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Abstract: Low light stress increases the chalkiness of rice; however, this effect has not been fully
characterized. In this study, we demonstrated that low light resulted in markedly decreased activity
of ADP-glucose pyrophosphorylase in the grains and those of sucrose synthase and soluble starch
synthase in the early period of grain filling. Furthermore, low light also resulted in decreased
activities of granule-bound starch synthase and starch branching enzyme in the late period of grain
filling. Therefore, the maximum and mean grain filling rates were reduced but the time to reach
the maximum grain filling rates and effective grain filling period were increased by low light. Thus,
it significantly decreased the grain weight at the maximum grain filling rate and grain weight and
retarded the endosperm growth and development, leading to a loose arrangement of the amyloplasts
and an increase in the chalkiness of the rice grains. Compared to the grains at the top panicle part, low
light led to a greater decrease in the grain weight at the maximum grain filling rate and time to reach
the grain weight at the maximum grain filling rate at the bottom panicle part, which contributed
to an increase in chalkiness by increasing the rates of different chalky types at the bottom panicle
part. In conclusion, low light disturbed starch synthesis in grains, thereby impeding the grain filling
progress and increasing chalkiness, particularly for grains at the bottom panicle part.

Keywords: rice; chalkiness; starch synthesis; low light stress; grain filling

1. Introduction

Rice grain quality has attracted considerable attention in recent years [1,2]. A high
degree of rice grain translucency without a chalky appearance is a key indicator of rice
quality, and better quality fetches a higher premium [3,4]. Chalkiness, which describes
the opacity of rice grains, is measured using two indicators, chalky grain rate (CGR) and
chalkiness degree (CD), which are closely associated with the milling, appearance, cooking,
and consumption qualities of rice grains [5,6].

Chalkiness is primarily determined by the structure and arrangement of amyloplasts.
Specifically, when amyloplasts are loosely arranged due to insufficient grain filling and
delayed grain development, the light transmittance of the grains decreases; thus, they show
a greater degree of chalkiness [7,8]. Chalkiness is a quantitative trait that is controlled
by multiple genes [3], such as Chalk5 [9], OsPK2 [10], qPCG1 [11], and qACE9 [12]. An
imbalance in the expression levels of these genes, which are related to starch biosynthesis,
is also related to rice chalkiness [9,13]. For example, the suppression of starch synthase I (SSI)
markedly increases amylose content and granule-bound starch synthase (GBSS) activity in
rice grains, thereby significantly increasing the CGR and CD owing to the disturbance in
the structure and arrangement of starch granules [14]. Furthermore, the downregulation
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of starch branching enzyme IIb (SBEIIb) gene expression results in the loose arrangement of
round-shaped starch granules and the production of grains with a higher level of chalkiness
or opacity [15].

Additionally, rice chalkiness is not only determined by the genetic background of the
rice species but is also influenced by environmental factors [4,16,17], such as the tempera-
ture [18], water supply [19], and fertilizer application [20]. During the grain filling stage,
high temperatures decrease the enzymatic activities of soluble starch synthase (SSS), sucrose
synthase (SuS), and GBSS, thereby impeding grain filling and reducing starch accumula-
tion in the endosperm, increasing the number of loosely arranged starch granules [14,21],
thereby increasing the CGR and CD. Further, CGR and CD are significantly increased by
drought stress [22]. Indeed, long-term water shortage accelerates leaf senescence during
the grain filling stage, resulting in a decrease in grain growth potential and the grain filling
rate and a consequent increase in chalkiness [19]. It has also been observed that chalkiness
is strongly associated with the grain filling process.

Light, an essential environmental factor that affects plant morphogenesis, directly
influences the photosynthetic rate of plant leaves and regulates the carbon metabolism of
crops [23–25]. However, a decrease in surface solar radiation (low light [LL] stress) due to
climate change and environmental pollution has become a challenge worldwide [24,26].
Thus, it has been observed that LL decreases leaf thickness by reducing the number of
palisade layers and spongy parenchyma tissues, thereby reducing the photosynthetic
rate of leaves [27,28]. This results in an imbalance in the accumulation and redistribu-
tion of photosynthetic products, which contributes to a significant decrease in rice grain
yield [27,29,30]. Further, LL also substantially influences the development of rice grains by
decreasing the activities of SSS and GBSS, leading to variations in the internal structure
of the rice endosperm [5,14]. Therefore, LL increases both the CGR and CD of rice by
inducing the production of more loosely packed amyloplasts with more airspaces owing
to the poor uniformity of starch granules [5,8]. However, the impact of LL on the grain
filling characteristics of rice, particularly its relationship to rice chalkiness, has not yet been
extensively investigated.

Therefore, in this study, we conducted a field control light intensity study in Wenjiang,
Sichuan, China from 2018 to 2021 with the following primary objectives: (a) to investi-
gate starch synthesis and characteristics of the filling progress of grains under LL, (b) to
investigate the impact of LL on the variations in grain chalkiness at different panicle parts,
and (c) to evaluate the relationship of starch synthesis and grain filling with chalkiness
in rice. Our results would provide insights for improving rice grain quality in low light
intensity regions.

