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Abstract

The mathematical modeling of the coronavirus disease-19 (COVID-19) pan-
demic has been attempted by a large number of researchers from the very
beginning of cases worldwide. The purpose of this research work is to find
and classify the modelling of COVID-19 data by determining the optimal
statistical modelling to evaluate the regular count of new COVID-19 fatali-
ties, thus requiring discrete distributions. Some discrete models are checked
and reviewed, such as Binomial, Poisson, Hypergeometric, discrete nega-
tive binomial, beta-binomial, Skellam, beta negative binomial, Burr, discrete
Lindley, discrete alpha power inverse Lomax, discrete generalized exponen-
tial, discrete Marshall-Olkin Generalized exponential, discrete Gompertz-
G-exponential, discrete Weibull, discrete inverse Weibull, exponentiated
discrete Weibull, discrete Rayleigh, and new discrete Lindley. The proba-
bility mass function and the hazard rate function are addressed. Discrete
models are discussed based on the maximum likelihood estimates for the pa-
rameters. A numerical analysis uses the regular count of new casualties in
the countries of Angola,Ethiopia, French Guiana, El Salvador, Estonia, and
Greece. The empirical findings are interpreted in-depth.
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1 Introduction

Corona-Virus “COVID-19” was first reported in early December 2019 in
Wuhan, China, and within three months spread like a pandemic around the
whole globe. The World Health Organization (WHO) described COVID-19
as a pandemic on March 11, 2020. Refer to Figs. 1 and 2. Despite the
drastic, large-scale containment measures implemented in most countries,
these numbers rapidly increased every day—posing an unprecedented threat
to the global health and economy of interconnected human societies. Coun-
tries around the world have therefore increased their efforts to decrease the
COVID-19 spread rate.

To model daily cases and deaths in the world, there are some mathe-
matical/statistical models in the literature which are used to describe the
dynamics of the evolution of COVID-19. The comparison of the COVID-19
epidemic dynamics among different countries is of great concern. In this
regard, the researchers are making their best efforts to provide medical solu-
tions for drugs and vaccines in reducing the risk of virus spread. The study
of this aspect of science requires discrete distributions. For any researcher,
the first question comes to mind- Why do we need discrete distributions?
We are aware that most of the current continuous distributions do not fit
adequately for modeling the cases of COVID-19 in count data analysis.

In the current situation, it is of great interest to study more about
COVID-19 and compare different countries as many as possible. Therefore,
in this article, an effort has been made to compare the COVID-19 pandemic
outbreak in several countries around the world.

Recently, many authors introduced different discrete distributions such as
natural discrete Lindley distribution has been implemented by Al-Babtain et al.
(2020a, b) to model everyday cases and deaths in the world. Almetwally
et al. (2020) introduced a discrete Marshall-Olkin generalized exponential
distribution to discuss the recent Egyptian cases regularly. Elbatal et al.
(2022) obtained discrete odd Perks-G class of distributions. Almetwally et al.
(2022) introduced discrete Marshall-Olkin inverse Toppe-Leone distribution
with application to COVID-19 data. Nagy et al. (2021) discussed discrete
extended odd Weibull exponential with different applications. Gillariose et al.
(2021) proposed discrete generalization of the exponential model. A new
discrete distribution, called discrete generalized Lindley, was analyzed by
El-Morshedy et al. (2020) to examine the counts of daily coronavirus cases
in Hong Kong and new daily fatalities in Iran. Maleki et al. (2020) have
used an autoregressive time series model based on normal distribution of
the two-piece scale mixture to estimate the recovered and reported cases of
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COVID-19. The study carried out by Hasab et al. (2020) where they used
the susceptible infected recovered (SIR) epidemic dynamics of the COVID-19
pandemic for modelling the novel Coronavirus epidemic in Egypt. Nesteruk
(2020) and Batista (2020b) have predicted regular new COVID-19 cases in
China by using the mathematical model, named SIR. The logistic growth
regression model used by Batista (2020a) for estimating the final size of the
coronavirus outbreak and its peak time.

This research work aims to model the daily new fatalities of COVID-19
using a review of statistical models to determine the best model fitting of
COVID-19 data for different countries as Angola, Ethiopia, French Guiana,
El Salvador, Estonia, and Greece and aware of the risks resulting from the
spread of Corona-Virus in the world. To accomplish this goal: First, we
study separate models such as Poisson, geometric, negative binomial, dis-
crete Burr, discrete Lindley, discrete alpha power inverse Lomax, discrete
generalized exponential, discrete Marshall-Olkin Generalized exponential,
discrete Gompertz-G-exponential, discrete Weibull, discrete inverse Weibull,
exponentiated discrete Weibull, discrete Rayleigh, and new discrete Lindley.
Second, in some countries such as Angola, Ethiopia, French Guiana, El Sal-
vador, Estonia, and Greece, we define the best discrete models that match
different regular Coronavirus death datasets.

The remainder of the paper is structured as follows. Discrete models
are analyzed in Section 2. In Section 3, review for discrete models has been
done based on survival discretization method. We discuss the parameter
estimation of the discrete models in Section 4. Section 5 presents the new
regular death of COVID-19 in the case of Angola, El Salvador, Estonia, and
Greece to validate the use of models in suitable lifetime count results. Lastly,
in Section 6, conclusions are made.

2 Review for Classical Discrete Models

In this Section, survival discretization method and some discrete dis-
tributions have been reviewed, such as Binomial, Poisson, Hypergeometric,
discrete Burr, discrete Lindley, discrete alpha power inverse Lomax,discrete
generalized exponential, discrete Marshall-Olkin Generalized exponential,
discrete Gompertz-G-exponential, discrete Weibull, discrete inverse Weibull,
exponentiated discrete Weibull, discrete Rayleigh, new discrete Lindley, neg-
ative binomial, beta-binomial, Skellam, beta negative binomial and Conway–
Maxwell–Poisson distribution. We don’t use Logarithmic, Borel, discrete
compound Poisson, Boltzmann, Benford’s law, Yule–Simon, Zipf’s law, and
Zeta distribution because the range of x doesn’t support 0.
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2.1. Binomial Distribution The binomial distribution (bionm) can be
defined, using the binomial expansion

(p+ q)n =
n∑

x=0

n!

x! (n− x)!
pxqn−x, (2.1)

as the distribution of a random variable X for which

Pr [X = x; p] =

(
n
x

)
pxqn−x;x = 0, 1, 2, . . . , n, (2.2)

where p + q = 1, 0 < p < 1, and n is a positive integer. If n = 1, the
distribution is called the distribution of Bernoulli.

