
Chapter 9

Epidemic Models

9.1 Introduction to Epidemic Models

Communicable diseases such as measles, influenza, and tuberculosis are a fact of
life. We will be concerned with both epidemics, which are sudden outbreaks of a
disease, and endemic situations, in which a disease is always present. The AIDS
epidemic, the recent SARS epidemic, recurring influenza pandemics, and outbursts
of diseases such as the Ebola virus are events of concern and interest to many peo-
ple. The prevalence and effects of many diseases in less-developed countries are
probably not as well known but may be of even more importance. Every year mil-
lions, of people die of measles, respiratory infections, diarrhea, and other diseases
that are easily treated and not considered dangerous in the Western world. Diseases
such as malaria, typhus, cholera, schistosomiasis, and sleeping sickness are endemic
in many parts of the world. The effects of high disease mortality on mean life span
and of disease debilitation and mortality on the economy in afflicted countries are
considerable.

We give a brief introduction to the modeling of epidemics; more thorough de-
scriptions may be found in such references as [Anderson & May (1991), Diekmann
& Heesterbeek (2000)]. This chapter will describe models for epidemics, and the
next chapter will deal with models for endemic situations, but we begin with some
general ideas about disease transmission.

The idea of invisible living creatures as agents of disease goes back at least to
the writings of Aristotle (384 BC–322 BC). It developed as a theory in the sixteenth
century. The existence of microorganisms was demonstrated by van Leeuwenhoek
(1632–1723) with the aid of the first microscopes. The first expression of the germ
theory of disease by Jacob Henle (1809–1885) came in 1840 and was developed by
Robert Koch (1843–1910), Joseph Lister (1827–1912), and Louis Pasteur (1822–
1875) in the latter part of the nineteenth century and the early part of the twentie/th
century.

The mechanism of transmission of infections is now known for most diseases.
Generally, diseases transmitted by viral agents, such as influenza, measles, rubella

OI 10.1007/978-1-4614-1686-9_ ,
© Springer Science+Business Media, LLC 2012
Texts in Applied Mathematics 40, D

345
9

, .  and F Brauer C. -Chave Mathematical Models in Population Biology and Epidemiology, Castillo z



346 9 Epidemic Models

(German measles), and chicken pox, confer immunity against reinfection, while dis-
eases transmitted by bacteria , such as tuberculosis, meningitis, and gonorrhea, con-
fer no immunity against reinfection. Other human diseases, such as malaria, are
transmitted not directly from human to human but by vectors, agents (usually in-
sects) that are infected by humans and who then transmit the disease to humans.
There are also diseases such as West Nile virus, that are transmitted back and forth
between animals and vectors. Heterosexual transmission of HIV/AIDS is also a vec-
tor process in which transmission goes back and forth between males and females.

We will focus on the transmission dynamics of an infection from individual to
individual in a population, but many of the same ideas arise in transmission of a
genetic characteristic, such as gender, race, genetic diseases, a cultural “character-
istic,” such as language or religion, an addictive activity, such as drug use, and the
gain or loss of information communicated through gossip, rumors, and so on.

Similarly, many of the ideas arise also with different characterizations of what
is meant by an individual, including the types of cells in the study of disease dy-
namics of the immune system. In the study of Chagas disease, a “house” (infested
houses may correspond to “infected” individuals) may be chosen as an epidemio-
logical unit; in tuberculosis, a household or community or a group of strongly linked
individuals (“cluster”) may be the chosen unit.

An epidemic, which acts on a short temporal scale, may be described as a sudden
outbreak of a disease that infects a substantial portion of the population in a region
before it disappears. Epidemics usually leave many members untouched. Often these
attacks recur with intervals of several years between outbreaks, possibly diminishing
in severity as populations develop some immunity. This is an important aspect of the
connection between epidemics and disease evolution.

The historian W.H. McNeill argues, especially in his book Plagues and Peoples
(1976), that the spread of communicable diseases frequently has been an important
influence in history. For example, there was a sharp population increase throughout
the world in the eighteenth century; the population of China increased from 150
million in 1760 to 313 million in 1794, and the population of Europe increased
from 118 million in 1700 to 187 million in 1800. There were many factors involved
in this increase, including changes in marriage age and technological improvements
leading to increased food supplies, but these factors are not sufficient to explain
the increase. Demographic studies indicate that a satisfactory explanation requires
recognition of a decrease in the mortality caused by periodic epidemic infections.
This decrease came about partly through improvements in medicine, but a more
important influence was probably the fact that more people developed immunities
against infection as increased travel intensified the circulation and cocirculation of
diseases.

There are many biblical references to diseases as historical influences. The Book
of Exodus describes the plagues that were brought down upon Egypt in the time
of Moses. Another example is the decision of Sennacherib, the king of Assyria, to
abandon his attempt to capture Jerusalem about 700 BC because of the illness of
his soldiers (Isaiah 37, 36-38), and there are several other biblical descriptions of
epidemic outbreaks.
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The fall of empires has been attributed directly or indirectly to epidemic dis-
eases. In the second century AD, the so-called Antonine plagues (possibly measles

nomic hardships leading to disintegration of the empire because of disorganization,
which facilitated invasions of barbarians. The Han Empire in China collapsed in the
third century AD after a very similar sequence of events. The defeat of a population
of millions of Aztecs by Cortez and his 600 followers can be explained, in part,
by a smallpox epidemic that devastated the Aztecs but had almost no effect on the
invading Spaniards, thanks to their built-in immunities. The Aztecs were not only
weakened by disease but also confounded by what they interpreted as a divine force
favoring the invaders. Smallpox then spread southward to the Incas in Peru and was
an important factor in the success of Pizarro’s invasion a few years later. smallpox
was followed by other diseases such as measles and diphtheria imported from Eu-
rope to North America. In some regions, the indigenous populations were reduced
to one-tenth of their previous levels by these diseases: Between 1519 and 1530 the
Indian population of Mexico was reduced from 30 million to 3 million.

The Black Death (probably bubonic plague) spread from Asia throughout Europe
in several waves during the fourteenth century, beginning in 1346, and is estimated
to have caused the death of as much as one-third of the population of Europe be-
tween 1346 and 1350. The disease recurred regularly in various parts of Europe
for more than 300 years, notably as the Great Plague of London of 1665–1666. It
then gradually withdrew from Europe. Since the plague struck some regions harshly
while avoiding others, it had a profound effect on political and economic devel-
opments in medieval times. In the last bubonic plague epidemic in France (1720–
1722), half the population of Marseilles, 60 percent of the population in nearby
Toulon, 44 per cent of the population of Arles, and 30 percent of the population
of Aix and Avignon died, but the epidemic did not spread beyond Provence. Ex-
pansions and interpretations of these historical remarks may be found in McNeill
(1976), which was our primary source on the history of the spread and effects of
diseases.

The above examples depict the sudden dramatic impact that diseases have had on
the demography of human populations via disease-induced mortality. In considering
the combined role of diseases, war, and natural disasters on mortality rates, one may
conclude that historically humans who are more likely to survive and reproduce have
either a good immune system, a propensity to avoid war and disasters, or, nowadays,
excellent medical care and/or health insurance.

Descriptions of epidemics in ancient and medieval times frequently used the term
“plague” because of a general belief that epidemics represented divine retribution
for sinful living. More recently, some have described AIDS as punishment for sin-
ful activities. Such views have often hampered or delayed attempts to control this
modern epidemic.

There are many questions of interest to public health physicians confronted with
a possible epidemic. For example, how severe will an epidemic be? This question
may be interpreted in a variety of ways. For example, how many individuals will
be affected and require treatment? What is the maximum number of people needing

and) invaded the Roman Empire, causing drastic population reductions and eco-
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care at any particular time? How long will the epidemic last? How much good would
quarantine of victims do in reducing the severity of the epidemic?

Scientific experiments usually are designed to obtain information and to test hy-
potheses. Experiments in epidemiology with controls are often difficult or impossi-
ble to design, and even if it is possible to arrange an experiment, there are serious
ethical questions involved in withholding treatment from a control group. Some-
times data may be obtained after the fact from reports of epidemics or of endemic
disease levels, but the data may be incomplete or inaccurate. In addition, data may
contain enough irregularities to raise serious questions of interpretation, such as
whether there is evidence of chaotic behavior [Ellner, Gallant, and Theiler (1995)].
Hence, parameter estimation and model fitting are very difficult. These issues raise
the question whether mathematical modeling in epidemiology is of value.

Mathematical modeling in epidemiology provides understanding of the underly-
ing mechanisms that influence the spread of disease, and in the process, it suggests
control strategies. In fact, models often identify behaviors that are unclear in experi-
mental data–often because data are nonreproducible and the number of data points is
limited and subject to errors in measurement. For example, one of the fundamental
results in mathematical epidemiology is that most mathematical epidemic models,
including those that include a high degree of heterogeneity, usually exhibit “thresh-
old” behavior, which in epidemiological terms can be stated as follows: If the aver-
age number of secondary infections caused by an average infective is less than one,
a disease will die out, while if it exceeds one there will be an epidemic. This broad
principle, consistent with observations and quantified via epidemiological models,
has been used routinely to estimate the effectiveness of vaccination policies and the
likelihood that a disease may be eliminated or eradicated. Hence, even if it is not
possible to verify hypotheses accurately, agreement with hypotheses of a qualitative
nature is often valuable. Expressions for the basic reproductive number for HIV in
various populations is being used to test the possible effectiveness of vaccines that
may provide temporary protection by reducing either HIV-infectiousness or suscep-
tibility to HIV. Models are used to estimate how widespread a vaccination plan must
be to prevent or reduce the spread of HIV.

In the mathematical modeling of disease transmission, as in most other areas of
mathematical modeling, there is always a trade-off between simple models, which
omit most details and are designed only to highlight general qualitative behavior,
and detailed models, usually designed for specific situations including short-term
quantitative predictions. Detailed models are generally difficult or impossible to
solve analytically and hence their usefulness for theoretical purposes is limited, al-
though their strategic value may be high. For public health professionals, who are
faced with the need to make recommendations for strategies to deal with a specific
situation, simple models are inadequate and numerical simulation of detailed models
is necessary. In this chapter, we concentrate on simple models in order to establish
broad principles. Furthermore, these simple models have additional value since they
are the building blocks of models that include detailed structure. A specific goal
is to compare the dynamics of simple and slightly more detailed models primarily
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to see whether slightly different assumptions can lead to significant differences in
qualitative behavior.

Many of the early developments in the mathematical modeling of communicable
diseases are due to public health physicians. The first known result in mathematical
epidemiology is a defense of the practice of inoculation against smallpox in 1760 by

over three generations) who had been trained as a physician. The first contributions
to modern mathematical epidemiology are due to P.D. En’ko between 1873 and
1894 [Dietz (1988)], and the foundations of the entire approach to epidemiology
based on compartmental models were laid by public health physicians such as Sir
R.A. Ross, W.H. Hamer, A.G. McKendrick, and W.O. Kermack between 1900 and
1935, along with important contributions from a statistical perspective by J. Brown-
lee. A particularly instructive example is the work of Ross on malaria. Dr. Ross
was awarded the second Nobel Prize in Medicine for his demonstration of the dy-
namics of the transmission of malaria between mosquitoes and humans. Although
his work received immediate acceptance in the medical community, his conclusion
that malaria could be controlled by controlling mosquitoes was dismissed on the
grounds that it would be impossible to rid a region of mosquitoes completely and
that in any case, mosquitoes would soon reinvade the region. After Ross formu-
lated a mathematical model that predicted that malaria outbreaks could be avoided
if the mosquito population could be reduced below a critical threshold level, field
trials supported his conclusions and led to sometimes brilliant successes in malaria
control. Unfortunately, the Garki project provides a dramatic counterexample. This
project worked to eradicate malaria from a region temporarily. However, people
who have recovered from an attack of malaria have a temporary immunity against
reinfection. Thus elimination of malaria from a region leaves the inhabitants of this
region without immunity when the campaign ends, and the result can be a serious
outbreak of malaria.

We formulate our descriptions as compartmental models, with the population un-
der study being divided into compartments and with assumptions about the nature
and time rate of transfer from one compartment to another. Diseases that confer im-
munity have a different compartmental structure from diseases without immunity
and from diseases transmitted by vectors. The rates of transfer between compart-
ments are expressed mathematically as derivatives with respect to time of the sizes
of the compartments, and as a result our models are formulated initially as differ-
ential equations. Models in which the rates of transfer depend on the sizes of com-
partments over the past as well as at the instant of transfer lead to more general
types of functional equations, such as differential–difference equations and integral
equations.