2. Results
2.1. Variation in Rice Grain Chalkiness under Low Light Stress
2.1.1. Variation in Chalky Grain Rate and Chalkiness Degree under Low Light Stress

The panicle part significantly influenced the CGR between 2018 and 2020 and the CD
in 2020 (Table 1). Compared with the CGR and CD corresponding to the grains at the top
panicle part, those corresponding to the grains at the bottom panicle part increased by
50.40–141.14% and 0.60–71.32%, respectively. Furthermore, relative to the control plants,
LL significantly increased the CGR by 96.40–259.71% and CD (except for the CD of the
grains at the top panicle part in 2018) by 109.61–323.46%. Additionally, the effect of LL on
the chalkiness varied with the panicle part. Compared with the grains at the top panicle
part, LL resulted in a greater increase in the CGR and CD of the rice grains at the bottom
panicle part.
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Table 1. Effect of low light stress on chalky grain rate at different panicle parts.

Panicle Part Light Treatment
Chalky Grain Rate (%) Chalkiness Degree (%)

2018 2019 2020 2021 2018 2019 2020 2021

Top CK 2.29 ± 0.020 b 2.84 ± 0.003 b 2.50 ± 0.011 b — 0.500 ± 0.006 a 0.537 ± 0.002 b 0.687 ± 0.002 b —
LL 6.17 ± 0.011 a 7.08 ± 0.005 a 4.91 ± 0.001 a — 1.42 ± 0.005 a 2.18 ± 0.005 a 1.44 ± 0.001 a —

Bottom CK 4.01 ± 0.016 b 5.06 ± 0.013 b 3.76 ± 0.001 b 2.73 ± 0.005 b 0.503 ± 0.007 b 0.920 ± 0.004 b 0.830 ± 0.001 b 0.683 ± 0.002 b

LL 12.97 ± 0.035 a 13.48 ± 0.006 a 11.84 ± 0.004 a 9.82 ± 0.004 a 2.13 ± 0.005 a 2.43 ± 0.004 a 2.23 ± 0.001 a 1.74 ± 0.003 a

F value Panicle part (P) 11.03 * 96.70 ** 145.41 ** — 1.23 ns 2.04 ns 48.85 ** —
Light treatment (L) 24.99 ** 208.49 ** 239.21 ** 339.29 ** 15.41 ** 50.42 ** 261.62 ** 29.58 **

P × L 3.92 ns 22.71 ** 69.83 ** — 1.21 ns 0.091 ns 23.45 ** —

Lowercase letters represent significant difference between CK and LL at the same panicle part (p < 0.05). CK, full sunlight (control); LL, low light stress; *, p < 0.05; **, p < 0.01; ns,
no significance.
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2.1.2. Variation in Chalkiness Types under Low Light Stress

The rates of different chalkiness types at different panicle parts in 2018 and 2019 are
shown in Figure 1. The rice grains at the bottom panicle part showed higher rates of white-
core, white-belly, white-back, mixed-white, and full-white chalkiness than those at the top
panicle part. Meanwhile, in CK, white-core chalkiness was predominant at both panicle
parts. However, LL significantly increased the white-core, white-belly, and white-back
rates in 2018 and white-core and mixed-white rates in 2019 at the top panicle part. LL also
significantly increased the mixed-white, white-core, and white-belly rates at the bottom
panicle part in 2018 and 2019. Moreover, the rates of full-white and white-back chalkiness
in 2019 also increased due to LL. These results indicated that LL had a stronger influence on
the variation in the chalkiness type of the grains at the bottom panicle part than it did at the
top panicle part. The increase in the rates of the different kinds of chalkiness, particularly
the rates of mixed-white and full-white chalkiness, could be attributed to the increase in
the CD of the rice grains. Moreover, the results of scanning electron microscopy of grains
showed that LL markedly hindered the development of starch granules in rice, which
resulted in an increase in the chalkiness of the rice due to an increase in the numbers of
loosely arranged spherical amyloplasts with a spherical appearance in the grains (Figure 2).
In addition, compared with the grains at the top panicle part, more irregular amyloplasts
were observed in the grains at the bottom part of the panicle under LL, which contributed
to the increase in their chalkiness.

Figure 1. Variation in the rates of the chalkiness types of rice grains grown under LL stress in 2018
and 2019. CK, full sunlight control; LL, low light stress; * p < 0.05; ** p < 0.01; ns, no significance.
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Figure 2. Changes in the microstructure of the grains in 2020. Top, top panicle part; bottom, bottom
panicle part; CK, full sunlight control; LL, low light stress.

2.2. Enzyme Activity Related to Starch Synthesis under Low Light Stress

The activities of the enzymes associated with starch synthesis initially increased and
then decreased during grain filling (Figure 3). In general, the activities of these enzymes
were markedly influenced by the light condition. LL markedly decreased the activity of
ADP-glucose pyrophosphorylase (AGPase) at each sampling time point by 8.13–39.52%.
Compared with the full sunlight (control) condition, the SuS and SSS enzyme activities
showed delay in reaching their peaks under LL treatment by 6 and 3 days, respectively. LL
also reduced the activities of SuS and SSS before 9 days after flowering (DAF) by 4.57–20.62%
and 3.34–12.19%, respectively, but increased their activity after 9 DAF by 5.90–25.69% and
3.49–56.74%, respectively. Furthermore, LL resulted in an increase in (0.52–15.21%) and a
decrease (6.32–19.86%) in GBSS activity before and after 9 DAF, respectively. Furthermore,
the peak activity of SBE was reached 3 days in advance, with an increase in activity from 6
to 9 DAF but a decrease in activity after 12 DAF.