2.2. Poisson Distribution If a random variable X has a Poisson (Pois)
distribution with parameter θ,then its PMF is given by

Pr [X = x; θ] =
e−θθx

x!
;x = 0, 1, 2, . . . , (2.3)

where θ > 0. For more information, see Johnson et al. (2005) chapter 4.
2.3. Hypergeometric Distribution In a sample of n balls drawn without

substitution from a population of (N) balls, (Nθ) of which are white and
(N −Nθ) are black. The PMF of hypergeometric distribution is given by

Pr [X = x; θ] =

(
n
x

)(
N − n
Nθ − x

)

(
N
Nθ

) ;x = 0, 1, 2, . . . , N. (2.4)

For more information, see Johnson et al. (2005) chapter 6.
2.4. Waring Distribution The distribution of Waring is a generalization

of the distribution of Yule, see Johnson et al. (2005). Taking Pr[X = x] ,
Waring expansion proportional to the (x + 1) term in the sequence.

Pr [X = x;α, θ] =
(θ − α) (α+ x− 1)!θ!

θ (α− 1)! (θ + x)!
;x = 0, 1, 2, . . . , (2.5)

where α, θ > 0. If α = 1 then, Yule distribution is the special case of Waring
distribution.
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2.5. Yule–Simon Distribution The Yule–Simon distribution is a dis-
crete probability distribution named after Udny Yule and Herbert A. Simon
in probability and statistics. Originally, Simon named it the distribution of
Yule by Simon (1955). The Yule-Simon (θ) PMF is

Pr [X = x; θ] = θ
x!

(x− θ − 1)! (θ + 1)!
;x = 1, 2, . . . , (2.6)

where θ > 0. The CDF of Yule-Simon distribution is

F [x; θ] = 1− x
x!

(x− θ − 1)! (θ + 1)!
. (2.7)

The hr function of the Yule-Simon distribution is given by

hr (x; θ) =
θ

x
. (2.8)

2.6. Discrete Rectangular Distribution In its most general form, the
discrete rectangular distribution (sometimes called the discrete uniform dis-
tribution) is defined by

Pr [X = x] =
1

n+ 1
;x = 0, 1, 2, . . . , n. (2.9)

2.7. Distribution of Leads The distribution of leads in coin tossing (John-
son et al., 2005) has the PMF

Pr [X = x] =
(2x)! (2n− 2x)! (2)−2n!

x!x! (n− x)! (n− x)!
;x = 0, 1, 2, . . . , n. (2.10)

2.8. Beta-binomial Distribution The beta-binomial (Bbinom) distribu-
tion in probability theory and statistics is a family of discrete probability
distributions on finite support of non-negative integers occurring when the
probability of success is either unknown or random in each of a fixed or
known number of Bernoulli trials, is discussed by Griffiths (1973). The
PMF of Bbinom is given by

P (x;α, β) =

(
n
x

)
B (x+ α, n− x+ β)

B (α, β)
, (2.11)

the CDF of Bbinom is given by

P (x;α, β) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x < 0
n
x

B(x+α, n−x+β)
B(α, β) FGH (a, b, x) , 0 ≤ x ≤ n

1, x ≥ n

, (2.12)

where FGH (a, b, x) is the generalized hypergeometric function.
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2.9. Negative Binomial Distribution The negative binomial(Nbionm)
distribution in probability theory and statistics is a discrete probability dis-
tribution that models the number of successes before a given non-random
number of failures (denoted by r) occur in a series of independent and iden-
tically distributed Bernoulli trials. The PMF of Nbinom is given by

P (x; r, p) =

(
x+ r − 1

x

)
(1− p)rpx, x = 0, 1, 2, . . . , (2.13)

where r is a number of failures until the experiment is stopped (integer,
but the definition can also be extended to real numbers) and p is success
probability in each experiment. For more information, see Johnson et al.
(2005) chapter 5.

2.10. Geometric Distribution The geometric distribution in probability
theory and statistics is the probability distribution of the number X − 1 of
failures before the first success, supported by the set{0, 1, 2, ... }. The PMF
is given as

P (x; p) = (1− p)xp, x = 0, 1, 2, . . . , (2.14)

where 0 < p < 1.
2.11. Beta Negative Binomial Distribution A beta negative binomial

(BNbinom) distribution in probability theory is the probability distribution
of a discrete random variable X equal to the number of failures needed to
achieve achievements in a series of independent Bernoulli trials in which
the probability p of success in each trial, though constant in any given ex-
periment, is itself a random variable following a beta distribution. Wang
(2011) discussed this distribution as a compound probability distribution.
The PMF of BNbinom is given by

P (x; r, α, β) =
Γ (r + x)

x!Γ (r)

B (r + α, x+ β)

B (α, β)
, (2.15)

where x = 0, 1, 2, . . . and r, α, β > 0.
2.12. Logarithmic Distribution A random variable X is said to have a

logarithmic distribution with parameter θ if its PMF is in the form

P (X = x; θ) =

{
aθx

x x = 1, 2, . . .
(x−1)θ

x P (X = x− 1) x = 2, 3, . . .
. (2.16)

For more information of logarithmic distribution, see Johnson et al.
(2005) chapter 7.
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2.13. Skellam Distribution Let μ1, μ2 > 0, Skellam (1946) introduced
the Skellam distribution (distribution of the difference between two inde-
pendent Poisson random variables) and is denoted by Skellam (μ1, μ2) with
PMF is given by

P (x;μ1, μ2) = e−(μ1+μ2)

(
μ1

μ2

)x
2

Ik (2
√
μ1μ2) , (2.17)

where x = . . . ,−2,−1, 0, 1, 2, . . . Ik
(
2
√
μ1μ2

)
is the modified Bessel

function of the first kind.
2.14. Conway–Maxwell–Poisson Distribution Shmueli et al. (2005) dis-

cussed the Conway–Maxwell–Poisson (CMP) distribution with PMF as

P (x;λ, θ) =
λx

(x!)θ
1

Z (λ, θ)
, (2.18)

where Z (λ, θ) =
∑∞

j=0
λj

(j!)θ
is normalization constant.

3 Review for Discrete Models Based on Survival Discretization
Method

In the statistics literature, sundry methods are available to obtain a
discrete distribution from a continuous one. The most commonly used
technique to generate discrete distribution is called a survival discretiza-
tion method, it requires the existence of cumulative distribution function
(CDF), survival function should be continuous and non-negative and times
are divided into unit intervals. The PMF of discrete distribution is defined
in Roy (2003) as

P (X = x) = P (x ≤ X ≤ x+ 1) = S (x)− S (x+ 1) (3.1)

where x = 0, 1, 2, . . .,S (x) = P (X ≥ x) = F (x; Θ), F (x; Θ) is a CDF
of continuous distribution, and Θ is a vector of parameters. The random
variable X is said to have the discrete distribution if its CDF is given by

P (X < x) = F (x+ 1;Θ) . (3.2)

The hazard rate is given by hr (x) = P (X=x)
S(x) . The reversed failure rate

of discrete distribution is given as

rfr (x) =
P (X = x)

1− S(x)
. (3.3)
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3.1. Discrete Burr Distribution The PMF of the discrete Burr (DB)
distribution has been defined by Krishna and Pundir (2009) is given by

P (x; θ, a) = θln(1+xα) − θln(1+(x+1)α), (3.4)

where x = 0, 1, 2, . . . , α > 0, 0 < θ < 1, the CDF of the DBu distribution is

F (x; θ, α) = θln(1+(x+1)α), (3.5)