In this chapter we describe models for epidemics, acting on a sufficiently rapid
time scale that demographic effects, such as births, natural deaths, immigration into
and emigration out of a population may be ignored. In the next chapter we will
describe models in which demographic effects are included.

Daniel Bernouilli, a member of a famous family of mathematicians (eight spread
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9.2 The Simple Kermack–McKendrick Epidemic Model

Throughout history, epidemics have had major effects on the course of events. For
example, the Black Death, now identified as probably having been the bubonic
plague which had actually invaded Europe as early as the sixth century, spread from
Asia throughout Europe in several waves during the fourteenth century, beginning in
1346, and is estimated to have caused the death of as much as one third of the popu-
lation of Europe between 1346 and 1350. The disease recurred regularly in various
parts of Europe for more than 300 years, notably as the Great Plague of London of
1665–1666. It then gradually withdrew from Europe.

More than 15% of the population of London died in the Great Plague (1665–
1666). It appeared quite suddenly, grew in intensity, and then disappeared, leaving
part of the population untouched. One of the early triumphs of mathematical epi-
demiology was the formulation of a simple model by Kermack and McKendrick
(1927) whose predictions are very similar to this behavior, observed in countless
epidemics. The Kermack–McKendrick model is a compartmental model based on
relatively simple assumptions on the rates of flow between different classes of mem-
bers of the population.

In order to model such an epidemic we divide the population being studied into
three classes labeled S, I, and R. We let S(t) denote the number of individuals who
are susceptible to the disease, that is, who are not (yet) infected at time t. I(t) de-
notes the number of infected individuals, assumed infectious and able to spread the
disease by contact with susceptibles. R(t) denotes the number of individuals who
have been infected and then removed from the possibility of being infected again or
of spreading infection. Removal is carried out through isolation from the rest of the
population, through immunization against infection, through recovery from the dis-
ease with full immunity against reinfection, or through death caused by the disease.
These characterizations of removed members are different from an epidemiological
perspective but are often equivalent from a modeling point of view that takes into
account only the state of an individual with respect to the disease.

We will use the terminology SIR to describe a disease that confers immunity
against reinfection, to indicate that the passage of individuals is from the suscep-
tible class S to the infective class I to the removed class R. Epidemics are usually
diseases of this type. We would use the terminology SIS to describe a disease with
no immunity against re-infection, to indicate that the passage of individuals is from
the susceptible class to the infective class and then back to the susceptible class.
Usually, diseases caused by a virus are of SIR type, while diseases caused by bacte-
ria are of SIS type.

In addition to the basic distinction between diseases for which recovery confers
immunity against reinfection and diseases for which recovered members are suscep-
tible to reinfection, and the intermediate possibility of temporary immunity signified
by a model of SIRS type, more complicated compartmental structure is possible. For
example, there are SEIR and SEIS models, with an exposed period between being
infected and becoming infective.
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When there are only a few infected members, the start of a disease outbreak de-
pends on random contacts between small numbers of individuals. In the next section
we will use this to describe an approach to the study of the beginning of a disease
outbreak by means of branching processes, but we begin with a description of de-
terministic compartmental models.

The independent variable in our compartmental models is the time t, and the
rates of transfer between compartments are expressed mathematically as derivatives
with respect to time of the sizes of the compartments, and as a result our models are
formulated initially as differential equations.

We are assuming that the epidemic process is deterministic, that is, that the be-
havior of a population is determined completely by its history and by the rules that
describe the model. In formulating models in terms of the derivatives of the sizes of
each compartment we are also assuming that the number of members in a compart-
ment is a differentiable function of time. This assumption is plausible once a disease
outbreak has become established but is not valid at the beginning of a disease out-
break when there are only a few infectives. In the next section we will describe a
different approach for the initial stage of a disease outbreak.

The basic compartmental models to describe the transmission of communicable
diseases are contained in a sequence of three papers by W.O. Kermack and A.G.
McKendrick in 1927, 1932, and 1933. The first of these papers described epidemic
models. What is often called the Kermack–McKendrick epidemic model is actually
a special case of the general model introduced in this paper. The general model
included dependence on age of infection, that is, the time since becoming infected,
and can be used to provide a unified approach to compartmental epidemic models.

The special case of the model proposed by Kermack and McKendrick in 1927,
which is the starting point for our study of epidemic models, is

S′ = −βSI,

I′ = βSI −αI, (9.1)
R′ = αI .

A flow chart is shown in Figure 9.1. It is based on the following assumptions:

Fig. 9.1 Flow chart for the SIR model.

(i) An average member of the population makes contact sufficient to transmit in-
fection with βN others per unit time, where N represents total population size
(mass action incidence).



352 9 Epidemic Models

(ii) Infectives leave the infective class at rate αI per unit time.
(iii) There is no entry into or departure from the population, except possibly through

death from the disease.
(iv) There are no disease deaths, and the total population size is a constant N.

According to (i), since the probability that a random contact by an infective is
with a susceptible, who can then transmit infection, is S/N, the number of new in-
fections in unit time per infective is (βN)(S/N), giving a rate of new infections
(βN)(S/N)I = βSI. Alternatively, we may argue that for a contact by a suscep-
tible the probability that this contact is with an infective is I/N and thus the rate
of new infections per susceptible is (βN)(I/N), giving a rate of new infections
(βN)(I/N)S = βSI. Note that both approaches give the same rate of new infec-
tions; in models with more complicated compartmental structure one may be more
appropriate than the other.

We need not give an algebraic expression for N, since it cancels out of the final
model, but we should note that for an SIR disease model, N = S+ I +R. Later, we
will allow the possibility that some infectives recover while others die of the disease.
The hypothesis (iii) really says that the time scale of the disease is much faster than
the time scale of births and deaths, so that demographic effects on the population
may be ignored. An alternative view is that we are interested only in studying the
dynamics of a single epidemic outbreak.

The assumption (ii) requires a fuller mathematical explanation, since the assump-
tion of a recovery rate proportional to the number of infectives has no clear epidemi-
ological meaning. We consider the “cohort” of members who were all infected at
one time and let u(s) denote the number of these who are still infective s time units
after having been infected. If a fraction α of these leave the infective class in unit
time, then

u′ =−αu ,

and the solution of this elementary differential equation is

u(s) = u(0)e−αs .

Thus, the fraction of infectives remaining infective s time units after having become
infective is e−αs, so that the length of the infective period is distributed exponentially
with mean

∫ ∞
0 e−αsds = 1/α , and this is what (ii) really assumes. If we assume,

instead of (ii), that the fraction of infectives remaining infective a time τ after having
become infective is P(τ), the second equation of (9.1) would be replaced by the
integral equation

I(t) = I0(t)+
∫ ∞

0
βS(t − τ)I(t − τ)P(τ)dτ,

where I0(t) represents the members of the population who were infective at time
t = 0 and are still infective at time t.

The assumptions of a rate of contacts proportional to population size N with
constant of proportionality β and of an exponentially distributed recovery rate are
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unrealistically simple. More general models can be constructed and analyzed, but
our goal here is to show what may be deduced from extremely simple models. It
will turn out that that many more realistic models exhibit very similar qualitative
behaviors.

In our model R is determined once S and I are known, and we can drop the R
equation from our model, leaving the system of two equations

S′ = −βSI, (9.2)
I′ = (βS−α)I ,

together with initial conditions

S(0) = S0, I(0) = I0, S0 + I0 = N.

We think of introducing a small number of infectives into a population of suscep-
tibles and ask whether there will be an epidemic. We remark that the model makes
sense only so long as S(t) and I(t) remain nonnegative. Thus if either S(t) or I(t)
reaches zero, we consider the system to have terminated. We observe that S′ < 0 for
all t and I′ > 0 if and only if S > α/β . Thus I increases so long as S > α/β , but
since S decreases for all t, I ultimately decreases and approaches zero. If S0 <α/β , I
decreases to zero (no epidemic), while if S0 > α/β , I first increases to a maximum
attained when S = α/β and then decreases to zero (epidemic).

The quantity βS0/α is a threshold quantity, called the basic reproduction num-
ber [Heesterbeek (1996)] and denoted by R0, which determines whether there is an
epidemict. If R0 < 1, the infection dies out, while if R0 > 1, there is an epidemic.
The definition of the basic reproduction number R0 is that it is the number of sec-
ondary infections caused by a single infective introduced into a wholly susceptible
population of size N ≈ S0 over the course of the infection of this single infective.
In this situation, an infective makes βN contacts in unit time, all of which are with
susceptibles and thus produce new infections, and the mean infective period is 1/α;
thus the basic reproduction number is actually βN/α rather than βS0/α . Another
way to view this apparent discrepancy is to consider two ways in which an epidemic
may begin. One way is an epidemic started by a member of the population being
studied, for example by returning from travel with an infection acquired away from
home. In this case we would have I0 > 0,S0 + I0 = N. A second way is for an epi-
demic to be started by a visitor from outside the population. In this case, we would
have S0 = N.

Since (9.2) is a two-dimensional autonomous system of differential equations,
the natural approach would be to find equilibria and linearize about each equilibrium
to determine its stability. However, since every point with I = 0 is an equilibrium,
the system (9.2) has a line of equilibria, and this approach is not applicable (the
linearization matrix at each equilibrium has a zero eigenvalue).

Fortunately, there is an alternative approach that enables us to analyze the system
(9.2). The sum of the two equations of (9.2) is

(S+ I)′ =−αI.
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Thus S + I is a nonnegative smooth decreasing function and therefore tends to a
limit as t → ∞. Also, it is not difficult to prove that the derivative of a nonnegative
smooth decreasing function must tend to zero, and this shows that

I∞ = lim
t→∞

I(t) = 0.

Thus S+ I has limit S∞.
Integration of the sum of the two equations of (9.2) from 0 to ∞ gives

α
∫ ∞

0
(S(t)+ I(t))dt = S0 + I0 −S∞ = N −S∞.

Division of the first equation of (9.2) by S and integration from 0 to ∞ gives

log
S0

S∞
= β

∫ ∞

0
I(t)dt =

β
α
[N −S∞] = R0

[
1− S∞

N

]
. (9.3)

Equation (9.3) is called the final size relation. It gives a relationship between the
basic reproduction number and the size of the epidemic. Note that the final size of
the epidemic, the number of members of the population who are infected over the
course of the epidemic, is N−S∞. This is often described in terms of the attack rate
(1−S∞/N). [Technically, the attack rate should be called an attack ratio, since it is
dimensionless and is not a rate.]

The final size relation (9.3) can be generalized to epidemic models with more
complicated compartmental structure than the simple SIR model (9.2), including
models with exposed periods, treatment models, and models including quarantine of
suspected individuals and isolation of diagnosed infectives. The original Kermack–
McKendrick model (1927) included dependence on the time since becoming in-
fected (age of infection), and this includes such models.

Integration of the first equation of (9.2) from 0 to t gives

log
S0

S(t)
= β

∫ t

0
I(t)dt =

β
α
[N −S(t)− I(t)],

and this leads to the form

I(t)+S(t)− α
β

logS(t) = N − α
β

logS0. (9.4)

This implicit relation between S and I describes the orbits of solutions of (9.2) in
the (S, I) plane.

In addition, since the right side of (9.3) is finite, the left side is also finite, and
this shows that S∞ > 0. The final size relation (9.3) is valid for a large variety of
epidemic models, as we shall see in later sections.

It is not difficult to prove that there is a unique solution of the final size relation
(9.3). To see this, we define the function
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g(x) = log
S0

x
−R0

[
1− x

N

]
.

Fig. 9.2 The function g(x).

Then, as shown in Figure 9.2,

g(0+)> 0, g(N)< 0,

and g′(x)< 0 if and only if

0 < x <
N
R0

.

If R0 ≤ 1,g(x) is monotone decreasing from a positive value at x = 0+ to a negative
value at x = N. Thus there is a unique zero S∞ of g(x) with S∞ < N.

If R0 > 1,g(x) is monotone decreasing from a positive value at x = 0+ to a
minimum at x = N/R0 and then increases to a negative value at x = N0. Thus there
is a unique zero S∞ of g(x) with

S∞ <
N
R0

.

In fact,

g
(

S0

R0

)
= logR0 −R0 +

S0

N
≤ logR0 −R0 +1.

Since logR0 < R0 −1 for R0 > 0, we actually have

g
(

S0

R0

)
< 0,

and
S∞ <

S0

R0
.
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It is generally difficult to estimate the contact rate β , which depends on the par-
ticular disease being studied but may also depend on social and behavioral factors.
The quantities S0 and S∞ may be estimated by serological studies (measurements of
immune responses in blood samples) before and after an epidemic, and from these
data the basic reproduction number R0 may be estimated using (9.3). This estimate,
however, is a retrospective one, which can be derived only after the epidemic has
run its course.