2.3. Rice Grain Filling Characteristics under Low Light Stress
2.3.1. Grain Weight and Grain Filling Rate under Low Light Stress

The appearance of rice grains at 5 to 40 DAF is shown in Figure 4a. Compared with
the control, LL markedly slowed down the growth and development of the rice grains,
especially at the bottom panicle part. To analyze grain filling, the dry weight of the grain
was fitted. The dynamic variation in rice grain weight with DAF fitted well with an S-
shaped curve with R2 > 0.992 (Figure 4b,d and Table 2) in 2020 and 2021, indicating that the
Richards’ growth equation could sufficiently describe the grain filling dynamics. Further,
the grain weight and grain filling rate of the rice grains differed significantly with panicle
part and light treatment. Compared with the grains at the bottom panicle part, those at the
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top panicle part showed greater weights and ultimate growth (A) values; this observation
could be attributed to the higher grain filling rate at the top panicle part (Figure 4c). LL
decreased the grain filling rate at both the panicle parts (Figure 4c) in 2020 and at the bottom
panicle parts (Figure 4e) in 2021, thereby decreasing the grain weight and A by 5.18–14.39%
and 4.89–15.28% at 40 DAF, respectively. Further, owing to the greater decrease in the grain
filling rate at the bottom panicle part, LL resulted in a more significant decrease in the grain
weight and A at the bottom panicle part than at the top panicle part.

Figure 3. Activities of ADP-glucose pyrophosphorylase (a), sucrose synthase (b), soluble starch
synthase (c), granule-bound starch synthase (d) and starch branching enzyme (e) in rice grains under
LL in 2021. Bottom, bottom panicle part; CK, full sunlight (control); LL, low light stress.

Figure 4. Growth and development of rice grain and grain filling under LL in 2020 (a–c) and 2021
(d,e). Top, top panicle part; bottom, bottom panicle part; CK, full sunlight control; LL, low light stress.
* p < 0.05.
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Table 2. Stimulation equations of grain filling of different panicle parts under low light stress.

Year Panicle Part Light Treatment R2 Stimulation Equations

2020 Top CK 0.9966 WG = 19.64(1 + 668.10e−0.4503t)−1/1.88

LL 0.9992 WG = 18.68(1 + 204.90e−0.0.3484t)−1/1.25

Bottom CK 0.9923 WG = 18.45(1 + 930.00e−0.3334t)−1/2.10

LL 0.9955 WG = 15.63(1 + 679.00e−0.2916t)−1/1.37

2021 Bottom CK 0.9985 WG = 19.11(1 + 44.00e−0.2063t)−1/1.17

LL 0.9986 WG = 16.62(1 + 97.16e−0.2061t)−1/1.04

Note: CK, full sunlight (control); LL, low light; WG, the dry weight of the grain; t, the time after flowering.

2.3.2. Grain Filling Characteristics of Rice under Low Light Stress

Panicle part (excluding I values) and light treatment (excluding active grain filling
period values) significantly affected the grain filling characteristics in 2020, and light
treatment significantly affected these parameters in 2021 (Table 3). Moreover, in 2020, the
relationship between panicle part and light treatment significantly influenced the mean
grain filling rates, maximum grain filling rates, grain weight at maximum grain filling rate,
time for reaching the maximum filling rate, and active grain filling period, and, compared
with the relative initial growth potential, mean grain filling rates, maximum grain filling
rates, and grain weight at maximum grain filling rate of the grains at the top panicle
part, the values of these parameters for those at the bottom panicle part were significantly
decreased, while the I, time for reaching the maximum filling rate, active grain filling
period, and effective grain filling period values increased. LL significantly increased the
active grain filling period of the grains at the top panicle part in 2020 and significantly
increased the active grain filling period of the grains at the bottom panicle part in 2021.
Further, it also significantly increased the relative initial growth potential, time for reaching
the maximum filling rate, and effective grain filling period values of the grains at both
panicle parts in 2020 by 18.04–31.25%, 12.11–46.47%, and 11.24–15.38%, respectively. In
2021, the time for reaching the maximum filling rate and effective grain filling period values
of the grains at the bottom panicle parts significantly increased by 12.39% and 12.60%,
respectively. Conversely, there was a decrease in the mean grain filling rates, maximum
grain filling rates, I, and grain weight at maximum grain filling rate across the panicle parts
in 2020 by 9.93–12.28%, 11.21–12.28%, 8.27–8.67%, and 11.24–15.38%, respectively. Similarly,
in 2021, these four indicators showed a decrease in the grains at the bottom panicle parts
by 20.12%, 20.84%, 3.82%, and 16.70%, respectively. Furthermore, LL caused a greater
variation in the relative initial growth potential, grain weight at maximum grain filling rate,
and time for reaching the maximum filling rate of the grains at the bottom panicle part
than for those at the top in 2020. This observation suggested that LL treatment significantly
limited grain filling, particularly for grains at the bottom panicle part. Moreover, the results
for the grains at the bottom panicle part in 2021 further verified again that LL stress limited
grain filling.