The hazard rate (hr) of the discrete Burr distribution is

hr (x; θ, α) = 1− θ
ln
(

1+(x+1)α

1+xα

)
. (3.6)

3.2. Discrete Lindley Distribution The PMF of the discrete Lindley
(DLi) distribution has been defined by Gómez-Déniz and Caldeŕın-Ojeda
(2011) is given as follows

P (x; θ) =
θx

1− ln (θ)

[
θ ln (θ) + (1− θ)

(
1− ln

(
θx+1

))]
, (3.7)

where x = 0, 1, 2, . . . , 0 < θ < 1.
The CDF of the DLi distribution is

F (x; θ) =
1− θx+1 +

[
(2 + x) θx+1 − 1

]
ln (θ)

1− ln (θ)
, (3.8)

The hazard rate of the DLi distribution is

hr (x; θ, α) =
θx

[
θ ln (θ) + (θ − 1)

(
ln

(
θx+1

)
− 1

)]

1− θx+1 + [(2 + x) θx+1 − 1] ln (θ)
. (3.9)

3.3. Discrete Alpha Power Inverse Lomax The discrete alpha power in-
verse Lomax (DAPIL) distribution is introduced by Almetwally and Ibrahim
(2020). The PMF and the CDF of the DAPIL distribution are respectively
given by

P (x;α, ϑ, δ) =
αρ

ln(1+ ϑ
x+1) − αρ

ln(1+ϑ
x )

α− 1
;x = 0, 1, 2, (3.10)

F (x;α, ϑ, ρ) =
αρ

ln(1+ ϑ
x+1) − 1

α− 1
, x ∈ N0. (3.11)

The hr function of the DAPIL distribution is given by

hr (x;α, ϑ, ρ) =
αρ

ln(1+ ϑ
x+1) − αρ

ln(1+ϑ
x )

α− αρ
ln(1+ ϑ

x+1)
, x ∈ N0. (3.12)
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3.4. Discrete Generalized Exponential Distribution The PMF of the
discrete generalized exponential (DGE) distribution has been defined by
Nekoukhou et al. (2013) is given as follows

P (x; θ, α) =
(
1− θx+1

)α − (1− θx)α , (3.13)

where x = 0, 1, 2, . . . , α > 0, 0 < θ < 1, when θ = e−λ;λ > 0, the CDF of
the DGEx distribution is

F (x; θ) =
(
1− θx+1

)α
, (3.14)

The hazard rate of the DGEx distribution is

hr (x; θ, α) =

(
1− θx+1

)α − (1− θx)α

1− (1− θx+1)α
. (3.15)

3.5. The DMOGEx Distribution The discrete Marshall-Olkin General-
ized exponential (DMOGEx) distribution is introduced by Almetwally et al.
(2020). The PMF and the CDF of the DMOGEx distribution are respec-
tively given by

P (x, α, ρ, λ) =
λ [1− (1− ρx)α]

λ+ (1− λ) (1− ρx)α
−

λ
[
1−

(
1− ρx+1

)α]

λ+ (1− λ) (1− ρx+1)α
, (3.16)

and

F (x, α, ρ, λ) =

(
1− ρx+1

)α

λ+ (1− λ) (1− ρx+1)α
, x ∈ N0, (3.17)

where 0 < ρ < 1, λ, θ > 0.
The hr function of the DMOGEx distribution is given by

hr (x;α, ρ, λ) =
1− (1− ρx)α

1− (1− ρx+1)α
λ+ (1− λ)

(
1− ρx+1

)α

λ+ (1− λ) (1− ρx)α
−1, x ∈ N0. (3.18)

3.6. Discrete Gompertz-G Exponential The discrete Gompertz-G-
exponential (DGzEx) distribution was introduced by Eliwa et al. (2020).
The PMF and the CDF of the DGzEx distribution are respectively given by

P (x, α, ρ, λ) = ρ
−1
α

(
ρ

1
α
eλαx − ρ

1
α
eλα(x+1)

)
;x ∈ N0, (3.19)

and
F (x, α, ρ, λ) = 1− ρ

1
α
eλα(x+1)

; x ∈ N0. (3.20)

The hr function of the DGzEx distribution is given by

hr (x;α, ρ, λ) =
ρ

−1
α

(
ρ

1
α
eλαx − ρ

1
α
eλα(x+1)

)

ρ
1
α
eλα(x+1)

; x ∈ N0. (3.21)
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3.7. Discrete Weibull A discrete Weibull (DW) distribution was intro-
duced by ?Nakagawa-and-Osaki:1975 (), and is defined by the cumulative
distribution function (CDF)as:

F (x;α, ρ) = 1− ρ(x+1)α ; x ∈ N0, α > 0, 0 < ρ < 1. (3.22)

The DW distribution has PMF:

P (x;α, ρ) = ρx
α − ρ(x+1)α , (3.23)

and the hazard rate of DW is

h (x;α, ρ) = ρx
α−(x+1)α − 1. (3.24)

3.8. Discrete Inverse Weibull A discrete inverse Weibull (DIW) distri-
bution was introduced by Jazi et al. (2010), and is defined by the CDF:

F (x;α, ρ) = ρx
−α

; α > 0, 0 < ρ < 1. (3.25)

The DIW distribution has PMF:

P (x;α, ρ) = ρx
−α − ρ(x−1)−α

, x = 1, 2, . . . , (3.26)

and the hazard rate of DIW is

h (x;α, ρ) =
1− ρ(x−1)−α

1− ρx−α . (3.27)

3.9. Exponentiated Discrete Weibull The exponentiated discrete Weibull
(EDW) distribution was introduced by Nekoukhou and Bidram (2015), and
is defined by the CDF:

F (x;α, ρ, β) =
(
1− ρ(x+1)α

)β
; x ∈ N0, α, β > 0, 0 < ρ < 1. (3.28)

The DIW distribution has PMF:

P (x;α, ρ, β) =
(
1− ρ(x+1)α

)β
−
(
1− ρx

α)β
, (3.29)

and the hazard rate of DIW is

h (x;α, ρ, β) =

(
1− ρ(x+1)α

)β
−
(
1− ρx

α)β

1−
(
1− ρ(x+1)α

)β . (3.30)
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The discrete Rayleigh (DR) distribution was introduced by Roy (2004),
and can be defined when α = 2 and β = 1 as follows:

F (x;α, ρ, β) = 1− ρ(x+1)2 ; x ∈ N0, 0 < ρ < 1. (3.31)

The DR distribution has PMF:

P (x; ρ) = ρx
2 − ρ(x+1)2 , (3.32)

and the hazard rate of DR is

h (x; ρ) =
ρx

2 − ρ(x+1)2

ρ(x+1)2
. (3.33)

3.10. New Discrete Lindley The new discrete Lindley (NDL) distribu-
tion was introduced by Al-Babtain et al. (2020a, b), and is defined by the
CDF:

F (x;α, ρ, β) = 1− 1 + ρ+ ρx

1 + ρ
(1− ρ)x ; x ∈ N0, 0 < ρ < 1. (3.34)

The NDL distribution has PMF:

P (x; ρ) =
ρ2

1 + ρ
(2 + x) (1− ρ)x , (3.35)

and the hazard rate of NDL is

h (x; ρ) =
ρ2 (2 + x)

1 + ρ+ ρx
. (3.36)

4 Parameter Estimation of Discrete Model

In this section, we estimate the parameters of the models using a max-
imum likelihood method. It is noted that the maximum likelihood method
is also used to estimate unknown parameters of a statistical model because
maximum likelihood estimates (MLEs) have several desirable properties; For
example, they are asymptotically unbiased, symmetrical, consistent, asymp-
tomatically normally distributed, etc. Let x1, x2, . . . , xn be a random sam-
ple of size n from the discrete distribution, and then the log-likelihood func-
tion is given by

L (Θ|x) =
n∑

i=1

logP (xi; Θ), (4.1)
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where Θ = (Θ1, . . . ,Θk)
T , k is a length of Θ. The MLEs can be obtained

by partially first derivatives of the log-likelihood function and equal to zero

∂L (Θ|x)
∂Θ1

=
n∑

i=1

∂P (xi;Θ)
∂Θ1

P (xi; Θ)
, . . . ,

∂L (Θ|x)
∂Θk

=
n∑

i=1

∂P (xi;Θ)
∂Θk

P (xi; Θ)
, (4.2)

provide the MLEs of Θ, say Θ̂ =
(
Θ̂1, . . . , Θ̂k

)T
, then using a computational

process such as the k variable Newton-Raphson Algorithm are given by the
solutions of the equations.

For interval estimation and hypothesis tests on the model parameters,
we require the information matrix. The k × k observed information matrix
is

In

(
Θ̂
)
=

⎡

⎢⎢⎢⎣

∂2L(Θ|x)
∂Θ2

1
. . . ∂2L(Θ|x)

∂Θk∂Θ1

...
. . .

...
∂2L(Θ|x)
∂Θ1∂Θk

. . . ∂2L(Θ|x)
∂Θ2

k

⎤

⎥⎥⎥⎦ . (4.3)

One can use the normal distribution of Θ̂ to construct approximate confi-
dence interval regions for some parameters. Indeed, an asymptotic 100(1−ξ)
confidence interval for each parameter Θj ; j = 1, . . . , k, is given by

(
Θ̂j − z ξ

2

√
�̂jj , Θ̂j + z ξ

2

√
�̂jj

)
, (4.4)

where �̂jj denotes the (i, i) diagonal element of In
−1

(
Θ̂
)

and z ξ
2
is the

(
1 − ξ

2

)
th quantile of the standard normal distribution.

5 Applications of Real Data

In this section, we illustrate the empirical importance of the discrete
distributions, such as DB, DLi, Binom, Pois, DR, DGE, Geometric, DW,
DIW, DE, NDL, DGzEx, DMOGE, DAPLo, and EDW distributions using
four applications to real data sets. The fitted models are compared using
some criteria; namely, Akaike information criterion (AIC), corrected AIC
(CAIC), Hannan-Quinn information criterion (HQIC), Chi-square (X2) with
a degree of freedom and its p-value.

AIC = −2L
(
Θ̂|x

)
+ 2p,

CAIC = −2L
(
Θ̂|x

)
+ 2p+ 2

p(p+ 1)

n− p− 1
,
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Table 1: The goodness of fit and estimation models with one parameter for
Dataset of Angola
x Freq. DL binom pois DR Geom DE NDL Nbinom
0 5 10.3851 3.7196 3.4748 3.6409 13.8353 13.8377 11.1728 3.7451
1 13 10.3832 9.4929 9.3344 9.4361 10.082 10.0832 10.2192 9.5336
2 8 8.6612 12.3511 12.5374 11.7371 7.347 7.3473 8.3084 12.3726
3 7 6.6201 10.9194 11.2263 10.594 5.3539 5.3538 6.3327 10.9106
4 8 4.8052 7.3768 7.5392 7.5862 3.9015 3.9012 4.6338 7.3521
5 6 3.3707 4.0606 4.0505 4.4611 2.8431 2.8427 3.2965 4.0368
6 3 2.3078 1.8966 1.8135 2.1912 2.0718 2.0714 2.2972 1.8806
7 1 1.5516 0.7728 0.6959 0.9077 1.5098 1.5093 1.5759 0.7644

θ 0.5928 0.95 2.6863 0.9286 0.2713 0.7287 0.3902 0.9501
χ2 7.4731 6.3093 7.1692 5.0751 13.8986 13.9035 8.5615 6.3249
P-Value 0.3813 0.5041 0.4115 0.6508 0.053 0.0529 0.2857 0.5024
AIC 212.2015 205.5942 206.245 204.4382 221.7812 221.7812 214.0158 207.5957
CAIC 212.2832 205.6759 206.3267 204.5199 221.8628 221.8628 214.0975 207.8457
BIC 214.1334 207.526 208.1769 206.37 223.713 223.713 215.9477 211.4593
HQIC 212.9397 206.3324 206.9832 205.1764 222.5194 222.5194 214.7541 209.0721

BIC = −2L
(
Θ̂|x

)
+ p log(n),

and

HQIC = −2L
(
Θ̂|x

)
+ 2 p log [log(n)].

5.1. African Continent
5.1.1. Angola. This data represents the daily new deaths of 51 days

from 10 October to 29 November 2020 belong to Angola country (see World
Health Organization). The MLEs and the goodness of fit statistics are re-
ported in Tables 1, 2 and 3.

Table 2: The goodness of fit and estimation models with two parameters for
Dataset of Angola
x Freq. DB DGE DW DIW Bbinom BNbinom skellam
0 5 6.7808 4.7033 4.9671 3.3896 9.6902 5.4547 3.5321
1 13 18.9004 11.9206 10.2181 16.9335 7.1534 6.8033 9.2664
2 8 8.3399 11.6379 11.2204 10.9531 5.7499 6.6694 12.4241
3 7 4.2361 8.59 9.5265 6.0458 4.7385 5.9618 11.1673
4 8 2.5474 5.6325 6.7748 3.5861 3.9474 5.0827 7.5452
5 6 1.6992 3.484 4.172 2.2938 3.3055 4.2143 4.0829
6 3 1.2139 2.0895 2.2648 1.559 2.7745 3.4333 1.8423
7 1 0.9104 1.232 1.0959 1.1113 2.3304 2.7648 0.7128