The maximum number of infectives at any time is the number of infectives when
the derivative of I is zero, that is, when S = α/β . This maximum is given by

Imax = S0 + I0 − α
β

logS0 − α
β
+

α
β

log
α
β
, (9.5)

obtained by substituting S = α/β , I = Imax into (9.4).

Example 1. A study of Yale University freshmen [Evans (1982), reported by Het-
hcote(1989)] described an influenza epidemic with S0 = 0.911, S∞ = 0.513. Here
we are measuring the number of susceptibles as a fraction of the total population
size, or using the population size K as the unit of size. Substitution into the final
size relation gives the estimate β/α = 1.18 and R0 = 1.18. Since we know that τ
is approximately 3 days for influenza, we see that β is approximately 0.48 contacts
per day per member of the population.

Example 2. (The Great Plague in Eyam) The village of Eyam near Sheffield, Eng-
land, suffered an outbreak of bubonic plague in 1665–1666 the source of which is
generally believed to be the Great Plague of London. The Eyam plague was survived
by only 83 of an initial population of 350 persons. Since detailed records were pre-
served and the community was persuaded to quarantine itself to try to prevent the
spread of disease to other communities, the disease in Eyam has been used as a case
study for modeling [Raggett (1982)]. Detailed examination of the data indicates that
there were actually two outbreaks, of which the first was relatively mild. Thus we
shall try to fit the model (9.2) over the period from mid-May to mid-October 1666,
measuring time in months with an initial population of 7 infectives and 254 suscep-
tibles, and a final population of 83. Raggett (1982) gives values of susceptibles and
infectives in Eyam on various dates, beginning with S(0) = 254, I(0) = 7, shown in
Table 9.1.

The final size relation with S0 = 254, I0 = 7, S∞ = 83 gives β/α = 6.54×10−3,
α/β = 153. The infective period was 11 days, or 0.3667 month, so that α = 2.73.
Then β = 0.0178. The relation (9.5) gives an estimate of 30.4 for the maximum
number of infectives. We use the values obtained here for the parameters β and τ
in the model (9.2) for simulations of both the phase plane, here the (S, I)-plane, and
for graphs of S and I as functions of t (Figures 9.3, 9.4, 9.5). Figure 9.6 plots these
data points together with the phase portrait given in Figure 9.3 for the model (9.2).

The actual data for the Eyam epidemic are remarkably close to the predictions
of this very simple model. However, the model is really too good to be true. Our
model assumes that infection is transmitted directly between people. While this is
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Date (1666) Susceptibles Infectives

July 3/4 235 14.5
July 19 201 22
August 3/4 153.5 29
August 19 121 21
September 3/4 108 8
September 19 97 8
October 4/5 Unknown Unknown
October 20 83 0

Table 9.1 Eyam Plague data.
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Fig. 9.3 The S-I plane.

possible, bubonic plague is transmitted mainly by rat fleas. When an infected rat is
bitten by a flea, the flea becomes extremely hungry and bites the host rat repeat-
edly, spreading the infection in the rat. When the host rat dies, its fleas move on to
other rats, spreading the disease further. As the number of available rats decreases,
the fleas move to human hosts, and this is how plague starts in a human population
(although the second phase of the epidemic may have been the pneumonic form of
bubonic plague, which can be spread from person to person). One of the main rea-
sons for the spread of plague from Asia into Europe was the passage of many trading
ships; in medieval times ships were invariably infested with rats. An accurate model
of plague transmission would have to include flea and rat populations, as well as
movement in space. Such a model would be extremely complicated, and its predic-
tions might well not be any closer to observations than our simple unrealistic model.
Very recent study of the data from Eyam suggests that the rat population may not
have been large enough to support the epidemic and human to human transmission
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Fig. 9.5 I as a function of t.

was also a factor. Raggett (1982) also used a stochastic model to fit the data, but the
fit was rather poorer than the fit for the simple deterministic model(9.2).

In the village of Eyam the rector persuaded the entire community to quarantine
itself to prevent the spread of disease to other communities. One effect of this pol-
icy was to increase the infection rate in the village by keeping fleas, rats, and people
in close contact with one another, and the mortality rate from bubonic plague was
much higher in Eyam than in London. Further, the quarantine could do nothing to
prevent the travel of rats and thus did little to prevent the spread of disease to other
communities. One message this suggests to mathematical modelers is that control
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Fig. 9.6 The S-I plane, model and data.

strategies based on false models may be harmful, and it is essential to distinguish be-
tween assumptions that simplify but do not alter the predicted effects substantially,
and wrong assumptions that make an important difference.

In order to prevent the occurrence of an epidemic if infectives are introduced
into a population, it is necessary to reduce the basic reproductive number R0 below
one. This may sometimes be achieved by immunization, which has the effect of
transferring members of the population from the susceptible class to the removed
class and thus of reducing S(0). If a fraction p of the population is successfully
immunized, the effect is to replace S(0) by S(0)(1 − p), and thus to reduce the
basic reproductive number to βS(0)(1− p)/α . The requirement βS(0)(1− p)/α <
1 gives 1− p < α/βS(0), or

p > 1− α
βS(0)

= 1− 1
R0

.

A large basic reproductive number means that the fraction that must be immunized
to prevent the spread of infection is large. This relation is connected to the idea of
herd immunity, which we shall introduce in the next chapter.

Initially, the number of infectives grows exponentially because the equation for
I may be approximated by

I′ = (βN −α)I

and the initial growth rate is

r = βN −α = α(R0 −1) .

This initial growth rate r may be determined experimentally when an epidemic be-
gins. Then since N and α may be measured, β may be calculated as
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β =
r+α

N
.

However, because of incomplete data and underreporting of cases, this estimate may
not be very accurate. This inaccuracy is even more pronounced for an outbreak of
a previously unknown disease, where early cases are likely to be misdiagnosed.
Because of the final size relation, estimation of β or R0 is an important question
that has been studied by a variety of approaches.

There are serious shortcomings in the simple Kermack–McKendrick model as
a description of the beginning of a disease outbreak, and a very different kind of
model is required.

Exercises

1. The same survey of Yale students described in Example 1 reported that 91.1
percent were susceptible to influenza at the beginning of the year and 51.4
percent were susceptible at the end of the year. Estimate the basic reproductive
number β/α and decide whether there was an epidemic.

2. What fraction of Yale students in Exercise 1 would have had to be immunized
to prevent an epidemic?

3. What was the maximum number of Yale students in Exercises 1 and 2 suffering
from influenza at any time?

4. An influenza epidemic was reported at an English boarding school in 1978 that
spread to 512 of the 763 students. Estimate the basic reproductive number β/α .

5. What fraction of the boarding school students in Exercise 4 would have had to
be immunized to prevent an epidemic?

6. What was the maximum number of boarding school students in Exercises 4 and
5 suffering from influenza at any time?

7. A disease is introduced by two visitors into a town with 1200 inhabitants. An
average infective is in contact with 0.4 inhabitants per day. The average du-
ration of the infective period is 6 days, and recovered infectives are immune
against reinfection. How many inhabitants would have to be immunized to
avoid an epidemic?

8. Consider a disease with β = 1/3000, 1/α = 6 days in a population of 1200
members. Suppose the disease conferred immunity on recovered infectives.
How many members would have to be immunized to avoid an epidemic?

9. A disease begins to spread in a population of 800. The infective period has an
average duration of 14 days and the average infective is in contact with 0.1
persons per day. What is the basic reproductive number? To what level must
the average rate of contact be reduced so that the disease will die out?

10. European fox rabies is estimated to have a transmission coefficient β of 80 km2

years/fox and an average infective period of 5 days. There is a critical carrying
capacity Kc measured in foxes per km2, such that in regions with fox density
less than Kc, rabies tends to die out, while in regions with fox density greater
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than Kc, rabies tends to persist. Estimate Kc. [Remark: It has been suggested
in Great Britain that hunting to reduce the density of foxes below the critical
carrying capacity would be a way to control the spread of rabies.]

11. A large English estate has a population of foxes with a density of 1.3 foxes/km2.
A large fox hunt is planned to reduce the fox population enough to prevent an
outbreak of rabies. Assuming that the contact number β/α is 1 km2/fox, find
what fraction of the fox population must be caught.

12. Following a complaint from the SPCA, organizers decide to replace the fox
hunt of Exercise 1 by a mass inoculation of foxes for rabies. What fraction of
the fox population must be inoculated to prevent a rabies outbreak?

13. What actually occurs on the estate of these exercises is that 10 percent of the
foxes are killed and 15 percent are inoculated. Is there danger of a rabies out-
break.

14. Here is another approach to the analysis of the SIR model (9.2).

(i) Divide the two equations of the model to give

I′

S′
=

dI
dS

=
(βS−α)I
−βSI

=−1+
α
βS

.

(ii) Integrate to find the orbits in the (S, I)-plane,

I =−S+
α
β

logS+ c ,

with c an arbitrary constant of integration.
(iii) Define the function

V (S, I) = S+ I − α
β

logS

and show that each orbit is given implicitly by the equation V (S, I) = c for
some choice of the constant c.

(iv) Show that no orbit reaches the I-axis and deduce that S∞ = limt→∞ S(t)> 0,
which implies that part of the population escapes infection.

9.3 A Branching-Process Disease-Outbreak Model

The Kermack–McKendrick compartmental epidemic model assumes that the sizes
of the compartments are large enough that the mixing of members is homogeneous,
or at least that there is homogeneous mixing in each subgroup if the population is
stratified by activity levels. However, at the beginning of a disease outbreak, there
is a very small number of infective individuals, and the transmission of infection
is a stochastic event depending on the pattern of contacts between members of the
population; a description should take this pattern into account.
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Our approach will be to give a stochastic-branching process description of the
beginning of a disease outbreak to be applied as long as the number of infectives
remains small, distinguishing a (minor) disease outbreak confined to this stage from
a (major) epidemic, which occurs if the number of infectives begins to grow at an
exponential rate. Once an epidemic has started, we may switch to a deterministic
compartmental model, arguing that in a major epidemic, contacts would tend to be
more homogeneously distributed. Implicitly, we are thinking of an infinite popula-
tion, and by a major epidemic we mean a situation in which a nonzero fraction of
the population is infected, and by a minor outbreak we mean a situation in which the
infected population may grow but remains a negligible fraction of the population.

There is an important difference between the behavior of branching process mod-
els and the behavior of models of Kermack–McKendrick type, namely, as we shall
see in this section that for a stochastic disease outbreak model if R0 < 1, the proba-
bility that the infection will die out is 1, but if R0 > 1, there is a positive probability
that the infection will increase initially but will produce only a minor outbreak and
will die out before triggering a major epidemic.

We describe the network of contacts between individuals by a graph with mem-
bers of the population represented by vertices and with contacts between individu-
als represented by edges. The study of graphs originated with the abstract theory of
Erdős and Rényi of the 1950s and 1960s [Erdős and Rényi (1959, 1960, 1961)]. It
has become important in many areas of application, including social contacts and
computer networks, as well as the spread of communicable diseases. We will think
of networks as bidirectional, with disease transmission possible in either direction
along an edge.

An edge is a contact between vertices that can transmit infection. The number of
edges of a graph at a vertex is called the degree of the vertex. The degree distribution
of a graph is {pk}, where pk is the fraction of vertices having degree k. The degree
distribution is fundamental in the description of the spread of disease.

We think of a small number of infectives in a population of susceptibles large
enough that in the initial stage, we may neglect the decrease in the size of the sus-
ceptible population. Our development begins along the lines of that of [Diekmann
and Heesterbeek (2000)] and then develops along the lines of [Callaway, Newman,
Strogatz, and Watts (2000), Newman (2002), Newman, Strogatz, and Watts (2002)].
We assume that the infectives make contacts independently of one another and let pk
denote the probability that the number of contacts by a randomly chosen individual
is exactly k, with ∑∞

k=0 pk = 1. In other words, {pk} is the degree distribution of the
vertices of the graph corresponding to the population network. For the moment, we
assume that every contact leads to an infection, but we will relax this assumption
later.

It is convenient to define the probability generating function

G0(z) =
∞

∑
k=0

pkzk.
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Since ∑∞
k=0 pk = 1, this power series converges for 0 ≤ z ≤ 1, and may be differen-

tiated term by term. Thus

pk =
G(k)

0 (0)
k!

, k = 0,1,2, . . . .