2.3.3. Grain Filling Characteristics at Different Stages

The grain filling process was divided into the early (0–t1), middle (t1–t2), and late
(t2–t3) periods (Table 4). Panicle part and light treatment significantly affected the inflection
points, as well as the number of days of grain filling in 2020. Further, the light treatment
also significantly affected the mean grain filling rate and contribution rates of the different
periods of the grain filling process in 2020. Additionally, light treatment significantly
affected the inflection points, number of days, mean grain filling rate, and contribution
rate of the different periods in 2021. Compared with the grains at the top panicle part,
the inflection point values, days of the early, middle, and late periods, and contribution
rate (except the contribution rate of the middle grain filling period) corresponding to
the grains at the bottom panicle part were significantly greater, while the mean grain
filling rate and contribution rate of the late grain filling period values were significantly
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lower. Furthermore, LL significantly increased the value of the inflection points, leading
to a 10.70–21.52%, 13.06–13.50%, and 15.70–19.78% increase in t1, t2, and t3, respectively,
compared with the values corresponding to the full light-treated plants in 2020, and, in
2021, the values increased by 12.55%, 12.29%, and 14.43%, respectively. However, under
LL, the mean grain filling rate at early grain filling period, mean grain filling rate at middle
grain filling period, and mean grain filling rate at late grain filling period corresponding to
both panicle parts decreased in 2020 by 31.23% to 44.54%, 11.61% to 14.19%, and 14.45%
to 16.21%, respectively. This contributed to an increase in the number of days of the
early, middle, and late periods for grains from both the panicle parts in 2020 by 10.70% to
21.52%, 2.21% to 16.40%, and 21.36% to 35.88%, respectively, as well as an increase in the
contribution rate of the middle and late periods by 5.25% to 6.06% and 19.91% to 22.15%,
respectively. The grains at the bottom panicle part showed similar changes in 2021, with
mean grain filling rate at early grain filling period, mean grain filling rate at middle grain
filling period, and mean grain filling rate at late grain filling period decreasing by 30.47%,
20.83%, and 21.70%, respectively, and ultimately resulting in an increase in the contribution
rate of the middle grain filling period and contribution rate of the late grain filling period
by 2.20% and 8.29%, respectively.

2.4. Relationships between Chalkiness and Grain Filling Characteristics

Correlation analysis showed that the CGR and CD were significantly negatively
associated with the mean grain filling rates, maximum grain filling rates, grain weight
at maximum grain filling rate, and mean grain filling rate and significantly positively
associated with the time for reaching the maximum filling rate, effective grain filling period,
early grain filling period, late grain filling period, and the inflection point values (Figure 5).
Further, the CGR and CD were negatively correlated with I and the contribution rate of
the early grain filling period, but the correlation with CGR was not statistically significant.
The CD significantly increased with the contribution rate of the middle grain filling period
and contribution rate of the late grain filling period, while the CGR significantly improved
with t1–t2. These observations suggest that, the lower the grain filling rate, the higher
the possibility of chalkiness. Further, faster and more efficient grain filling led to a lower
likelihood of chalkiness.
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Table 3. Grain filling characteristics at different panicle parts.

Year Panicle Part Light Treatment RP0
GFRmean

(mg·Grain−1·d−1)
GFRmax

(mg·Grain−1·d−1)
I

(%)
GWmax

(mg)
tmax

(Day)
GFPactive

(Day) GFPeffective (Day)

2020 Top CK 0.240 ± 0.020 a 1.14 ± 0.003 a 1.75 ± 0.017 a 56.93 ± 0.021 a 11.18 ± 0.307 a 13.05 ± 0.285 b 17.21 ± 0.175 b 24.64 ± 0.419 b

LL 0.283 ± 0.042 a 1.00 ± 0.030 b 1.51 ± 0.041 b 52.22 ± 0.023 a 9.75 ± 0.339 b 14.63 ± 0.283 a 18.65 ± 0.642 a 28.43 ± 0.576 a

Bottom CK 0.160 ± 0.000 b 0.751 ± 0.012 a 1.16 ± 0.022 a 58.36 ± 0.007 a 10.77 ± 0.141 a 18.28 ± 0.095 b 24.56 ± 0.358 a 34.27 ± 0.453 b

LL 0.210 ± 0.010 a 0.677 ± 0.017 b 1.03 ± 0.030 b 53.30 ± 0.014 b 8.33 ± 0.105 b 21.29 ± 0.111 a 23.12 ± 0.860 a 38.12 ± 0.941 a

F-value Panicle part (P) 31.58 ** 1122.78 ** 1060.94 ** 1.62 ns 42.14 ** 2322.37 ** 320.09 ** 700.80 **
Light treatment (L) 11.70 ** 100.28 ** 126.49 ** 24.63 ** 186.85 ** 346.53 ** 0.000 ns 109.67 **

P × L 0.060 ns 9.19 * 9.97 * 0.031 ns 12.54 ** 33.10 ** 18.97 ** 0.008 ns
2021 Bottom CK 0.193 ± 0.006 a 0.812 ± 0.005 a 1.24 ± 0.010 a 0.550 ± 0.007 a 10.48 ± 0.099 a 21.23 ± 0.199 b 23.48 ± 0.202 b 37.77 ± 0.170 b