α 4.8597 0.5766 0.9026 0.0665 0.8452 51.1307 2.7117
θ 0.814 2.7731 1.7864 1.5591 8.3895 0.9501 0.0251
χ2 24.8612 4.5821 3.5563 13.3268 10.0551 6.3249 6.9532
P-Value 0.0008 0.7108 0.8292 0.0645 0.1855 0.5024 0.4337
AIC 233.0403 208.2782 205.5087 222.5174 219.2958 207.5957 208.2394
CAIC 233.2903 208.5282 205.7587 222.7674 216.9786 207.8457 208.4894
BIC 236.9039 212.1418 209.3723 226.381 220.5679 211.4593 212.1031
HQIC 234.5167 209.7546 206.9851 223.9938 219.5569 209.0721 209.7159
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Table 3: The goodness of fit and estimation models with three parameters
for Dataset of Angola
x Freq. DGzEx DMOGE DAPL EDW

0 5 7.0237 5.3943 4.4178 6.0749
1 13 8.3922 9.7184 11.1826 9.0453
2 8 9.2915 11.0367 11.8077 9.9774
3 7 9.2309 9.6026 9.1019 9.4497
4 8 7.8652 6.7241 5.9894 7.6045
5 6 5.3941 4.0369 3.6199 5.0134
6 3 2.7262 2.2048 2.0932 2.5727
7 1 0.899 1.1424 1.1871 0.9666

α 0.8945 1.6567 0 3.0214
β 1.1054 0.4903 9.8333 0.4415
θ 0.323 4.1168 0.0998 0.9919
χ2 3.9266 4.0603 4.5484 3.2125
P-Value 0.7882 0.7728 0.7149 0.8647
AIC 206.4348 208.7333 210.1451 206.0902
CAIC 206.9454 209.2439 210.6558 206.6009
BIC 212.2303 214.5287 215.9406 211.8857
HQIC 208.6494 210.9479 212.3598 208.3048

From Tables 1, 2 and 3, it is evident that all distributions are fitted
and work quite well for analyzing these data except for the DB distribution.

Figure 1: The situation for the daily new cases over the world by the WHO
Region has been shown in Figure 1



An overview of discrete distributions... 15

Table 4: The goodness of fit and estimation models with one parameter for
Dataset of Ethiopia
Value Count DL binom Pois DR Geom DE NDL Nbinom
0 53 51.9015 50.6629 50.6728 42.4357 52.5454 52.5486 52.1453 48.4267
1 12 12.8907 14.8785 14.9038 24.206 11.9422 11.9404 12.5212 13.9393
2 1 2.6204 2.2169 2.1917 1.3481 2.7141 2.7132 2.6725 4.0123
3 2 0.4851 0.2234 0.2149 0.0102 0.6169 0.6165 0.5348 1.1549

θ 0.1425 0.9957 0.2941 0.3759 0.7727 0.2272 0.8399 0.7122
χ2 5.8081 15.4572 16.1469 397.4295 4.1765 4.1789 5.0873 3.5538
P-Value 0.1213 0.0015 0.0011 0 0.243 0.2428 0.1655 0.3138
AIC 96.8328 99.3872 99.5043 119.8357 96.3289 96.3289 96.6049 98.2034
CAIC 96.8934 99.4478 99.565 119.8963 96.3895 96.3895 96.6655 98.3881
BIC 99.0523 101.6067 101.7239 122.0552 98.5484 98.5484 98.8244 102.6425
HQIC 97.7122 100.2666 100.3838 120.7151 97.2084 97.2084 97.4843 99.9623

However, we always search for the best model to get the best evaluation
of the data, and therefore, using AIC, BIC, CAIC, HQIC, χ2 and p-values,
we can say that the DMKEx model provides the best fit among all the
tested models because it has the largest p-value and the smallest values of
AIC, CAIC, BIC, HQIC and χ2 statistics. Figure 1 supports the results of
Tables 1, 2 and 3.

5.1.2. Ethiopia. This data represents the daily new deaths of 68 days
from 1 April to 7 June 2020 belong to Ethiopia country (see World Health
Organization). The MLEs and the goodness of fit statistics are reported in
Tables 4, 5, and 6.

From Tables 4, 5, and 6, it is evident that all distributions are fitted
and works quite well for analyzing these data except for the DR, binomial,
Poisson, Skellam, and BNbinom distributions. However, we always search
for the best model to get the best evaluation by using AIC, BIC, CAIC,
HQIC, χ2, and p-values. Figure 2 supports the results of Tables 4, 5 and 6.

Table 5: The goodness of fit and estimation models with two parameters for
Dataset of Ethiopia
Value Count DB DGE DW DIW Bbinom BNbinom skellam
0 53 53.0355 53.0563 53.1071 52.9906 53.2037 8.541 50.6655
1 12 11.6924 11.1753 11.148 11.9984 7.286 13.6952 14.9089
2 1 2.2184 2.8052 2.7572 1.8851 3.1767 13.7835 2.1935
3 2 0.6154 0.7162 0.7192 0.5689 1.6954 11.1608 0.2152

α 1.5906 0.2566 0.219 0.7793 0.1855 100.0741 0.2943
θ 0.1126 0.8367 0.9329 2.4612 25.0861 4.0965 0.0001
χ2 3.7657 3.51 3.4511 3.978 4.3161 67.7849 16.12652
P-Value 0.2879 0.3195 0.3272 0.2639 0.2293 0 0.0011
AIC 98.2653 98.2326 98.2076 98.3745 98.6101 109.5831 101.5044
CAIC 98.45 98.4172 98.3923 98.5591 98.821 108.5832 101.689
BIC 102.7044 102.6716 102.6467 102.8135 97.1454 110.8358 105.9434
HQIC 100.0242 99.9915 99.9665 100.1333 100.1186 105.8331 103.2632
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Table 6: The goodness of fit and estimation models with three parameters
for Data set of Ethiopia
Value Count DGzEx DMOGE DAPL EDW

0 53 53.0519 53.0207 52.9588 53.0357
1 12 11.3019 11.7037 11.8781 11.4966
2 1 2.6663 2.2482 2.1159 2.4583
3 2 0.6917 0.6664 0.5747 0.6694

α 0.3851 3.1747 0.0001 0.6074
β 1.6448 0.3739 1.5139 4.551
θ 0.0433 0.0826 0.1381 0.0531
χ2 3.5429 3.3497 4.0924 3.5125
P-Value 0.3152 0.3408 0.2517 0.3191
AIC 100.2122 99.9264 100.4083 100.1279
CAIC 100.5872 100.3014 100.7833 100.5029
BIC 106.8707 106.5849 107.0668 106.7864
HQIC 102.8505 102.5647 103.0466 102.7662

5.2. America Continent
5.3. El Salvador This data represents the daily new deaths of 81 days

from 1 April to 20 June 2020 belong to El Salvador country (see World Health
Organization). The MLEs and the goodness of fit statistics are reported in
Tables 7, 8 and 9.