It is easy to verify that the generating function has the properties

G0(0) = p0, G0(1) = 1, G′
0(z)> 0, G′′

0(z)> 0.

The mean degree, which we denote by 〈k〉 or z1, is

〈k > 〉=
∞

∑
k=1

kpk = G′
0(1).

More generally, we define the moments

〈k j〉=
∞

∑
k=1

k j pk, j = 1,2, . . .∞.

When a disease is introduced into a network, we think of it as starting at a vertex
(patient zero) that transmits infection to every individual to whom this individual is
connected, that is, along every edge of the graph from the vertex corresponding to
this individual. We may think of this individual as being inside the population, as
when a member of a population returns from travel after being infected, or as being
outside the population, as when someone visits a population and brings an infection.
For transmission of disease after this initial contact we need to use the excess degree
of a vertex. If we follow an edge to a vertex, the excess degree of this vertex is one
less than the degree. We use the excess degree because infection cannot be trans-
mitted back along the edge whence it came. The probability of reaching a vertex of
degree k, or excess degree (k−1), by following a random edge is proportional to k,
and thus the probability that a vertex at the end of a random edge has excess degree
(k−1) is a constant multiple of kpk with the constant chosen to make the sum over
k of the probabilities equal to 1. Then the probability that a vertex has excess degree
(k−1) is

qk−1 =
kpk

〈k〉 .

This leads to a generating function G1(z) for the excess degree,

G1(z) =
∞

∑
k=1

qk−1zk−1 =
∞

∑
k=1

kpk

〈k〉 zk−1 =
1
〈k〉G′

0(z),

and the mean excess degree, which we denote by 〈ke〉, is
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〈ke〉 = 1
〈k〉

∞

∑
k=1

k(k−1)pk

=
1
〈k〉

∞

∑
k=1

k2 pk − 1
〈k〉

∞

∑
k=1

kpk

=
〈k2〉
〈k〉 −1 = G′

1(1).

We let R0 = G′
1(1), the mean excess degree. This is the mean number of secondary

cases infected by patient zero and is the basic reproduction number as usually de-
fined; the threshold for an epidemic is determined by R0. The quantity 〈ke〉= G′

1(1)
is sometimes written in the form

〈ke〉= G′
1(1) =

z2

z1
,

where z2 = ∑∞
k=1 k(k− 1)pk = 〈k2〉− 〈k〉 is the mean number of second neighbors

of a random vertex.
Our next goal is to calculate the probability that the infection will die out and will

not develop into a major epidemic, proceeding in two steps. First we find the prob-
ability that a secondary infected vertex (a vertex that has been infected by another
vertex in the population) will not spark a major epidemic.

Suppose that the secondary infected vertex has excess degree j. We let zn denote
the probability that this infection dies out within the next n generations. For the
infection to die out in n generations, each of the j secondary infections coming
from the initial secondary infected vertex must die out in (n− 1) generations. The
probability of this is zn−1 for each secondary infection, and the probability that
all secondary infections will die out in (n− 1) generations is z j

n−1. Now zn is the
sum over j of these probabilities, weighted by the probability q j of j secondary
infections. Thus

zn =
∞

∑
j=0

q jz
j
n−1 = G1(zn−1).

Since G1(z) is an increasing function, the sequence zn is an increasing sequence
and has a limit z∞, which is the probability that this infection will die out eventually.
Then z∞ is the limit as n → ∞ of the solution of the difference equation

zn = G1(zn−1), z0 = 0.

Thus z∞ must be an equilibrium of this difference equation, that is, a solution of z =
G1(z). Let w be the smallest positive solution of z = G1(z). Then, because G1(z) is
an increasing function of z, z ≤ G1(z)≤ G1(w) = w for 0 ≤ z ≤ w. Since z0 = 0 < w
and zn−1 ≤ w implies

zn = G1(zn−1)≤ G1(w) = w,

it follows by induction that
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zn ≤ w, n = 0,1, . . . ∞.

From this we deduce that
z∞ = w.

The equation G1(z) = z has a root z = 1, since G1(1) = 1. Because the function
G1(z)− z has a positive second derivative, its derivative G′

1(z)−1 is increasing and
can have at most one zero. This implies that the equation G1(z) = z has at most two
roots in 0 ≤ z ≤ 1. If R0 < 1, the function G1(z)− z has a negative first derivative

G′
1(z)−1 ≤ G′

1(1)−1 = R0 −1 < 0,

and the equation G1(z) = z has only one root, namely z = 1. On the other hand, if
R0 > 1, the function G1(z)− z is positive for z = 0 and negative near z = 1 since it
is zero at z = 1, and its derivative is positive for z < 1 and z near 1. Thus in this case
the equation G1(z) = z has a second root z∞ < 1.

This root z∞ is the probability that an infection transmitted along one of the edges
at the initial secondary vertex will die out, and this probability is independent of the
excess degree of the initial secondary vertex. It is also the probability that an infec-
tion originating outside the population, such as an infection brought from outside
into the population under study, will die out.

Next, we calculate the probability that an infection originating at a primary in-
fected vertex, such as an infection introduced by a visitor from outside the popula-
tion under study, will die out. The probability that the disease outbreak will die out
eventually is the sum over k of the probabilities that the initial infection in a vertex
of degree k will die out, weighted by the degree distribution {pk} of the original
infection, and this is

∞

∑
k=0

pkzk
∞ = G0(z∞).

To summarize this analysis, we see that if R0 < 1, the probability that the in-
fection will die out is 1. On the other hand, if R0 > 1, there is a solution z∞ < 1
of

G1(z) = z,

and there is a probability 1−G0(z∞)> 0 that the infection will persist, and will lead
to an epidemic. However, there is a positive probability G0(z∞) that the infection
will increase initially but will produce only a minor outbreak and will die out before
triggering a major epidemic. This distinction between a minor outbreak and a major
epidemic, and the result that if R0 > 1 there may be only a minor outbreak and
not a major epidemic, are aspects of stochastic models not reflected in deterministic
models.

If contacts between members of the population are random, corresponding to the
assumption of mass action in the transmission of disease, then the probabilities pk
are given by the Poisson distribution
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pk =
e−cck

k!

for some constant c [Brauer, van den Driessche, and Wu (2008), pp. 142–143]. The
generating function for the Poisson distribution is ec(z−1). Then G1(z) = G0(z), and
R0 = c, so that

G1(z) = G0(z) = eR0(z−1).

The commonly observed situation that most infectives do not pass on infection
but there are a few “superspreading events” [Riley et al. (2003)] corresponds to a
probability distribution that is quite different from a Poisson distribution, and could
give a quite different probability that an epidemic will occur. For example, if R0 =
2.5, the assumption of a Poisson distribution gives z∞ = 0.107 and G0(z∞) = 0.107,
so that the probability of an epidemic is 0.893. The assumption that nine out of ten
infectives do not transmit infection while the tenth transmits 25 infections gives

G0(z) = (z25 +9)/10, G1(z) = z24, z∞ = 0, G0(z∞) = 0.9,

from which we see that the probability of an epidemic is 0.1. Another example,
possibly more realistic, is to assume that a fraction (1− p) of the population fol-
lows a Poisson distribution with constant r, while the remaining fraction p consists
of superspreaders each of whom makes L contacts. This would give a generating
function

G0(z) = (1− p)er(z−1) + pzL,

G1(z) =
r(1− p)er(z−1) + pLzL−1

r(1− p)+ pL
,

and

R0 =
r2(1− p)+ pL(L−1)

r(1− p)+ pL
.

For example, if r = 2.2, L = 10, p = 0.01, numerical simulation gives

R0 = 2.5, z∞ = 0.146,

so that the probability of an epidemic is 0.849.
These examples demonstrate that the probability of a major epidemic depends

strongly on the nature of the contact network. Simulations suggest that for a given
value of the basic reproduction number, the Poisson distribution is the one with the
maximum probability of a major epidemic.

It has been observed that in many situations there is a small number of long-range
connections in the graph, allowing rapid spread of infection. There is a high degree
of clustering (some vertices with many edges), and there are short path lengths. Such
a situation may arise if a disease is spread to a distant location by an air traveler.
This type of network is called a small-world network. Long range connections in a
network can increase the likelihood of an epidemic dramatically.
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These examples indicate that the probability of an epidemic depends strongly
on the contact network at the beginning of a disease outbreak. We will not explore
network models further here, but we point out that this is an actively developing
field of science. Some basic references are [Newman (2003, Strogatz (2001)].

9.3.1 Transmissibility

Contacts do not necessarily transmit infection. For each contact between individuals
of whom one has been infected and the other is susceptible, there is a probability
that infection will actually be transmitted. This probability depends on such fac-
tors as the closeness of the contact, the infectivity of the member who has been
infected, and the susceptibility of the susceptible member. We assume that there is
a mean probability T , called the transmissibility, of transmission of infection. The
transmissibility depends on the rate of contacts, the probability that a contact will
transmit infection, the duration time of the infection, and the susceptibility. The de-
velopment in Section 9.2 assumed that all contacts transmit infection, that is, that
T = 1.

In this section, we will continue to assume that there is a network describing the
contacts between members of the population whose degree distribution is given by
the generating function G0(z), but we will assume in addition that there is a mean
transmissibility T .

When disease begins in a network, it spreads to some of the vertices of the net-
work. Edges that are infected during a disease outbreak are called occupied, and the
size of the disease outbreak is the cluster of vertices connected to the initial vertex
by a continuous chain of occupied edges.

The probability that exactly m infections are transmitted by an infective vertex of
degree k is (

k
m

)
T m(1−T )k−m.

We define Γ0(z,T )to be the generating function for the distribution of the number
of occupied edges attached to a randomly chosen vertex, which is the same as the
distribution of the infections transmitted by a randomly chosen individual for any
(fixed) transmissibility T . Then

Γ0(z,T ) =
∞

∑
m=0

[
∞

∑
k=m

pk

(
k
m

)
T m(1−T )(k−m)

]
zm

=
∞

∑
k=0

pk

[
k

∑
m=0

(
k
m

)
(zT )m(1−T )(k−m)

]
(9.6)

=
∞

∑
k=0

pk[zT +(1−T )]k = G0(1+(z−1)T ).
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In this calculation we have used the binomial theorem to see that

k

∑
m=0

(
k
m

)
(zT )m(1−T )(k−m) = [zT +(1−T )]k.

Note that

Γ0(0,T ) = G0(1−T ), Γ0(1,T ) = G0(1) = 1, Γ ′
0 (z,T ) = T G′

0(1+(z−1)T ).

For secondary infections we need the generating function Γ1(z,T ) for the distri-
bution of occupied edges leaving a vertex reached by following a randomly chosen
edge. This is obtained from the excess degree distribution in the same way,

Γ1(z,T ) = G1(1+(z−1)T )

and

Γ1(0,T ) = G1(1−T ), Γ1(1,T ) = G1(1) = 1, Γ ′
1 (z,T ) = T G′

1(1+(z−1)T ).

The basic reproduction number is now

R0 = Γ ′
1 (1,T ) = T G′

1(1).

The calculation of the probability that the infection will die out and will not
develop into a major epidemic follows the same lines as the argument for T = 1.
The result is that if R0 = T G′

1(1)< 1, the probability that the infection will die out
is 1. If R0 > 1, there is a solution z∞(T )< 1 of

Γ1(z,T ) = z,

and a probability 1−Γ0(z∞(T ),T )> 0 that the infection will persist, and will lead to
an epidemic. However, there is a positive probability Γ1(z∞(T ),T ) that the infection
will increase initially but will produce only a minor outbreak and will die out before
triggering a major epidemic.

Another interpretation of the basic reproduction number is that there is a critical
transmissibility Tc defined by

TcG′
1(1) = 1.

In other words, the critical transmissibility is the transmissibility that makes the
basic reproduction number equal to 1. If the mean transmissibility can be decreased
below the critical transmissibility, then an epidemic can be prevented.

The measures used to try to control an epidemic may include contact interven-
tions, that is, measures affecting the network such as avoidance of public gatherings
and rearrangement of the patterns of interaction between caregivers and patients in a
hospital, and transmission interventions such as careful hand washing or face masks
to decrease the probability that a contact will lead to disease transmission.
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Exercises

In each exercise, assume that the transmissibility is 1.

1. Show that it is not possible for a major epidemic to develop unless at least one
member of the contact network has degree at least 3.

2. What is the probability of a major epidemic if every member of the contact
network has degree 3.

3. Consider a truncated Poisson distribution, with

pk =

{
e−cck

k! , k ≤ 10,
0, k > 10.