LL 0.197 ± 0.006 a 0.649 ± 0.013 b 0.982 ± 0.023 b 0.529 ± 0.011 b 8.73 ± 0.180 b 23.86 ± 0.130 a 25.45 ± 0.512 a 42.53 ± 0.619 a

F-value Light treatment (L) 1.20 ns 402.96 ** 301.21 ** 8.44 * 218.49 ** 367.17 ** 38.50 ** 165.09 **

Lowercase letters represent significant difference between CK and LL at the same panicle part (p < 0.05). RP0, relative initial growth potential; GFRmean, mean grain filling rate;
GFRmax, maximum grain filling rate; I, grain weight at maximum grain filling rate/maximum grain weight; GWmax, grain weight at maximum grain filling rate; tmax, time for reaching
the maximum filling rate; GFPactive, active grain filling period; GFPeffective, effective grain filling period; CK, full sunlight (control); LL, low light stress; *, p < 0.05; **, p < 0.01; ns,
no significance.

Table 4. Grain filling characteristics at different stages and panicle parts.

Year Panicle
Part

Light
Treatment t1 t2 t3 0–t1 t1–t2 t2–t3 MGR1 MGR2 MGR3 CR1 CR2 CR3

2020 Top CK 9.63 ± 0.434 b 16.46 ± 0.147 b 23.25 ± 0.653 b 9.63 ± 0.434 b 6.83 ± 0.308 b 6.80 ± 0.769 b 0.606 ± 0.022 a 1.55 ± 0.017 a 0.450 ± 0.011 a 29.72% ± 0.026 a 53.76% ± 0.014 a 15.52% ± 0.013 a

LL 10.66 ± 0.337 a 18.61 ± 0.307 a 27.85 ± 0.910 a 10.66 ± 0.337 a 7.95 ± 0.309 a 9.24 ± 0.940 a 0.416 ± 0.031 b 1.33 ± 0.035 b 0.377 ± 0.009 b 23.81% ± 0.027 a 56.58% ± 0.012 a 18.61% ± 0.016 a

Bottom CK 13.52 ± 0.198 b 23.04 ± 0.104 b 32.03 ± 0.516 b 13.52 ± 0.198 b 9.51 ± 0.252 a 8.99 ± 0.440 a 0.430 ± 0.007 a 1.02 ± 0.020 a 0.300 ± 0.007 a 31.56% ± 0.009 a 52.82% ± 0.005 b 14.63% ± 0.004 b

LL 16.43 ± 0.387 a 26.15 ± 0.167 a 37.06 ± 1.290 a 16.43 ± 0.387 a 9.72 ± 0.554 a 10.91 ± 1.124 a 0.239 ± 0.008 b 0.902 ± 0.027 b 0.257 ± 0.009 b 25.12% ± 0.017 b 56.02% ± 0.008 a 17.87% ± 0.010 a

F-value Panicle part (p) 570.41 ** 3878.32 ** 304.50 ** 570.41 ** 106.20 ** 643.94 ** 241.13 ** 1019.97 ** 1.58 ns 1.64 ns 1.66 ns 15.25 **
Light treatment (L) 94.29 ** 537.84 ** 87.09 ** 94.29 ** 9.45 * 120.41 ** 281.02 ** 130.20 ** 23.62 ** 25.30 ** 26.74 ** 19.43 **

P × L 21.44 ** 18.15 ** 0.183 ns 21.44 ** 4.41 ns 7.77 * 0.0120 ns 9.99 * 0.013 0.047 ns 0.110 ns 0.283 ns
2021 Bottom CK 16.41 ± 0.289 b 26.04 ± 0.109 b 36.25 ± 0.299 b 16.41 ± 0.289 b 9.63 ± 0.180 b 10.21 ± 0.408 b 0.316 ± 0.003 a 1.09 ± 0.010 a 0.313 ± 0.004 a 27.18 ± 0.008 a 55.06 ± 0.004 b 16.76 ± 0.004 b

LL 18.47 ± 0.303 a 29.24 ± 0.109 a 41.48 ± 0.920 a 18.47 ± 0.303 a 10.77 ± 0.374 a 12.23 ± 0.841 a 0.220 ± 0.008 b 0.863 ± 0.021 b 0.245 ± 0.007 b 24.58 ± 0.013 b 56.27 ± 0.006 a 18.15 ± 0.007 a

F-value Light treatment (L) 72.73 ** 1286.97 ** 87.44 ** 72.73 ** 22.49 ** 14.09 * 356.83 ** 280.21 ** 196.03 ** 8.49 * 8.59 * 8.39 *

Lowercase letters represent significant difference between CK and LL at the same panicle part (p < 0.05). 0–t1, early period; t1–t2, middle period; t2–t3, late period; MGR1, mean grain
filling rate at early period; MGR2, mean grain filling rate at middle period; MGR3, mean grain filling rate at late period; CR1, contribution rate of the early period; CR2, contribution rate
of the middle period; CR3, contribution rate of the late period; CK, full sunlight (control); LL, low light stress; *, p < 0.05; **, p < 0.01; ns, no significance.
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Figure 5. Relationships between chalkiness and rice grain filling characteristic (n = 12). RP0, relative
initial growth potential; GFRmean, mean grain filling rate; GFRmax, maximum grain filling rate; I, grain
weight at maximum grain filling rate/maximum grain weight; GWmax, grain weight at maximum
grain filling rate; tmax, time to reach the maximum filling rate; GFPactive, active grain filling period;
GFPeffective, effective grain filling period; 0–t1, early period; t1–t2, middle period; t2–t3, late period;
MGR1, mean grain filling rate during the early period; MGR2, mean grain filling rate during the
middle period; MGR3, mean grain filling rate during the late period; CR1, contribution rate of the
early period; CR2, contribution rate of the middle period; CR3, contribution rate of the late period;
* p < 0.05; ** p < 0.01.