Figure 2: The situation for the daily new deaths over the world by the WHO
Region has been shown in Figure 2
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Table 7: The goodness of fit and estimation models with one parameter for
Dataset of El Salvador
x Freq. DL binom pois DR Geom DE NDL Nbinom
0 34 35.8944 28.208 28.0146 18.5008 39.2874 39.2913 36.898 28.2086
1 25 22.7585 29.5621 29.7438 33.7886 20.2318 20.232 21.8881 29.5622
2 11 11.9636 15.6819 15.7898 20.8584 10.4188 10.4179 11.5415 15.6815
3 6 5.751 5.6135 5.5881 6.5736 5.3654 5.3644 5.7054 5.6133
4 4 2.6229 1.5252 1.4833 1.1546 2.763 2.7622 2.7076 1.5251
5 1 1.1555 0.3355 0.315 0.1168 1.4229 1.4223 1.2492 0.3354

θ 0.3719 0.9871 1.0617 0.7716 0.485 0.5149 0.6045 0.9871
χ2 1.1319 8.6416 9.2714 33.6686 2.5452 2.5471 1.3475 8.642
P-Value 0.9512 0.1242 0.0987 0 0.7697 0.7694 0.93 0.1242
AIC 230.5771 235.0331 235.4473 253.2005 233.3614 233.3614 231.1279 237.0331
CAIC 230.6278 235.0837 235.4979 253.2511 233.4121 233.4121 231.1785 237.1869
BIC 232.9716 237.4275 237.8417 255.595 235.7559 235.7559 233.5223 241.822
HQIC 231.5378 235.9938 236.408 254.1612 234.3221 234.3221 232.0885 238.9545

From Tables 7, 8 and 9, it is evident that all distributions are Fitted and
work immensely well for analyzing these data except for the BNbionm, and
DR distribution. However, we always search for the best model to get the
best evaluation byusing AIC, BIC, CAIC, HQIC, χ2, and p-values. Figure 3
supports the results of Tables 7, 8 and 9.

5.3.1. French Guiana. This data represents the daily new deaths of 153
days from 1 June to 31 October 2020 belong to French Guiana country (see
World Health Organization). The MLEs and the goodness of fit statistics
are reported in Tables 10, 11 and 12.

From Tables 10, 11 and 12, it is evident that all distributions are fitted
and work immensely well for analyzing these data except for the DR and
skellam distributions. However, we always search for the best model to get
the best evaluation of the data, and therefore, using AIC, BIC, CAIC, HQIC,
X2, and p-values, we can say that the DL in Table 7, DGE in Table 8, and
DMOGE in Table 9 model provides the best fit among all the tested models
because it has the largest p-value and the smallest values of AIC, CAIC,

Table 8: The goodness of fit and estimation models with two parameters for
Dataset of El Salvador
x Freq. DB DGE DW DIW Bbinom BNbinom skellam
0 34 34.4036 33.8388 33.7095 33.0795 40.0502 0.9349 28.0132
1 25 28.0052 25.2297 24.6603 29.5016 16.4509 3.0269 29.7437
2 11 9.339 12.2539 12.8315 8.9315 9.1663 5.6262 15.7905
3 6 3.7907 5.4873 5.8521 3.6857 5.5386 7.8829 5.5886
4 4 1.8668 2.3897 2.4465 1.8677 3.4695 9.2524 1.4835
5 1 1.0496 1.0293 0.9571 1.0786 2.2156 9.608 0.315

α 2.4136 0.4274 0.5838 0.4084 0.5804 88.7166 1.0618
θ 0.4504 1.5656 1.2446 1.7955 34.4566 7.1157 0.00001
χ2 4.1337 1.2457 1.2487 4.8049 5.9714 578.7171 9.2705
P-Value 0.5303 0.9404 0.9401 0.4401 0.309 0.0002 0.0988
AIC 238.4529 232.4455 232.0191 239.7789 242.0565 246.0948 237.4473
CAIC 238.6068 232.5994 232.1729 239.9327 241.9607 246.466 237.6011
BIC 243.2418 237.2344 236.808 244.5678 248.2354 251.5662 242.2362
HQIC 240.3743 234.3669 233.9405 241.7002 249.4564 253.6535 239.3687
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Table 9: The goodness of fit and estimation models with three parameters
for Dataset of El Salvador
x Freq. DGzEx DMOGE DAPL EDW

0 34 34.4545 34.0422 34.1455 34.3273
1 25 22.8177 24.1669 25.2472 22.9832
2 11 13.2714 12.9569 12.0298 13.3583
3 6 6.5965 5.8305 5.2789 6.4936
4 4 2.7112 2.4142 2.3042 2.6292
5 1 0.8856 0.9649 1.0301 0.886

α 0.661 0.9399 0 1.7099
β 1.2116 0.3903 12.3095 0.542
θ 0.1615 2.3293 0.2418 0.7948
χ2 1.2798 1.3569 1.41 1.3566
P-Value 0.937 0.929 0.9232 0.929
AIC 233.5703 234.2826 234.9581 233.7504
CAIC 233.882 234.5943 235.2698 234.0621
BIC 240.7537 241.4659 242.1415 240.9337
HQIC 236.4524 237.1646 237.8402 236.6324

BIC, HQIC and χ2 statistics. Figure 4 supports the results of Tables 10, 11
and 12.

Figure 3: The fitted PMFs for Dataset of Angola
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Table 10: The goodness of fit and estimation models with one parameter for
Dataset of French Guiana
Value Count DL Dbinom DP DR Geom DE NDL Nbinom
0 102 102.8925 95.8637 97.4614 76.8051 105.446 105.4415 103.7724 95.8073
1 39 36.0756 44.7489 43.9533 66.7841 32.7737 32.7754 34.8533 39.9856
2 7 10.4012 10.5126 9.911 9.1226 10.1864 10.1879 10.4053 12.5161
3 4 2.7352 1.6571 1.4899 0.2861 3.166 3.1668 2.9123 3.4824
4 1 0.6816 0.1972 0.168 0.0022 0.984 0.9844 0.7825 0.9084

θ 0.2028 0.9969 0.451 0.498 0.6892 0.3108 0.7761 0.7913
χ2 2.0874 8.8849 9.9735 64.0151 2.5036 2.5029 2.1005 2.9355
P-Value 0.7197 0.064 0.0409 0 0.644 0.6441 0.7173 0.5687
AIC 276.2944 280.1661 280.288 319.2933 277.1681 277.1681 276.4623 278.2455
CAIC 276.3208 280.2907 280.3145 319.3198 277.1945 277.1945 276.4888 278.3255
BIC 279.3248 283.2946 283.3184 322.3237 280.1985 280.1985 279.4927 284.3064
HQIC 277.5254 281.4952 281.519 320.5243 278.3991 278.3991 277.6933 280.7075

5.4. Europe Continent
5.4.1. Estonia. This data represents the daily new deaths of 81 days

from 1 April to 20 May 2020 belong to Estonia country (see World Health
Organization). The MLEs and the goodness of fit statistics are reported in
Tables 13, 14 and 15.

From Tables 13, 14, and 15, it is evident that all distributions are Fitted
and work quite well for analyzing these data except for the Binom, Pois, and
DR distributions. However, we always search for the best model to get the
best evaluation of the data, and therefore, using AIC, BIC, CAIC, HQIC,
X2, and p-values, we can say that the DL model provides the best fit among
all the tested models because it has the smallest values of AIC, CAIC, BIC,
HQIC, and χ2 statistics, as well as having the highest p-value. Figure 5
supports the results of Tables 13, 14 and 15.

