir with
dsRNA in vivo rescued the phenotype. In this study, ant-17 was
A B

DC

FIGURE 7 | (A) The expression of nov-miR-17, haaTAB2 and TGF-beta receptor type I (TbRI) in engorged ticks was tested after injection of dsTbRI by RT–qPCR.
(B) Weight of fed ticks recorded in the dsTbRI experiment. (C) Number of days during which ticks were monitored in the dsTbRI experiment. (D) Spawn rate of the
ticks in the dsTbRI experiment. The data are presented as the means ± SEMs of triplicate samples. *P < 0.05, **P < 0.01, ***P < 0.001.
TABLE 6 | Physiological index of ticks in the TbRI knockdown experiment.

Physiological index untreated ds TbRI dsNC

recycle Ticks number 31 33 32
the number days of engorgement 10.78 ± 0.229 8.23 ± 0.384 11.69 ± 0.400
the weight after engorgement (g) 1.095 ± 0.0174 0.4044 ± 0.0270 1.098 ± 0.0190
the spawning rate 62.98% 39.02% 62.39%
July 2022 | Volume 13
Each data point is the mean ± SEM of three independent experiments (n = 3). Different letters on the same line indicate significant differences (P < 0.05).
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used to silence nov-miR-17, and dsTAB2 was used for HasTAB2
gene silencing. We found that dsTAB2 resulted in efficient gene
silencing and weight loss in ticks, and substantial differences were
found between the dsNC- and dsTAB2-treated ticks. However,
the coinjection of ant-17 and dsTAB2 into ticks rescued the
phenotype. These findings also confirmed that HasTAB2 is the
target of nov-miR-17 in vivo. Thus, DLR assays and phenotype
rescue experiments demonstrated that the TAB2 gene is an
authentic target of nov-miR-17 in H. asiaticum in vitro and in
vivo, and the binding site is located in the 3’-UTR of HasTAB2.

In vertebrates, the TGF-beta superfamily, as multifunctional
cytokines, can regulate physiological processes, such as
stimulating the secretion of extracellular matrix, promoting the
formation of blood vessels, regulating cell proliferation and
differentiation, and regulating embryonic development and
organogenesis (40–42). The TGF-b receptor family consists of
two subfamilies, TGF-b receptor type-I (TbR-I) and TGF-b
receptor type-II (TbR- II), which have intrinsic serine/
threonine kinase activity in TGF-b signaling pathways (43).
However, no studies have investigated TGF-b and TGF-b
receptor type II in Ixodes. Studies of receptors for TGF-b have
revealed that TbR-I, as a signal transducer protein, plays a key
role in TGF-b signaling pathways (44). The RNAi experiment of
TbR-I showed that TbR-I exerted an impact on the blood-
sucking and oviposition processes (Figure 7). Therefore, to
explore the function of nov-miR-17 and its target TAB2 in
TGF-b signaling pathways, TbR-I was used to detect the
expression of TGF-b.

TAB2, the target of nov-miR-17, is a TGF-beta-activated kinase
that can activate TGF-beta and related pathways (45, 46). As
demonstrated by RNAi of TAB2, the analysis of the expression of
TbR-I showed that TAB2 had an impact on the TGF-b pathway.
The results showed that TAB2 affected hematophagy and
oviposition. TAB2 is thought to play a role in the processes of
hematophagy and oviposition through TGF-beta signaling
pathways. Previous studies have shown that TGF-beta signaling
controls embryo development in the parasitic flatworm
Schistosoma mansoni (47) and revealed TGF-beta pathways that
are closely related to oviposition (48). Because TGF-beta was
initially purified from human platelets, which are a rich source
of this protein (49), it is possible that ticks obtain high amounts of
protein from host blood, the salivary gland andmuscle structure to
contribute to hematophagy in ticks (25).

To explore the role of nov-miR-17, nov-miR-17 overexpression
and silencing were performed inH. asiaticum. The overexpression
of nov-miR-17 was performed tomaintain high levels of nov-miR-
17 and downregulated the expression of TAB2. The antagomir
depleted nov-miR-17 and upregulated the expression of TAB2.
Therefore, with changes in TAB2 expression, TbR-I was
upregulated or downregulated by nov-miR-17 interference. The
phenotype of miRNA interference showed that nov-miR-17
exerted an effect on hematophagy and oviposition. Therefore, we
hypothesized that nov-miR-17 is able to affect the TGF-
beta pathway.

Many studies have investigated hematophagy and oviposition
in insects, and the function of several specific miRNAs that are
Frontiers in Immunology | www.frontiersin.org 10
able to regulate the process of hematophagy and oviposition has
been verified. miR-275 plays a role in blood digestion and egg
development processes in the mosquito Aedes aegypti (50) and
H. longicornis (51). However, few studies have investigated
miRNAs in ticks. The present study demonstrated that nov-
miR-17 plays a role in hematophagy and oviposition in H.
asiaticum. nov-miR-17, which is the first novel miRNA
identified from the small RNA database with the target gene
TAB2, was found to exert an effect on hematophagy and
oviposition through the TGF-beta pathway in H. asiaticum.
CONCLUSION

Based on the results of this study, we conclude that nov-miR-17
is a novel miRNA in the small RNA database of H. asiaticum
that, together with its target gene TAB2, plays an important role
in the blood-sucking process in H. asiaticum by regulating the
TGF-beta pathway. However, these results suggest a new point of
view for researching the blood-sucking process in ticks.
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