Estimate (numerically) the probability of a major epidemic if c = 1.5.
4. Show that the probability generating function for an exponential distribution,

given by
pk = (1− e−1/r)e−k/r,)

is

G0(z) =
1− e−1/r

1− ze−1/r .

5. A power law distribution is given by

pk =Ck−α .

For what values of α is it possible to normalize this (i.e., choose C to make
∑ pk = 1?

9.4 Network and Compartmental Epidemic Models

Compartmental models for epidemics are not suitable for describing the beginning
of a disease outbreak because they assume that all members of a population are
equally likely to make contact with a very small number of infectives. Thus, as we
have seen in the preceding section, stochastic branching process models are better
descriptions of the beginning of an epidemic. They allow the possibility that even if
a disease outbreak has a reproduction number greater than 1, it may be only a minor
outbreak and may not develop into a major epidemic. One possible approach to a
more realistic description of an epidemic would be to use a branching process model
initially and then make a transition to a compartmental model when the epidemic has
become established and there are enough infectives that mass action mixing in the
population is a reasonable approximation. Another approach would be to continue
to use a network model throughout the course of the epidemic. In this section we
shall indicate how a compartmental approach and a network approach are related.
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The development is taken from Volz (2008), Miller (2010), and Miller and Volz
(2011).

We assume that there is a known static configuration model (CM) network in
which the probability that a node u has degree ku is P(ku)). We let G0(z) denote the
probability generating function of the degree distribution,

G0(z) =
∞

∑
k=0

pkzk,

with mean degree 〈〉>= G′
0(1).

The per-edge from an infected node is assumed to be β , and it is assumed that
infected nodes recover at a rate α . We use an edge-based compartmental model
because the probability that a random neighbor is infected is not necessarily the
same as the probability that a random individual is infected. We let S(t) denote the
fraction of nodes that are susceptible at time t, I(t) the fraction of nodes that are
infective at time t, and R(t) the fraction of nodes that are recovered at time t. It is
easy to write an equation for R′, the rate at which infectives recover. If we know
S(t), we can find I(t), because a decrease in S gives a corresponding increase in I.
Since

S(t)+ I(t)+R(t) = 1,

we need only find the probability that a randomly selected node is susceptible.
We assume that the hazard of infection for a susceptible node u is proportional

to the degree ku of the node. Each contact is represented by an edge of the network
joining u to a neighboring node. We let ϕI denote the probability that this neighbor
is infective. Then the per-edge hazard of infection is

λE = βϕI .

Assuming that edges are independent, u’s hazard of infection at time t is

λu(t) = kuλE(t) = kuβϕI(t).

Consider a randomly selected node u and let θ(t) be the probability that a random
neighbor has not transmitted infection to u. Then the probability that u is susceptible
is θ ku . Averaging over all nodes, we see that the probability that a random node u is
susceptible is

S(t) =
∞

∑
k=0

P(k)[θ(t)]k = G0(θ(t)). (9.7)

We break θ into three parts,

θ = ϕS +ϕI +ϕR,

with ϕS the probability that a random neighbor v of u is susceptible, ϕI the probabil-
ity that a random neighbor v of u is infective but has not transmitted infection to u,
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and ϕR the probability that a random neighbor v has recovered without transmitting
infection to u. Then the probability that v has transmitted infection to u is 1−θ .

Since infected neighbors recover at rate α , the flux from ϕI to ϕR is αϕI . Thus

ϕ ′
R = αϕI .

It is easy to see from this that
R′ = αI. (9.8)

Since edges from infected neighbors transmit infection at rate β , the flux from
ϕI to (1−θ) is βϕI . Thus

θ ′ =−βϕI . (9.9)

To obtain ϕ ′
I we need the flux into and out of the ϕI compartment. The incoming flux

from ϕS results from infection of the neighbor. The outgoing flux to ϕR corresponds
to recovery of the neighbor without having transmitted infection, and the outgoing
flux to (1−θ) corresponds to transmission without recovery. The total outgoing flux
is (α +β )ϕI .

To determine the flux from ϕS to ϕI , we need the rate at which a neighbor changes
from susceptible to infective. Consider a random neighbor v of u; the probability that
v has degree k iskp(k)/〈k〉. Since there are (k− 1) neighbors of v that could have
infected v, the probability that v is susceptible is θ k−1. Averaging over all k, we see
that the probability that a random neighbor v of u is susceptible is

ϕS =
∞

∑
k=0

kp(k)
〈k〉 θ k−1 =

G′
0(θ)

G′
0(1)

. (9.10)

To calculate ϕR, we note that the flux from ϕI to ϕR and the flux from ϕI to (1−θ)
are proportional with proportionality constant α/β . Since both ϕR and (1−θ) start
at zero,

ϕR =
α
β
(1−θ). (9.11)

Now, using (9.9), (9.10), (9.11), and

ϕI = θ −ϕS −ϕR,

we obtain

θ ′ =−βϕI =−βθ +βϕS +βϕR =−βθ +β
G′

0(θ)
G′

0(1)
+α(1−θ). (9.12)

We now have a dynamic model consisting of equations (9.12), (9.7), (9.8), and
S+ I +R = 1. We wish to show a relationship between this set of equations and the
simple Kermack–McKendrick compartmental model (9.2). In order to accomplish
this, we need only show under what conditions we would have S′ =−βSI.

Differentiating (9.7) and using (9.9), we obtain
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S′ = G′
0(θ)θ

′ =−G′
0(θ)βϕI .

Consider a large population with N members, each making C ≤ N − 1 contacts, so
that

S = θC, G′
0(θ) =

CS
θ

S′(θ),

and
S′ =−βCS

ϕI

θ
.

We now let C → ∞ (which implies N → ∞) in such a way that

β̂ = βC

remains constant. Then
S′ =−β̂

ϕI

θ
.

We will now show that ϕI

θ
≈ 1,

and this will yield the desired approximation

S′ =−β̂SI. (9.13)

The probability that an edge to a randomly chosen node has not transmitted in-
fection is θ (assuming that the given target node cannot transmit infection), and
the probability that in addition it is connected to an infected node is ϕI . Because
β̂ = βC is constant and therefore bounded as C grows, only a fraction no greater
than a constant multiple of I/C of edges to the target node may have transmitted
infection from a node that is still infected. For large values of C,ϕI is approximately
I. Similarly, θ is approximately 1 as C → ∞. Thus ϕI/θ ≈ I as C → ∞. This gives
the desired approximate equation for S. The result remains valid if all degrees are
close to the average degree as the average degree grows.

The edge-based compartmental modeling approach that we have used can be
generalized in several ways. For example, heterogeneity of mixing can be included.
In general, one would expect that early infections would be in individuals having
more contacts, and thus that an epidemic would develop more rapidly than a mass
action compartmental model would predict. When contact duration is significant,
as would be the case in sexually transmitted diseases, an individual with a contact
would play no further role in disease transmission until a new contact is made, and
this can be incorporated in a network model.

The network approach to disease modeling is a rapidly developing field of study,
and there will undoubtedly be fundamental developments in our understanding of
the modeling of disease transmission. Some useful references are [Bansal, Read,
Pourbohloul, and Meyers (2010), Meyers (2007), Meyers et al. (2006), Meyers et
al. (2005), Newman(2001), Newman (2002), Newman, Strogatz, and Watts (2001),
Strogatz (2001)].
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In the remainder of this chapter, we assume that we are in an epidemic situation
following a disease outbreak that has been modeled initially by a branching process.
Thus we return to the study of compartmental models.

9.5 More Complicated Epidemic Models

We have established that the simple Kermack–McKendrick epidemic model (9.2)
has the following basic properties:

1. There is a basic reproduction number R0 such that if R0 < 1, the disease dies
out while if R0 > 1, there is an epidemic.

2. The number of infectives always approaches zero and the number of suscepti-
bles always approaches a positive limit as t → ∞.

3. There is a relationship between the reproduction number and the final size of
the epidemic, which is an equality if there are no disease deaths.

In fact, these properties hold for epidemic models with more complicated com-
partmental structure. We will describe some common epidemic models as examples.

9.5.1 Exposed Periods

In many infectious diseases there is an exposed period after the transmission of in-
fection from susceptibles to potentially infective members but before these potential
infectives develop symptoms and can transmit infection. To incorporate an exposed
period with mean exposed period 1/κ , we add an exposed class E and use compart-
ments S,E, I,R and total population size N = S+E + I +R to give a generalization
of the epidemic model (9.2)

S′ = −βSI,

E ′ = βSI −κE, (9.14)
I′ = κE −αI.

A flow chart is shown in Figure 9.7.

Fig. 9.7 Flow chart for the SEIR model.
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The analysis of this model is the same as the analysis of (9.2), but with I replaced
by E + I. That is, instead of using the number of infectives as one of the variables,
we use the total number of infected members, whether or not they are capable of
transmitting infection.

In some diseases there is some infectivity during the exposed period. This may
be modeled by assuming infectivity reduced by a factor ε during the exposed period.
A calculation of the rate of new infections per susceptible leads to a model

S′ = −βS(I + εE),

E ′ = βS(I + εE)−κE, (9.15)
I′ = κE −αI .

We take initial conditions

S(0) = S0, E(0) = E0, I(0) = I0.

For this model,

R0 =
βN
α

+ ε
βN
κ

.

Integration of the sum of the equations of (9.14) from 0 to ∞ gives

N −S∞ = α
∫ ∞

0
I(s)ds.

Integration of the third equation of (9.15) gives

κ
∫ ∞

0
E(s)ds = α

∫ ∞

0
I(s)ds− I0,

and division of the first equation of (9.15) by S followed by integration from 0 to ∞
gives

log
S0

S∞
=

∫ ∞

0
β [I(s)+ εE(s)ds

= β
∫ ∞

0
[I(s)+ εE(s)ds

= β
[
ε +

κ
α

]∫ ∞

0
E(s)ds− εβ I0

κ

= R0

[
1− S∞

N

]
− εβ I0

κ
.

In this final size relation there is an initial term β I0/α , caused by the assumption
that there are individuals infected originally who are beyond the exposed stage in
which they would have had some infectivity. In order to obtain a final size relation
without such an initial term it is necessary to assume I(0) = 0, that initial infectives
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are in the first stage in which they can transmit infection. If I(0) = 0, the final size
relation has the form (9.3).

9.5.2 Treatment Models

One form of treatment that is possible for some diseases is vaccination to protect
against infection before the beginning of an epidemic. For example, this approach
is commonly used for protection against annual influenza outbreaks. A simple way
to model this would be to reduce the total population size by the fraction of the
population protected against infection.

In reality, such inoculations are only partly effective, decreasing the rate of in-
fection and also decreasing infectivity if a vaccinated person does become infected.
This may be modeled by dividing the population into two groups with different
model parameters, which would require some assumptions about the mixing be-
tween the two groups. This is not difficult, but we will not explore this direction
here.

If there is a treatment for infection once a person has been infected, this may be
modeled by supposing that a fraction γ per unit time of infectives is selected for
treatment, and that treatment reduces infectivity by a fraction δ . Suppose that the
rate of removal from the treated class is η . This leads to the SITR model, where T
is the treatment class, given by

S′ = −βS[I +δT ],

I′ = βS[I +δT ]− (α + γ), I (9.16)
T ′ = γI −ηT.

A flow chart is shown in Figure 9.8.
It is not difficult to prove, much as was done for the model (9.2), that

S∞ = lim
t→∞

S(t)> 0, lim
t→∞

I(t) = lim
t→∞

T (t) = 0.

In order to calculate the basic reproduction number, we may argue that an infec-
tive in a totally susceptible population causes βN new infections in unit time, and
the mean time spent in the infective compartment is 1/(α + γ). In addition, a frac-
tion γ/(α + γ) of infectives are treated. While in the treatment stage the number of
new infections caused in unit time is δβN, and the mean time in the treatment class
is 1/η . Thus R0 is

R0 =
βN

α + γ
+

γ
α + γ

δβN
η

. (9.17)

It is also possible to establish the final size relation (9.3) by means very similar
to those used for the simple model (9.2). We integrate the first equation of (9.16) to
obtain
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Fig. 9.8 Flow chart for the SITR model.

log
S0

S∞
=
∫ ∞

0
β [I(t)+δT (t)]dt = β

∫ ∞

0
[I(t)+δT (t)]dt.

Integration of the third equation of (9.16) gives

γ
∫ ∞

0
I(t)dt = η

∫ ∞

0
T (t)dt.

Integration of the sum of the first two equations of (9.16) gives

N −S∞ = (α + γ)
∫ ∞

0
I(t)dt.

Combination of these three equations and (9.17) gives (9.3).