Table 11: The goodness of fit and estimation models with two parameters
for Dataset of French Guiana
Value Count DB DGE DW DIW Bbinom BNbinom skellam
0 102 102.0825 102.176 102.491 101.8402 106.2493 90.7806 97.4627
1 39 39.2054 37.3434 36.63 40.164 21.4081 37.3982 43.9525
2 7 7.8603 10.0104 10.3575 6.825 10.0652 14.9649 9.9106
3 4 2.2069 2.583 2.6754 2.0941 5.6251 5.9448 1.4897
4 1 0.8124 0.6607 0.6512 0.8706 3.3895 2.3575 0.1679

α 2.0172 0.2551 0.3301 0.6656 0.2721 240.033 0.4509
θ 0.2045 1.3712 1.1147 2.4483 54.6357 1.0697 0.0002
χ2 1.5823 1.9274 2.0838 1.7686 16.732 7.0243 9.9743
P-Value 0.812 0.7491 0.7204 0.7782 0.0022 0.1346 0.0409
AIC 278.7042 278.082 278.2295 279.5632 288.2087 297.1347 282.288
CAIC 278.7842 278.162 278.3095 279.6432 288.2088 297.1348 282.368
BIC 284.7651 284.1429 284.2904 285.6241 288.2147 307.1408 288.3489
HQIC 281.1662 280.544 280.6915 282.0252 285.2111 289.1372 284.75
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Table 12: The goodness of fit and estimation models with three parameters
for Dataset of French Guiana
Value Count DGzEx DMOGE DAPL EDW

0 102 103.1603 102.0371 102.0898 102.089
1 39 35.3723 38.5727 38.5167 38.1064
2 7 10.7692 8.6816 8.9211 9.2162
3 4 2.8765 2.5161 2.3031 2.4825
4 1 0.6653 0.8 0.7049 0.7394

α 0.5133 3.0611 0 0.7349
β 1.601 0.333 4.2859 3.599
θ 0.0611 0.2035 0.2042 0.1063
χ2 2.309 1.2514 1.7868 1.5687
P-Value 0.6791 0.8696 0.7749 0.8144
AIC 280.4584 279.6547 280.2424 279.9279
CAIC 280.6195 279.8158 280.4035 280.089
BIC 289.5497 288.7461 289.3337 289.0192
HQIC 284.1514 283.3478 283.9355 283.621

5.4.2. Greece. This data represents the daily new deaths of 111 days
from 12 March to 30 June 2020 belong to Greece country (see World Health
Organization). The MLEs and the goodness of fit statistics are reported in
Tables 16, 17 and 18.

Figure 4: The fitted PMFs for Dataset of Ethiopia
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Table 13: The goodness of fit and estimation models with one parameter for
Dataset of Estonia
x Freq. DL Binom pois DR Geom DE NDL Nbinom

0 20 20.413 15.268 15.058 9.516 22.727 22.725 21.09 15.278
1 15 13.91 17.899 18.071 18.994 12.397 12.396 13.393 17.901
2 6 7.866 10.701 10.844 14.011 6.762 6.762 7.56 10.697
3 5 4.069 4.349 4.338 5.772 3.688 3.689 4.001 4.345
4 3 1.998 1.351 1.301 1.451 2.012 2.012 2.033 1.349
5 0 0.947 0.342 0.312 0.23 1.097 1.098 1.004 0.341
6 1 0.438 0.074 0.062 0.023 0.599 0.599 0.486 0.073

θ 0.4 0.977 1.2 0.81 0.455 0.545 0.577 0.977
χ2 2.896 18.123 21.001 59.692 3.221 3.221 2.801 18.156
P-Value 0.822 0.006 0.002 0 0.781 0.781 0.833 0.006
AIC 152.29 157.901 158.584 170.826 153.582 153.582 152.457 159.902
CAIC 152.373 157.985 158.667 170.91 153.665 153.665 152.541 160.157
BIC 154.202 159.814 160.496 172.738 155.494 155.494 154.369 163.726
HQIC 153.018 158.63 159.312 171.554 154.31 154.31 153.185 161.358

From Tables 16, 17 and 18, it is evident that all distributions are Fitted
and work quite well for analyzing these data except for the DB, Binom, Pois,

Table 14: The goodness of fit and estimation models with two parameters
for Dataset of Estonia
x Freq. DB DGE DW DIW Bbinom BNbinom skellam

0 20 20.3137 19.946 19.8908 19.3778 26.443 21.1803 15.0634
1 15 16.7589 14.6836 14.3643 17.7488 10.1255 10.6461 18.0724
2 6 6.0514 7.8054 8.0425 5.8575 5.3982 6.3244 10.8412
3 5 2.6133 3.897 4.1076 2.5532 3.132 3.9673 4.3356
4 3 1.3476 1.9012 1.9781 1.3445 1.8836 2.5626 1.3004
5 0 0.7856 0.9183 0.9117 0.7995 1.153 1.6878 0.312
6 1 0.4992 0.4416 0.4057 0.5169 0.7121 1.128 0.0624

α 2.3335 0.4789 0.6022 0.3876 0.5549 23.0072 1.1998
θ 0.4714 1.4098 1.1879 1.6709 23.4553 0.7414 0
χ2 5.445 2.969 3.032 5.799 6.84 3.588 21.021
P-Value 0.488 0.813 0.805 0.446 0.336 0.732 0.002
AIC 158.573 154.399 154.216 159.305 160.349 153.155 160.584
CAIC 158.828 154.655 154.472 159.56 160.559 154.059 160.839
BIC 162.397 158.223 158.04 163.129 165.287 157.388 164.408
HQIC 160.029 155.855 155.673 160.761 162.71 155.095 162.04
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Table 15: The goodness of fit and estimation models with three parameters
for Dataset of Estonia
x Freq. DGzEx DMOGE DAPL EDW

0 20 20.3734 20.0495 19.5879 20.1969
1 15 13.3667 14.1479 15.6532 13.6021
2 6 8.0864 8.0852 7.7502 8.1771
3 5 4.4584 4.1015 3.574 4.3901
4 3 2.2106 1.9558 1.6677 2.1237
5 0 0.9707 0.9051 0.8091 0.932
6 1 0.371 0.4131 0.4115 0.3734

α 0.6758 1.0231 0 1.4865
β 1.2462 0.4511 8.5769 0.6436
θ 0.1096 1.7632 0.2205 0.7555
χ2 3.1186 3.0591 3.6685 3.1415
P-Value 0.7938 0.8014 0.7214 0.7909
AIC 156.043 156.336 157.083 156.116
CAIC 156.565 156.858 157.605 156.638
BIC 161.779 162.072 162.819 161.852
HQIC 158.228 158.521 159.267 158.301

DIW, and DR distribution. However, we always search for the best model
to get the best evaluation of the data, and therefore, concerning the AIC,
BIC, CAIC, HQIC, χ2 and p-values, we can say that the DE model provides