3. Discussion

LL, caused by solar dimming and industrial development, significantly decreases
rice grain yield and quality [27–29], and, in particular, increased chalkiness negatively
affects the market value of rice [31,32]. However, the variation in rice chalkiness under
LL has not been thoroughly investigated. In this study, we estimated the impact of LL on
the starch synthesis and grain filling characteristics of rice, which are strongly associated
with the chalkiness of rice under LL (Figure 5). Our results can facilitate the breeding
of shade-tolerant rice varieties, as well as the optimization of cultivation techniques to
improve rice quality under LL.

Chalkiness, which describes the opacity of rice grains, is determined by the genetic
background of the rice grains, as well as the sensitivity of the rice grains to environmental
changes [33]. For example, high temperatures accelerate the grain filling process of rice,
and this results in insufficient grain filling and an increase in the occurrence of chalky
rice grains [21,34]. Furthermore, drought stress significantly decreases the photosynthetic
rate and water potential of rice, which contributes to a significant increase in both CGR
and CD [22]. As the primary energy source for green plants, light directly affects the
photosynthetic rate of leaves and influences plant growth and development, thereby
affecting crop yield and quality [23,24,28]. LL decreases plant leaf CO2 transport capacity
by reducing the stomatal density and electron transfer rate of plants [35,36], resulting
in a decrease in the photosynthetic rate owing to the attenuation of Calvin-cycle-related
enzyme activity, as well as the capacity for CO2 fixation [37–39]. Thus, an insufficient
supply of filling substances is observed owing to LL interfering with the accumulation and
redistribution of photosynthate [27,40].



Int. J. Mol. Sci. 2022, 23, 9153 11 of 18

LL caused the grain filling to be blocked, leading to a decrease in sucrose, starch,
and amylose contents in the grains. As a result, the brown rice rate, milled rice rate, and
peak starch viscosity, cold glue viscosity, breakdown value, and glue consistency were
significantly reduced under LL, while the protein content increased, eventually leading
to poor rice quality [27,41]. This also contributed to an increase in the white-core and
white-belly chalkiness rates of rice grains at both the top and bottom panicle part under
LL, as well as the mixed-white, white-back, and full-white chalkiness rates at the bottom
panicle part (Figure 1). Thereby, LL results in a significant increase in CGR and CD [5,8].

Rice endosperm is formed by flat cell groups arranged along the dorsal diameter
of rice grains, which are rapidly filled with starch and storage proteins during grain
filling [42]. Our results suggested that the grain filling characteristics of rice were closely
associated with both the CGR and CD of rice (Figure 5), consistent with the results of
Wei et al. [8,32]. In general, the rice grain filling process refers to starch biosynthesis and
the accumulation of amyloplasts in the form of starch granules [5,43,44]. During the grain
filling process, rice endosperm forms a well-developed flat cell population at 10 days after
flowering, with abundant and neatly arranged amyloplasts [45], and the quantity and
volume of the amyloplasts continue to increase throughout endosperm development [46].
The cells then crush each other to form an angular polyhedral structure with no interspaces,
resulting in a transparent rice endosperm. However, poor grain filling, due to insufficient
photosynthate supply, leads to an uneven enrichment and an irregular arrangement of the
flat cell groups [5,27].

LL interferes with the photosynthate supply for grain filling [39,47], leading to the
marked changes in the activities of five enzymes involved in regulating starch synthesis.
The activity of AGPase, involved in energy metabolism, decreased under LL [48]. LL also
decreased SuS activity at the early grain filling stage and caused a delay in reaching its
peak activity, thus contributing to the lower energy supply for starch synthesis [48,49]. In
addition, LL reduced the activities of GBSS and SBE after 12 DAF, resulting in a reduction in
starch accumulation under LL [50,51]. Therefore, the mean grain filling rates and maximum
grain filling rates were decreased and the time for reaching the maximum filling rate and
effective grain filling period were increased, which contributed to a reduction in the starch
granule uniformity of starch [5,8]. This results in a decrease in the number of amyloplasts
and an increase in the number of round and loosely arranged amyloplasts (Figure 6),
contributing to a considerable increase in the CGR and CD [11,16].

Figure 6. Pattern map depicting rice grain development.



Int. J. Mol. Sci. 2022, 23, 9153 12 of 18

Moreover, the occurrence of chalkiness differed with respect to the panicle part. It is
well known that the majority of grains with inferior quality were harvested from the bottom
panicle part [44]. Compared with the grains at the top panicle part, those at the bottom
panicle part showed significantly lower mean grain filling rates, maximum grain filling
rates, and grain weight at maximum grain filling rate but greater time for reaching the
maximum filling rate, active grain filling period, and effective grain filling period values.
Thus, the grains from the bottom panicle part were characterized by a lower grain filling
rate, poorer grain fullness, and lower grain weight [29,52]. Previous studies have indicated
that LL has a greater effect on the formation of rice chalkiness at the bottom panicle part
than at the top and middle panicle part [5,44]. Compared with the grains at the top panicle
part, LL caused a greater decrease in the mean grain filling rates, maximum grain filling
rates, and grain weight at maximum grain filling rate, and a greater increase in time for
reaching the maximum filling rate, effective grain filling period, and CR of the grains at
the bottom panicle part. This contributed to a further increase in both the CGR and CD of
rice by increasing the rate and type of chalkiness for the grains at the bottom panicle part
under LL.