9.5.3 An Influenza Model

In some diseases, such as influenza, at the end of a stage individuals may proceed
to one of two stages. There is a latent period after which a fraction p of latent
individuals L proceeds to an infective stage I, while the remaining fraction (1− p)
proceeds to an asymptomatic stage A, with infectivity reduced by a factor δ and a
different period 1/η . The influenza model of [Arino et al. (2006, 2007)] is

S′ = −βS[I +δA],

L′ = βS[I +δA]−κL, (9.18)
I′ = pκL−αI,

A′ = (1− p)κL−ηA,
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and

R0 = βN
[

p
α
+

δ (1− p)
η

]
.

A flow chart is shown in Figure 9.9.

Fig. 9.9 Influenza model flowchart.

The same approach used in earlier examples leads to the same final size relation
(9.3).

The model (9.18) is an example of a differential infectivity model. In such mod-
els, also used in the study of HIV/AIDS [Hyman, Li and Stanley (1999)], individ-
uals enter a specific group when they become infected and stay in that group over
the course of the infection. Different groups may have different parameter values.
For example, for influenza infective and asymptomatic members may have different
infectivities and different periods of stay in the respective stages.

9.5.4 A Quarantine-Isolation Model

For an outbreak of a new disease, where no vaccine is available, isolation of diag-
nosed infectives and quarantine of people who are suspected of having been infected
(usually by tracing of contacts of diagnosed infectives) are the only control measures
available. We formulate a model to describe the course of an epidemic, originally
introduced for modeling the SARS epidemic of 2002-20033 [Gumel et al. (2004)],
when control measures are begun under the followingassumptions:

1. Exposed members may be infective with infectivity reduced by a factor εE ,
0 ≤ εE < 1.

2. Exposed members who are not isolated become infective at rate κE .
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3. We introduce a class Q of quarantined members and a class J of isolated (hos-
pitalized) members, and exposed members are quarantined at a proportional
rate γQ in unit time (in practice, a quarantine will also be applied to many sus-
ceptibles, but we ignore this in the model). Quarantine is not perfect, but it
reduces the contact rate by a factor εQ. The effect of this assumption is that
some susceptibles make fewer contacts than the model assumes.

4. Infectives are diagnosed at a proportional rate γJ per unit time and isolated.
Isolation is imperfect, and there may be transmission of disease by isolated
members, with an infectivity factor of εJ .

5. Quarantined members are monitored, and when they develop symptoms at rate
κQ they are isolated immediately.

6. Infectives leave the infective class at rate αI and isolated members leave the
isolated class at rate αJ .

These assumptions lead to the SEQIJR model [Gumel et al. (2004)]:

S′ = −βS[εEE + εEεQQ+ I + εJJ],

E ′ = βS[εEE + εEεQQ+ I + εJJ]− (κE + γQ)E,

Q′ = γQE −κJQ, (9.19)
I′ = κEE − (αI + γJ)I,

J′ = κQQ+ γJI −αJJ .

The model before control measures are begun is the special case

γQ = γJ = κQ = αJ = 0, Q = J = 0

of (9.19). It is the same as (9.15).
A flow chart is shown in Figure 9.10.

Fig. 9.10 Flow chart for the SEQIJR model.
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We define the control reproduction number Rc to be the number of secondary
infections caused by a single infective in a population consisting essentially only of
susceptibles with the control measures in place. It is analogous to the basic repro-
duction number, but instead of describing the very beginning of the disease outbreak
it describes the beginning of the recognition of the epidemic. The basic reproduction
number is the value of the control reproduction number with

γQ = γJ = κQ = αJ = 0 .

We have already calculated R0 for (9.15), and we may calculate Rc in the same
way but using the full model with quarantined and isolated classes. We obtain

Rc =
εEβN

D1
+

βNκE

D1D2
+

εQεEβNγQ

D1κQ
+

εJβNκEγJ

αJD1D2
+

εJβNγQ

αJD1
,

where D1 = γQ +κE ,D2 = γJ +αI .
Each term of Rc has an epidemiological interpretation. The mean duration in E

is 1/D1 with contact rate εEβ , giving a contribution to Rc of εEβN/D1. A fraction
κE/D1 goes from E to I, with contact rate β and mean duration 1/D2, giving a
contribution of βNκE/D1D2. A fraction γQ/D1 goes from E to Q, with contact
rate εEεQβ and mean duration 1/κQ, giving a contribution of εEεQβNγQ/D1κQ. A
fraction κEγJ/D1D2 goes from E to I to J, with a contact rate of εJβ and a mean
duration of 1/αJ , giving a contribution of εJβNκEγJ/αJD1D2. Finally, a fraction
γQ/D1 goes from E to Q to J with a contact rate of εJβ and a mean duration of 1/αJ ,
giving a contribution of εJβNγQ/D1αJ . The sum of these individual contributions
gives Rc.

In the model (9.19) the parameters γQ and γJ are control parameters, which may
be chosen in the attempt to manage the epidemic. The parameters εQ and εJ de-
pend on the strictness of the quarantine and isolation processes and are thus also
control measures in a sense. The other parameters of the model are specific to the
disease being studied. While they are not variable, their measurements are subject
to experimental error.

The linearization of (9.19) at the disease-free equilibrium (N,0,0,0,0) has matrix⎡⎢⎢⎣
εEβN − (κE + γQ) εEεQβ βN εJβN

γQ −κQ 0 0
κE 0 −(αI + γJ) 0
0 κQ γJ −αJ

⎤⎥⎥⎦ .

The corresponding characteristic equation is a fourth-degree polynomial equation
whose leading coefficient is 1 and whose constant term is a positive constant multi-
ple of 1−Rc, thus positive if Rc < 1 and negative if Rc > 1. If Rc > 1, there is a
positive eigenvalue, corresponding to an initial exponential growth rate of solutions
of (9.19). If Rc < 1, it is possible to show that all eigenvalues of the coefficient ma-
trix have negative real part, and thus solutions of (9.19) die out exponentially [van
den Driessche and Watmough (2002)].
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In order to show that analogues of the relation (9.3) and S∞ > 0 derived for the
model (9.2) are valid for the management model (9.19), we begin by integrating the
equations for S+E,Q, I,J, of (9.19) with respect to t from t = 0 to t = ∞, using the
initial conditions

S(0)+E(0) = N(0) = N, Q(0) = I(0) = J(0) = 0 .

We continue by integrating the equation for S, and then an argument similar to the
one used for (9.2) but technically more complicated may be used to show that S∞ > 0
for the treatment model (9.19) and also to establish the final size relation

log
S0

S∞
= Rc

[
1− S∞

N

]
.

Thus the asymptotic behavior of the management model (9.19) is the same as that
of the simpler model (9.2).

In the various compartmental models that we have studied, there are significant
common features. This suggests that compartmental models can be put into a more
general framework. In fact, this general framework is the age of infection epidemic
model originally introduced by Kermack and McKendrick in 1927. However, we
will not explore this generalization here.

Exercises

1. Compare the qualitative behaviors of the models

S′ =−βSI, I′ = βSI −αI,

and
S′ =−βSI, E ′ = βSI −κE, I′ = κE −αI,

with

β = 1/3000, α = 1/6, κ = 1/2, S(0) = 999, I(0) = 1.

These models represent an SIR epidemic model and an SEIR epidemic model
respectively with a mean infective period of 6 days and a mean exposed pe-
riod of 2 days. Do numerical simulations to decide whether the exposed period
affects the behavior of the model noticeably.

2. Consider three basic epidemic models–the simple SIR model,

S′ = −βSI,

I′ = βSI −αI,

the SEIR model with some infectivity in the exposed period,
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S′ = −βS(I + εE),

E ′ = βS(I + εE)−κE,

I′ = κE −αI,

and the SIR model with treatment,

S′ = −βS(I +δT ),

I′ = βS(I +δT )− (α +ϕ)I,
T ′ = ϕI −ηT.

Use the parameter values

β =
1

3000
, α =

1
4
, ε =

1
2
, κ =

1
2
, δ =

1
2
, η =

1
4
, ϕ = 1,

and the initial values

S(0) = 995, E(0) = 0, I(0) = 5, T (0) = 0.

For each model,

(i) Calculate the reproduction number and the epidemic size.
(ii) Do some numerical simulations to obtain the epidemic size by determining

the change in S, the maximum number of infectives by measuring I, and
the duration of the epidemic.

If you feel really ambitious, formulate and analyze an SEIR model with infec-
tivity in the exposed period and treatment.

3. Consider an SIR model in which a fraction θ of infectives is isolated in a per-
fectly quarantined class Q with standard incidence (meaning that individuals
make a contacts in unit time of which a fraction I/(N−Q) are infective), given
by the system

S′ = −aS
I

N −Q
,

I′ = aS
I

N −Q
− (θ +α)I,

Q′ = θ I − γQ,

R′ = αI + γQ.

(i) Find the equilibria.
(ii) Find the basic reproduction number R0.

(iii) For influenza-like parameters, take α = 0.5,θ = 1,2,4,γ = 0.4, and R0 =
2.5, sketch the phase plane of the system and observe what is happening.
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4. Isolation/quarantine is a complicated process because we don’t live in a per-
fect world. In hospitals, patients may inadvertently or deliberately break from
isolation and in the process have casual contacts with others including medical
personnel and visitors. Taking this into account, we are led to the model

S′ = −aS
[I +ρτQ]

N −σQ
,

I′ = aS
[I +ρτQ]

N −σQ
− (θ +α)I,

Q′ = θ I − γQ,

R′ = αI + γQ.

(i) Determine all the parameters in the system and define each parameter.
(ii) Show that the population is constant.

(iii) Find all equilibria.
(iv) Find the reproductive number R0.
(v) Describe the asymptotic behavior of the model, including its dependence

on the basic reproduction number.

5. Formulate a model analogous to (9.16) for which treatment is not started imme-
diately, but begins at time τ > 0. Can you say anything about the dependence
of the reproduction number on τ?

9.6 An SIR Model with a General Infectious Period Distribution

In the simple model (9.2) studied in Section 9.2 we have assumed that the infective
period is exponentially distributed. Now let us consider an SIR epidemic model in
a population of constant size N with mass action incidence in which P(τ) is the
fraction of individuals who are still infective a time τ after having become infected.
The model is

S′ = −βS(t)I(t), (9.20)

I(t) = I0(t)+
∫ t

0
[−S′(t − τ)]P(τ)dτ.

Here, I0(t) is the number of individuals who were infective initially at t = 0 who
are still infective at time t. Then

I0(t)≤ (N −S0)P(t),

because if all initial infectives were newly infected we would have equality in this
relation, and if some initial infectives had been infected before the starting time
t = 0, they would recover earlier.
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We assume that P(τ) is a nonnegative, nonincreasing function with P(0) = 1.
We assume also that the mean infective period

∫ ∞
0 P(τ)dτ is finite. Since a single

infective causes βN new infections in unit time and
∫ ∞

0 P(τ)dτ is the mean infective
period, it is easy to calculate

R0 = βN
∫ ∞

0
P(s)ds.

Since S is a nonnegative decreasing function, it follows as for (9.2) that S(t)
deceases to a limit S∞ as t → ∞, but we must proceed differently to show that I(t)→
0. This will follow if we can prove that

∫ t
0 I(s)ds is bounded as t → ∞. We have∫ t

0
I(s)ds =

∫ t

0
I0(τ)ds+

∫ t

0

∫ s

0
[−S′(s− τ)]P(τ)dτds

≤ (N −S0)
∫ t

0
P(τ)dτ +

∫ t

0

∫ t

τ
[−S′(s− τ)]dsP(τ)dτ

≤ (N −S0)
∫ t

0
P(τ)ds+

∫ t

0
S0 −S(t − τ)]P(τ)dτ

≤ N
∫ t

0
P(τ)dτ.

Since
∫ ∞

0 P(τ)dτ is assumed to be finite, it follows that
∫ t

0 I(s)ds is bounded, and
thence that I(t)→ 0.

Now integration of the first equation in (9.20) from 0 to ∞ gives

log
S0

S∞
= β

∫ ∞

0
I(τ)dτ < ∞,

and this shows that S∞ > 0.
If all initially infected individuals are newly infected, so that I0(t)= (N−S0)P(t),

integration of the second equation of (9.20) gives∫ ∞

0
I(s)ds =

∫ ∞

0
I0(s)ds+

∫ ∞

0

∫ s

0
[−S′(s− τ)]P(τ)dτds

= (N −S0)
∫ ∞

0
P(τ)dτ +

∫ ∞

0

∫ ∞

τ
[−S′(t − τ)]dsP(τ)dτ

= (N −S0)
∫ ∞

0
P(τ)dτ +

∫ ∞

0
[S0 −S∞]P(τ)dτ

= (N −S∞)
∫ ∞

0
P(τ)dτ

= R0

[
1− S∞

N

]
,

and this is the final size relation, identical to (9.3). If there are individuals who were
infected before time t = 0, a positive term
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(N −S0)
∫ ∞

0
P(t)dt −

∫ ∞

0
I0(t)dt

must be subtracted from the right side of this equation.
The generalization to arbitrary infectious periods in this section is a component

of the age of infection epidemic model of Kermack and McKendrick (1927), which
also incorporates general compartmental structures. The examples of this section
and the previous section are all special cases of the age of infection model.