Figure 5: The fitted PMFs for Dataset of El Salvador



An overview of discrete distributions... 23

Table 16: The goodness of fit and estimation models with one parameter for
Dataset of Greece
x Freq. DL Binom pois DR Geome DE NDL Nbinom
0 39 34.3535 20.121 19.8601 12.2023 40.7981 40.7968 36.0786 20.12694
1 26 28.3298 34.099 34.1756 29.1321 25.8027 25.8024 27.4649 34.10319
2 17 19.4399 29.154 29.405 30.7488 16.3189 16.319 18.5846 29.15261
3 9 12.2127 16.7658 16.8669 21.694 10.3209 10.3211 11.7896 16.76212
4 6 7.2833 7.2952 7.2562 11.1845 6.5275 6.5277 7.1799 7.292363
5 7 4.1968 2.5617 2.4973 4.3612 4.1283 4.1285 4.2511 2.560298
6 6 2.36 0.7562 0.7162 1.3081 2.6109 2.6111 2.4657 0.755599
7 0 1.3031 0.193 0.1761 0.3047 1.6513 1.6514 1.4077 0.192785
8 0 0.7094 0.0435 0.0379 0.0555 1.0444 1.0445 0.7938 0.043407
9 1 0.3819 0.0088 0.0072 0.0079 0.6605 0.6606 0.4431 0.008761

θ 0.4868 0.9847 1.7208 0.8901 0.3676 0.6325 0.4925 0.984735
χ2 12.6465 184.8257 212.9279 218.3349 9.4779 9.4768 10.9923 184.9933
P-Value 0.1793 0 0 0 0.3944 0.3945 0.2762 4.59E-35
AIC 399.5498 440.2502 442.207 462.0504 399.2138 399.2138 398.6729 442.2502
CAIC 399.5865 440.2869 442.2437 462.0871 399.2505 399.2505 398.7096 442.3614
BIC 402.2594 442.9597 444.9165 464.7599 401.9233 401.9233 401.3824 447.6693
HQIC 400.649 441.3494 443.3061 463.1496 400.3129 400.3129 399.7721 444.4486

the best fit among all the tested models because it has the smallest values
of AIC, CAIC, BIC, HQIC and χ2statistics, as well as having the highest
p-value. Figures 6, 7 and 8 support the results of Tables 16, 17 and 18.

Table 17: The goodness of fit and estimation models with two parameters
for Dataset of Greece
x Freq. DB DGE DW DIW Bbinom BNbinom skellam
0 39 39.9728 38.4338 37.6699 36.6671 44.7225 0 19.6302
1 26 33.0123 27.1352 27.1739 35.5067 23.4325 0.0002 34.0085
2 17 14.3432 17.2843 17.6853 14.4778 14.472 0.0014 29.4593
3 9 7.1817 10.791 11.1464 7.2501 9.3716 0.0057 17.0124
4 6 4.1365 6.6806 6.8913 4.2126 6.2001 0.018 7.3683
5 7 2.6307 4.1183 4.2028 2.7015 4.1492 0.0469 2.5531
6 6 1.7954 2.5328 2.5362 1.8561 2.7951 0.1059 0.7372
7 0 1.291 1.5556 1.5173 1.3417 1.8901 0.2123 0.1824
8 0 0.966 0.9547 0.9011 1.0081 1.2807 0.3856 0.0395
9 1 0.746 0.5856 0.5318 0.781 0.8687 0.6439 0.0076

α 2.097 0.613 0.6606 0.3303 0.7334 131.206 1.7325
θ 0.5251 1.1173 1.0818 1.3636 45.3618 27.2001 0.00003
χ2 21.5247 9.9019 10.0035 21.5044 10.1022 227.2067 205.3209
P-Value 0.0105 0.3585 0.3502 0.0106 0.3423 0 0
AIC 416.9434 400.8569 400.5058 418.3186 401.0155 438.4688 444.2158
CAIC 417.0545 400.968 400.6169 418.4298 401.027 438.4569 444.3269
BIC 422.3625 406.276 405.9249 423.7377 406.0137 432.5658 449.6349
HQIC 419.1418 403.0553 402.7042 420.517 402.9877 439.1251 446.4142
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Table 18: The goodness of fit and estimation models with three parameters
for Dataset of Greece
x Freq. DGzEx DMOGE DAPL EDW

0 39 37.1418 39.1004 38.2561 39.6469
1 26 26.2135 24.518 28.7498 23.2576
2 17 17.918 17.6573 17.394 16.952
3 9 11.8333 11.7765 10.2344 12.0579
4 6 7.5308 7.3852 6.0569 8.1187
5 7 4.6056 4.4451 3.6484 5.1014
6 6 2.6985 2.6083 2.2469 2.963
7 0 1.51 1.5074 1.4167 1.5797
8 0 0.8041 0.8636 0.9145 0.7693
9 1 0.4059 0.4922 0.6039 0.3412

α 0.7564 0.5621 0 1.893
β 1.406 0.5661 16.7726 0.3775
θ 0.0521 3.0701 0.2929 0.9346
χ2 9.5683 9.7419 12.1902 9.085
P-Value 0.3866 0.3718 0.2028 0.4295
AIC 401.4063 402.2136 405.1989 400.9745
CAIC 401.6306 402.4379 405.4232 401.1988
BIC 409.5349 410.3422 413.3275 409.1031
HQIC 404.7038 405.5111 408.4964 404.272

Figure 6: The fitted PMFs for Dataset of Guiana
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Figure 7: The fitted PMFs for Dataset of Estonia

6. Concluding Remarks

In this article, we use 8 discrete distributions with one parameter, 7 dis-
crete distributions with two parameters, and 4 discrete distributions with
three parameters to fit and determine the best model of daily Coronavirus
deaths in some countries, such as Angola,Ethiopia, French Guiana, El Sal-
vador, Estonia, and Greece. In the case of discrete distributions with one
parameter, we discussed DL, binomial, Poisson, DR, Geometric, DE, Nbi-
nom, and NDL distributions. In the case of discrete distributions with two

Figure 8: The fitted PMFs for Dataset of Greece
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parameters, we discussed DB, DGE, DW, DIW, Bbinom, BNbinom, and
skellam distributions. In the case of discrete distributions with three param-
eters, we discussed DGzEx, DMOGE, DAPL, and EDW distributions. A
review of some important discrete distributions has been provided as DB,
DL, DMOGE, DGE, DAPL, DR, DE, Geometric, Binomial, NDL, DGzEx,
and EDW distribution. The maximum likelihood estimation method is dis-
cussed to estimate the parameters of the discrete distributions. We prove
empirically that the discrete models fit different datasets of daily Coron-
avirus deaths in some countries as Angola, Ethiopia, French Guiana, El
Salvador, Estonia, and Greece. DW and DB reveal its superiority over other
competitive models for the analysis of daily deaths of the COVID-19 in the
case of Angola, Ethiopia, French Guiana, El Salvador, Estonia, and Greece.
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