4. Materials and Methods
4.1. Plant Material and Experimental Design

An LL field experiment was conducted in the Huihe farm of Sichuan Agricultural
University (30◦43′ N, 103◦52′ E), Wenjiang, Sichuan, China from 2018 to 2021. The meteoro-
logical conditions (from sowing to harvest) of the experimental site were recorded from
sowing to harvest (Figure 7). Further, the soil properties of the study area were determined
as shown in Table 5. Huanghuazhan, a widely used and planting area conventional indica
rice cultivar, was selected as the study material. To obtain a 53% LL condition, a layer of
white cotton yarn screens was hung at approximately 0.5 m above the rice plants from
flowering to maturity following the method described by Deng et al. [5,8]. The control
plants were not shaded. The area of each subplot was 3× 10 m. To conduct the experiments,
30-day-old seedlings were manually transferred on 23 May 2018, 23 May 2019, 21 May
2020, and 21 May 2021 at 33.3 × 20 cm spacing. Nitrogen (urea), basal (75.6 kg ha−1), and
tillering (32.4 kg ha−1) fertilizers were applied. The initial fertilizer application rate at
panicle initiation was 43.2 kg ha−1, and, at the booting stage, it was 28.8 kg ha−1. Further,
at the basal stage, 90 kg ha−1 of P2O5 (superphosphate) and 90 kg ha−1 of K2O (potassium
chloride) were applied, and 90 kg ha−1 of K2O was applied as a spikelet-promoting fertil-
izer. Chemical pesticides, such as tricyclazole, validamycin, avermectin, and penoxsulam,
were used to prevent yield loss caused by diseases, insects, and weeds.

Figure 7. Meteorological data corresponding to the rice growth seasons.
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Table 5. Soil properties of experimental sites between 2018 and 2021.

Year Organic Matter
(g kg−1)

Total N
(g kg−1)

Total P
(g kg−1)

Total K
(g kg−1)

Alkaline Hydrolysable N
(mg kg−1)

Olsen P
(mg kg−1)

Exchangeable K
(mg kg−1)

2018 28.50 1.50 0.94 17.50 137.20 50.82 143.10
2019 29.92 1.47 1.04 16.43 72.65 43.83 164.10
2020 27.90 1.63 0.99 18.10 89.76 54.68 158.40
2021 27.34 1.98 0.95 17.86 21.07 53.91 126.81

4.2. Labeling and Sampling

During flowering, 300 panicles with the same growth trend were labeled on the same
day in each plot from 2018 to 2021. As previously described by Deng et al. [5], approximately
50 labeled panicles were sampled at maturity and the grains at the top and bottom panicle
parts were separated to measure their chalkiness. Meanwhile, approximately 300 opening
spikelets at the top and bottom parts of marked panicles were labeled for each plot using
black and red paint pens in 2020, respectively. In 2021, approximately 600 opening spikelets
at the bottom part of marked panicles were labeled for each plot.

4.3. Determination of Enzyme Activity Related to Starch Synthesis

The marked grains of approximately 30 labeled panicles were sampled on days 3, 6, 9,
12, 18, 24, and 30 after LL treatment in 2021. Each sample (0.1 g) was ground into a powder
using liquid nitrogen. Thereafter, phosphate buffer saline (0.01 mol L−1; pH: 7.2–7.4) was
added and mixed well, followed by centrifugation. The supernatant was collected, and
enzyme-linked immunosorbent assay (ELISA) was performed using an ELISA kit (Meimian
Technology Ins., Yancheng, China), as per the manufacturer’s instructions, to determine
the activities of AGPase, SuS, SSS, GBSS, and SBE.

4.4. Measurement of Grain Filling Characteristics

In 2020, 10 labeled panicles were sampled on days 5, 10, 15, 20, 25, 30, 35, and 40,
whereas, in 2021, they were sampled on days 6, 12, 18, 24, 30, 36, and 40. In each case,
approximately 30 marked grains were randomly selected for the determination of the
grain filling characteristics of the rice grains. Six grains were removed from the glumes
at each sampling time and observed using a stereomicroscope (M165C, Leica, Wetzlar,
Germany) in 2020. Furthermore, 20 grains from each panicle part in 2020 and from bottom
part in 2021 were removed from the glumes and dried until a steady weight was obtained.
Thereafter, Richards equation (Equation (1)) was used to measure the increase in the weight
of grains at the top and bottom panicle parts, and relevant parameters were also calculated
as previously described by Richards [53] and Wei et al. [44].