Exercises

1. Formulate a description of the model (9.20) with an infective period of fixed
length σ and calculate its basic reproduction number.

9.7 The Age of Infection Epidemic Model

The general epidemic model described by Kermack and McKendrick (1927) in-
cluded a dependence of infectivity on the time since becoming infected (age of in-
fection). We let S(t) denote the number of susceptibles at time t and let ϕ(t) be the
total infectivity at time t, defined as the sum of products of the number of infected
members with each infection age and the mean infectivity for that infection age. We
assume that on average, members of the population make a constant number a of
contacts in unit time. We let B(τ) be the fraction of infected members remaining
infected at infection age τ and let π(τ) with 0 ≤ π(τ)≤ 1 be the mean infectivity at
infection age τ . Then we let

A(τ) = π(τ)B(τ),

the mean infectivity of members of the population with infection age τ . We assume
that there are no disease deaths, so that the total population size is a constant N.

The age of infection epidemic model is

S′ = −βSϕ,

ϕ(t) = ϕ0(t)+
∫ t

0
βS(t − τ)ϕ(t − τ)A(τ)dτ (9.21)

= ϕ0(t)+
∫ t

0
[−S′(t − τ)]A(τ)dτ.

The basic reproduction number is

R0 = βN
∫ ∞

0
A(τ)dτ.
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We write

−S′(t)
S(t)

= βϕ0(t)+β
∫ t

0
[−S′(t − τ)]A(τ)dτ.

Integration with respect to t from 0 to ∞ gives

log
S0

S∞
= β

∫ ∞

0
ϕ0(t)dt +β

∫ ∞

0

∫ t

0
[−S′(t − τ)]A(τ)dτdt

= β
∫ ∞

0
ϕ0(t)dt +β

∫ ∞

0
A(τ)

∫ ∞

τ
[−S′(t − τ)]dtdτ

= β
∫ ∞

0
ϕ0(t)dt +[S0 −S∞]

∫ ∞

0
A(τ)dτ (9.22)

= β [N −S∞]
∫ ∞

0
A(τ)dτ +β

∫ ∞

0
[ϕ0(t)− (N −S0)A(τ)dτ

= R0

[
1− S∞

N

]
−β

∫ ∞

0
[(N −S0)A(t)−ϕ0(t)]dt.

Here, ϕ0(t) is the total infectivity of the initial infectives when they reach age of
infection t. If all initial infectives have infection age zero at t = 0, then ϕ0(t) =
[N −S0]A(t), and ∫ ∞

0
[ϕ0(t)− (N −S0)A(t)]dt = 0.

Then (9.22) takes the form

log
S0

S∞
= R0

(
1− S∞

N

)
, (9.23)

and this is the general final size relation. If there are initial infectives with infection
age greater than zero, let u(τ) be the fraction of these individuals with infection age
τ,

∫ ∞
0 u(τ)dτ = 1. At time t these individuals have infection age t + τ and mean

infectivity A(t + τ). Thus

ϕ0(t) = (N −S∞)
∫ ∞

0
u(τ)A(t + τ)dτ,

and ∫ ∞

0
ϕ0(t)dt = (N −S∞)

∫ ∞

0

∫ ∞

0
u(τ)A(t + τ)dτdt

= (N −S∞)
∫ ∞

0
u(τ)

[∫ ∞

τ
A(v)dv

]
dτ

= (N −S∞)
∫ ∞

0
A(v)

[∫ v

0
u(τ)dτ

]
dv]

≤ (N −S∞)
∫ ∞

0
A(v)dv,

since
∫ v

0 u(τ)dτ ≤ 1.
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Thus, the initial term satisfies∫ ∞

0
[(N −S0)A(t)−ϕ0(t)]dt ≥ 0.

The final size relation is sometimes presented in the form

log
S0

S∞
= R0

(
1− S∞

S0

)
; (9.24)

see, for example [Arino et al. (2007), Heffernan, Smith?, and Wahl (2005)]. Without
the initial term this form would represent the final size relation for an epidemic
started by someone outside the population under study, so that S0 = N, I0 = 0.

Example 1. The SEIR model (9.15) can be viewed as an age of infection model
with ϕ = εE + I. To use the age of infection interpretation, we need to determine
the kernel A(τ) in order to calculate its integral. We let u(τ) be the fraction of
infected members with infection age τ who are not yet infective and v(τ) the fraction
of infected members who are infective. Then the rate at which members become
infective at infection age τ is κu(τ), and we have

u′(τ) = −κu(τ), u(0) = 1,
v′(τ) = κu(τ)−αv(τ), v(0) = 0.

The solution of this system is

u(τ) = e−κτ , v(τ) =
κ

κ −α
[e−ατ − e−κτ ].

Thus we have
A(τ) = εe−κτ +

κ
κ −α

[e−ατ − e−κτ ],

and it is easy to calculate ∫ ∞

0
A(τ)dτ =

1
α
+

ε
κ
.

This gives the same value for R0 as was calculated directly.

The age of infection model also includes the possibility of disease stages with
distributions that are not exponential [Feng (2007), Feng, Xu, and Zhao (2007)].

Example 2. Consider an SEIR model in which the exposed stage has an exponential
distribution but the infective stage has a period distribution given by a function P,

S′ = −βSI,

E ′ = βSI −κE, (9.25)

I(t) =
∫ t

0
κE(s)P(t − s)ds,
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with initial conditions

S(0) = S0, E(0) = E0, I(0) = 0.

If we define u(τ),v(τ) as in Example 1, we again obtain u(τ) = e−κτ , and v satisfies

A(τ) = v(τ) =
∫ τ

0
κu(s)P(τ − s)ds =

∫ τ

0
κe−κsP(τ − s)ds.

Now, ∫ ∞

0
A(τ)dτ =

∫ ∞

0

∫ τ

0
κe−κsP(τ − s)dsdτ

=
∫ ∞

0

[∫ ∞

s
P(τ − s)dτ

]
κe−κsds

=
∫ ∞

0

[∫ ∞

0
P(u)du

]
κe−κsds

=
∫ ∞

0
P(u)du.

For period distributions that are not exponential, it is possible to calculate∫ ∞

0
A(τ)dτ

without having to calculate the function A(τ) explicitly.

Example 3. Consider an SEIR model in which the exposed period has a distribution
given by a function Q and the infective period has a distribution given by a function
P. Then

S′ = −βSI,

E(t) = E0Q(t)+
∫ t

0
[−S′(s)]Q(t − s)ds.

In order to obtain an equation for I, we differentiate the equation for E, obtaining

E ′(t) = E0Q′(t)−S′(t)+E0

∫ t

0
[−S′(s)]Q′(t − s)ds.

Thus the input to I at time t is

E0Q′(t)+E0

∫ t

0
[−S′(s)]Q′(t − s)ds,

and

I(t) = E0

∫ t

0
Q′(u)P(t −u)du+E0

∫ t

0
[−S′(s)]Q′(u− s)dsP(t −u)du.
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The first term in this expression may be written as I0(t), and the second term may
be simplified, using interchange of the order of integration in the iterated integral,
to yield∫ t

0

∫ u

0
[−S′(s)]Q′(u− s)dsP(t −u)du =

∫ t

0

∫ t

s
Q′(u− s)duP(t −u)[−S′(s)]ds.

If we define

A(t − s) =
∫ t

s
Q′(u− s)P(t −u)du =

∫ t−s

0
Q′(t − s− v)P(v)dv,

we obtain
I(t) = I0(t)+

∫ t

0
[−S′(s)]A(t − s)ds.

Then the model is

S′ = −βSI, (9.26)

E(t) = E0Q(t)+
∫ t

0
[−S′(s)]Q(t − s)ds,

I(t) = I0(t)+
∫ t

0
[−S′(s)]A(t − s)ds,

which is in age of infection form with ϕ = I, and we have an explicit expression for
A(τ).

Exercises

1. Interpret the models (9.16), (9.18), and (9.19) introduced earlier as age of infec-
tion models and use this interpretation to calculate their reproduction numbers.

2. Calculate the basic reproduction number for the model (9.26) but with infectiv-
ity in the exposed class having a reduction factor ε .

9.8 Models with Disease Deaths

The assumption in the model (9.2) of a rate of contacts per infective that is propor-
tional to population size N, called mass action incidence or bilinear incidence, was
used in all the early epidemic models. However, it is quite unrealistic, except pos-
sibly in the early stages of an epidemic in a population of moderate size. It is more
realistic to assume a contact rate that is a nonincreasing function of total population
size. For example, a situation in which the number of contacts per infective in unit
time is constant, called standard incidence, is a more accurate description for sexu-
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ally transmitted diseases. If there are no disease deaths, so that the total population
size remains constant, such a distinction is unnecessary.

We generalize the model (9.2) by dropping assumption (iv) and replacing as-
sumption (i) by the assumption that an average member of the population makes
C(N) contacts in unit time with C′(N) ≥ 0 [Castillo-Chavez, Cooke, Huang, and
Levin (1989a), Dietz (1982)], and we define

β (N) =
C(N)

N
.

It is reasonable to assume β ′(N)≤ 0 to express the idea of saturation in the number
of contacts. Then mass action incidence corresponds to the choice C(N) = βN, and
standard incidence corresponds to the choice C(N) = λ . The assumptions C(N) =
Nβ (N), C′(N)≥ 0 imply that

β (N)+Nβ ′(N)≥ 0 . (9.27)

Some epidemic models [Dietz (1982)] have used a Michaelis–Menten type of
interaction of the form

C(N) =
aN

1+bN
.

Another form based on a mechanistic derivation for pair formation [Heesterbeek
and Metz (1993] leads to an expression of the form

C(N) =
aN

1+bN +
√

1+2bN
.

Data for diseases transmitted by contact in cities of moderate size [Mena-Lorca and
Hethcote (1992)] suggests that data fit the assumption of the form

C(N) = λNa

with a = 0.05 quite well. All of these forms satisfy the conditions C′(N) ≥ 0,
β ′(N)≤ 0.

Because the total population size is now present in the model, we must include an
equation for total population size in the model. This forces us to make a distinction
between members of the population who die of the disease and members of the pop-
ulation who recover with immunity against reinfection. We assume that a fraction
f of the αI members leaving the infective class at time t recover and the remaining
fraction (1− f ) die of disease. We use S, I, and N as variables, with N = S+ I +R.
We now obtain a three-dimensional model

S′ = −β (N)SI,

I′ = β (N)SI −αI, (9.28)
N′ = −(1− f )αI .
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Since N is now a decreasing function, we define N(0) = N0 = S0 + I0. We also
have the equation R′ = − f αI, but we need not include it in the model, since R is
determined when S, I, and N are known. We should note that if f = 1, the total
population size remains equal to the constant N, and the model (9.28) reduces to the
simpler model (9.2) with β replaced by the constant β (N0).

We wish to show that the model (9.28) has the same qualitative behavior as the
model (9.2), namely that there is a basic reproduction number that distinguishes
between disappearance of the disease and an epidemic outbreak, and that some
members of the population are left untouched when the epidemic passes. These
two properties are the central features of all epidemic models.

For the model (9.28) the basic reproduction number is given by

R0 =
N0β (N0)

α

because a single infective introduced into a wholly susceptible population makes
C(N0) = N0β (N0) contacts in unit time, all of which are with susceptibles and thus
produce new infections, and the mean infective period is 1/α.

We assume that β (0) is finite, thus ruling out standard incidence (standard inci-
dence does not appear to be realistic if the total population N approaches zero, and
it would be more natural to assume that C(N) grows linearly with N for small N). If
we let t → ∞ in the sum of the first two equations of (9.28), we obtain

α
∫ ∞

0
I(s)ds = S0 + I0 −S∞ = N −S∞.

The first equation of (9.28) may be written as

−S′(t)
S(t)

= β (N(t))I(t).

Since
β (N)≥ β (N0),

integration from 0 to ∞ gives

log
S0

S∞
=
∫ ∞

0
β (N(t))I(t)dt ≥ β (N0)

∫ ∞

0
I(t)dt =

β (N0)(N0 −S∞)

αN0
.