WG = A
(

1 + Be−Ct
)− 1

D (1)

where WG represents the dry weight of the grain (mg), A represents the maximum dry
weight of the grain (mg), t represents the time after labeling (days), and B, C, and D
represent equation parameters. The growth rate was derived from Equation (1) as follows:

Growth rate =
ACBe−Ct

N(1 + Be−Ct)
(D+1)

D

(2)

The respective equations (Equations (3)–(10)) were used to describe the filling charac-
teristics of the rice grains as follows:

Relative initial growth potential =
C
D

(3)

Time to reach the maximum filling rate (d) =
lnB− lnD

C
(4)
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Mean grain filling rate (mg grain−1 d−1) =
AC

2(D + 2)
(5)

Maximum grain filling rate (mg grain−1 d−1) =
AC

(1 + D)
D+1

D
(6)

Grain weight at maximum grain filling rate (mg) = A(1 + D)−
1
D (7)

Grain weight at maximum grain filling rate/maximum grain weight (%) =
GWmax

A
(8)

Active grain filling period (d) =
2(D + 2)

C
(9)

Effective grain filling period (d) =
lnB + 4.595

C
(10)

The filling process could be divided into the early, middle, and late periods of grain
filling [44]. Further, the growth rate equation (Equation (2)) had two inflection points that
equated the second derivative related t to zero to yield the values of the two inflection
points, t1 and t2 (Equations (11) and (12)). The grain filling process was also assumed to be
completed when the grain weight reached 99% A, and this time point was designated t3,
Equation (13).

t1 =
−ln D2+3D+D

√
D2+6D+5

2B
C

(11)

t2 =
−ln D2+3D−D

√
D2+6D+5

2B
C

(12)

t3 =
−ln( (

100
99 )

D−1
B )

C
(13)

The grain filling stage was determined by three grain filling periods, calculated as:

Early grain filling period (d) = t1 − 0 (14)

Middle grain filling period (d) = t2 − t1 (15)

Late grain filling period (d) = t3 − t2 (16)

Substituting t1, t2, and t3 into Equation (1), the corresponding grain weights W1,
W2, and W3 were obtained, respectively. Additionally, the mean of the grain filling and
contribution rates of the three stages were calculated as follows, respectively:

Mean grain filling rate at early grain filling period (mg grain−1 d−1) =
W1

t1
(17)

Mean grain filling rate at middle grain filling period (mg grain−1 d−1) =
W2 −W1

t2 − t1
(18)

Mean grain filling rate at late grain filling period (mg grain−1 d−1) =
W3 −W2

t3 − t2
(19)

Contribution rate of the early grain filling period (%) =
W1

A1
(20)

Contribution rate of the middle grain filling period (%) =
W2 −W1

A2 −A1
(21)

Contribution rate of the late grain filling period (%) =
W3 −W2

A3 −A2
(22)
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4.5. Microstructure Analysis

In 2020, mature rice seeds of different types of chalkiness were transversely cut using
a knife and observed using a scanning electron microscope (Quanta 450; Thermo Fisher
Scientific, Hillsboro, OR, USA) at an accelerating voltage in the range of 10–20 kV.

4.6. Appearance Quality

The CGR and CD of rice grains were measured using a rice appearance quality detector
(JMWT 12, Beijing Dongfu Jiuheng Instrument Technology Co., Ltd., Beijing, China). In
2018 and 2019, chalkiness types were categorized as white-belly, white-core, white-back,
and full-white chalkiness according to the location of the chalkiness, and grains with more
than two types of chalkiness were described as having mixed-white chalkiness.

4.7. Statistical Analysis

The data were analyzed using the SPSS software v19.0 (IBM, Inc., Chicago, IL, USA).
Significant differences between treatments were determined by performing Tukey’s tests,
and statistical significance was set at p < 0.05. Further, figures were drawn using the
GraphPad Prism software v8.0.1 (GraphPad Software, Inc., San Diego, CA, USA). The data
shown in all tables and figures represent the mean of three replicates.

5. Conclusions

In this study, we observed that the CGR and CD were significantly negatively as-
sociated with the mean grain filling rates, maximum grain filling rates, grain weight at
maximum grain filling rate, and mean grain filling rate of the rice grains but positively
correlated with the time for reaching the maximum filling rate, effective grain filling period,
and inflection point values. Furthermore, LL markedly decreased the activity of AGPP and
those of SuS and SSS at the early grain filling stage and GBSS and SBE after 12 DAF, which
led to insufficient starch synthesis in rice grains under LL. Therefore, LL significantly de-
creased the mean grain filling rates and maximum grain filling rates and increased the time
for reaching the maximum filling rate and effective grain filling period, leading to slower
grain filling and poorer grain fullness. Thus, both CGR and CD were significantly increased
by LL owing to the increases in white-core, white-belly, white-back, mixed-white, and
full-white chalkiness rates with more loosely arranged amyloplasts in grains. Furthermore,
LL led to a greater increase in time for reaching the maximum filling rate, t1, t2, contribution
rate of the middle grain filling period, and contribution rate of the late grain filling period,
as well as a greater decrease in I, grain weight at maximum grain filling rate, mean grain
filling rate during the early period, and contribution rate of the early grain filling period
at the bottom panicle part than at the top of the spikelet. Therefore, a more substantial
increase in CGR and CD was observed for the grains at the bottom panicle part under LL.
Future research using LL stress should focus on reducing chalkiness by coordinating starch
synthesis and enhancing the progress of grain filling of rice, particularly for grains at the
bottom panicle part.
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