We now obtain a final size inequality

log
S0

S∞
=
∫ ∞

0
β (N(t))I(t)dt ≥ β (N0)

∫ ∞

0
I(t)dt = R0

[
1− S∞

N0

]
.

If the disease death rate is small, the final size inequality is an approximate equality.
It is not difficult to show that N(t) ≥ f N0, and then a similar calculation using

the inequality β (N)≤ β ( f N0)< ∞ shows that
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log
S0

S∞
≤ β ( f N0)

∫ ∞

0
I(t)dt,

from which we may deduce that S∞ > 0.

Exercises

1. For the model (9.28) show that the final total population size is given by

N∞ = f N0 +(1− f )S∞.

9.9 A Vaccination Model

To cope with annual seasonal influenza epidemics there is a program of vaccination
before the “flu” season begins. Each year, a vaccine is produced aimed at protecting
against the three influenza strains considered most dangerous for the coming season.
We formulate a model to add vaccination to the simple SIR model (9.2) under the
assumption that vaccination reduces susceptibility (the probability of infection if a
contact with an infected member of the population is made).

We consider a population of total size N and assume that a fraction γ of this
population is vaccinated prior to a disease outbreak. Thus we have a subpopulation
of size NU = (1− γ)N of unvaccinated members and a subpopulation of size NV =
γN of vaccinated members. We assume that vaccinated members have susceptibility
to infection reduced by a factor σ , 0 ≤ σ ≤ 1, with σ = 0 describing a perfectly
effective vaccine and σ = 1 describing a vaccine that has no effect. We assume also
that vaccinated individuals who are infected have infectivity reduced by a factor δ
and may also have a recovery rate αV that is different from the recovery rate of
infected unvaccinated individuals αU .

We let SU ,SV , IU , IV denote the number of unvaccinated susceptibles, the number
of vaccinated susceptibles, the number of unvaccinated infectives, and the number
of vaccianted infectives respectively.

The resulting model is

S′U = −βSU (IU +δ IV ),

S′V = −σβSV (IU +δ IV ), (9.29)
I′U = βSU (IU +δ IV )−αU IU ,

I′V = σβSV (IU +δ IV )−αV IV .

The initial conditions prescribe SU (0),SV (0), IU (0), IV (0), with

SU (0)+ IU (0) = NU , SV (0)+ IV (0) = NV .
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Since the infection now is beginning in a population that is not fully susceptible,
we speak of the control reproduction number Rc rather than the basic reproduction
number. However, as we will soon see, calculation of the control reproduction num-
ber will require a more general definition and a considerable amount of technical
computation. The computation method is applicable to both basic and control re-
production numbers. We will use the term reproduction number to denote either a
basic reproduction number or a control reproduction number. We are able to obtain
final size relations without knowledge of the reproduction number, but these final
size relations do contain information about the reproduction number, and more.

Since SU and SV are decreasing nonnegative functions they have limits SU (∞)
and SV (∞) respectively as t → ∞. The sum of the equations for SU and IU in (9.29)
is

(SU + IU )′ =−αU IU ,

from which we conclude, just as in the analysis of (9.2), that IU (t) → 0 as t → ∞,
and that

α
∫ ∞

0
IU (t)dt = NU −SU (∞). (9.30)

Similarly, using the sum of the equations for SV and IV , we see that IV (t) → 0 as
t → ∞, and that

α
∫ ∞

0
IV (t)dt = NV −SV (∞). (9.31)

Integration of the equation for SU in (9.29) and use of (??) gives

log
SU (0)
SU (∞)

= β [
∫ ∞

0
IU (t)dt +δ

∫ ∞

0
IV (t)dt] (9.32)

=
βNU

α

[
1− SU (∞)

NU

]
+

δβNV

α

[
1− SV (∞)

NV

]
.

A similar calculation using the equation for SV gives

log
SV (0)
SV (∞)

=
σβNU

α

[
1− SU (∞)

NU

]
+

δσβNV

α

[
1− SV (∞)

NV

]
. (9.33)

This pair of equations (9.32), (9.33) are the final size relations. They make it possible
to calculate SU (∞),SV (∞) if the parameters of the model are known.

It is convenient to define the matrix

K =

[
K11 K12
K21 K22

]
=

[
βNU
αU

δβNV
αV

σβNU
αU

δσβNV
αV

]
.

Then the final size relations (9.32), (9.33) may be written
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log
SU (0)
SU (∞)

= K11

[
1− SU (∞)

NU

]
+K12

[
1− SV (∞)

NV

]
, (9.34)

log
SV (0)
SV (∞)

= K21

[
1− SU (∞)

NU

]
+K22

[
1− SV (∞)

NV

]
.

The matrix K is closely related to the reproduction number. In the next section we
describe a general method for calculating reproduction numbers that will involve
this matrix.

Exercises

1. Suppose we want to model the spread of influenza in a city using an SLIAR
model (susceptible-latent-infectious-asympotmatic-recovered, respectively). Then
our system of equation would be

S′ = −β (I +δA)S,

L′ = β (I +δA)S−κL,

I′ = pκL− γI,

A′ = (1− p)κL−ηA,

R′ = ηA+ γI,

where β is the transmission coefficient, δ is the reduced transmissibility factor
from asymptomatic contacts, κ is the rate of disease progression from the la-
tent class, p is the proportion of individuals that are clinically diagnosed, η is
the recovery rate from the asymptomatic class, γ is the recovery rate from the
infectious (clinically diagnosed) class, and N is the total population size.

(i) Add a vaccination class to the model. Assume that the vaccine imparts
partial protection until it becomes fully effective. Is the population of the
new system constant? Are there any endemic equilibria?

(ii) Vary the vaccination rate from 0.2 to 0.8 and determine how the number
of infected individuals changes compared with the model without vaccina-
tion. Does vaccination prevent the outbreak?

9.10 The Next Generation Matrix

Up to this point, we have calculated reproduction numbers by following the sec-
ondary cases caused by a single infective introduced into a population. However, if
there are subpopulations with different susceptibilities to infection, as in the vac-
cination model introduced in Section 9.9, it is necessary to follow the secondary
infections in the subpopulations separately, and this approach will not yield the re-
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production number. It is necessary to give a more general approach to the meaning
of the reproduction number, and this is done through the next generation matrix
[Diekmann and Heesterbeek (2000), Diekmann, Heesterbeek, and Metz (1990), van
den Driessche and Watmough (2002)]. The underlying idea is that we must calculate
the matrix whose (i, j) entry is the number of secondary infections caused in com-
partment i by an infected individual in compartment j. The procedure applies both
to epidemic models, as studied in this chapter, and to models with demographics for
endemic diseases, to be studied in the next chapter.

In a compartmental disease transmission model we sort individuals into compart-
ments based on a single, discrete state variable. A compartment is called a disease
compartment if the individuals therein are infected. Note that this use of the term
disease is broader than the clinical definition and includes stages of infection such
as exposed stages in which infected individuals are not necessarily infective. Sup-
pose there are n disease compartments and m nondisease compartments, and let
x ∈ Rn and y ∈ Rm be the subpopulations in each of these compartments. Further,
we denote by Fi the rate at which secondary infections increase the i− th disease
compartment and by Vi the rate at which disease progression, death, and recovery
decrease the i− th compartment. The compartmental model can then be written in
the form

x′i = Fi(x,y)−Vi(x,y) , i = 1, . . . ,n, (9.35)
y′j = g j(x,y) , j = 1, . . . ,m.

Note that the decomposition of the dynamics into F and V and the designation
of compartments as infected or uninfected may not be unique; different decompo-
sitions correspond to different epidemiological interpretations of the model. The
definitions of F and V used here differ slightly from those in [van den Driessche
and Watmough (2002)].

The derivation of the basic reproduction number is based on the linearization
of the ODE model about a disease-free equilibrium. For an epidemic model with
a line of equilibria, it is customary to use the equilibrium with all members of the
population susceptible. We assume:

• Fi(0,y) = 0 and Vi(0,y) = 0 for all y ≥ 0 and i = 1, . . . ,n.
• The disease-free system y′ = g(0,y) has a unique equilibrium that is asymp-

totically stable, that is, all solutions with initial conditions of the form (0,y)
approach a point (0,yo) as t → ∞. We refer to this point as the disease-free
equilibrium.

The first assumption says that all new infections are secondary infections arising
from infected hosts; there is no immigration of individuals into the disease compart-
ments. It ensures that the disease-free set, which consists of all points of the form
(0,y), is invariant. That is, any solution with no infected individuals at some point
in time will be free of infection for all time. The second assumption ensures that
the disease-free equilibrium is also an equilibrium of the full system. The unique-
ness of the disease-free equilibrium in the second assumption is required for models
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with demographics, to be studied in the next chapter. Although it is not satisfied
in epidemic models, the specification of a specific disease-free equilibrium with all
memebers of the population susceptible is sufficient to validate the results.

Next, we assume:

• Fi(x,y)≥ 0 for all nonnegative x and y and i = 1, . . . ,n.
• Vi(x,y)≤ 0 whenever xi = 0, i = 1, . . . ,n.
• ∑n

i=1 Vi(x,y)≥ 0 for all nonnegative x and y.

The reasons for these assumptions are that the function F represents new infec-
tions and cannot be negative, each component Vi represents a net outflow from com-
partment i and must be negative (inflow only) whenever the compartment is empty,
and the sum ∑n

i=1 Vi(x,y) represents the total outflow from all infected compart-
ments. Terms in the model leading to increases in ∑n

i=1 xi are assumed to represent
secondary infections and therefore belong in F .

Suppose that a single infected person is introduced into a population originally
free of disease. The initial ability of the disease to spread through the population is
determined by an examination of the linearization of (9.35) about the disease-free
equilibrium (0,y0). It is easy to see that the assumption Fi(0,y) = 0,Vi(0,y) = 0
implies

∂Fi

∂y j
(0,yo) =

∂Vi

∂y j
(0,yo) = 0

for every pair (i, j). This implies that the linearized equations for the disease com-
partments x are decoupled from the remaining equations and can be written as

x′ = (F −V )x, (9.36)

where F and V are the n×n matrices with entries

F =
∂Fi

∂x j
(0,yo) and V =

∂Vi

∂x j
(0,yo).

Because of the assumption that the disease-free system y′ = g(0,y) has a unique
asymptotically stable equilibrium, the linear stability of the system (9.35) is com-
pletely determined by the linear stability of the matrix (F −V ) in (9.36).

The number of secondary infections produced by a single infected individual can
be expressed as the product of the expected duration of the infectious period and
the rate at which secondary infections occur. For the general model with n disease
compartments, these are computed for each compartment for a hypothetical index
case. The expected time the index case spends in each compartment is given by
the integral

∫ ∞
0 φ(t,x0) dt, where φ(t,x0) is the solution of (9.36) with F = 0 (no

secondary infections) and nonnegative initial conditions x0 representing an infected
index case:

x′ =−V x, x(0) = x0. (9.37)

In effect, this solution shows the path of the index case through the disease com-
partments from the initial exposure through to death or recovery with the i − th
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component of ϕ(t,x0) interpreted as the probability that the index case (introduced
at time t = 0) is in disease state i at time t. The solution of (9.37) is φ(t,x0) = e−V tx0,
where the exponential of a matrix is defined by the Taylor series

eA = I +A+
A2

2
+

A3

3!
+ · · ·+ Ak

k!
+ · · · .

This series converges for all t (see, for example, [Hirsch and Smale (1974)]. Thus∫ ∞
0 ϕ(t,x0)dt = V−1x0, and the (i, j) entry of the matrix V−1 can be interpreted

as the expected time an individual initially introduced into disease compartment j
spends in disease compartment i.

The (i, j) entry of the matrix F is the rate at which secondary infections are
produced in compartment i by an index case in compartment j. Hence, the expected
number of secondary infections produced by the index case is given by∫ ∞

0
Fe−V tx0 dt = FV−1x0.

Following Diekmann and Heesterbeek (2000), the matrix K = FV−1 is referred to
as the next generation matrix for the system at the disease-free equilibrium. The
(i, j) entry of K is the expected number of secondary infections in compartment i
produced by individuals initially in compartment j, assuming, of course, that the
environment experienced by the individual remains homogeneous for the duration
of its infection.

Shortly, we will describe some results from matrix theory that imply that the ma-
trix KL =FV−1, called the next generation matrix with small domain, is nonnegative
and therefore has a nonnegative eigenvalue, R0 = ρ(FV−1), such that there are no
other eigenvalues of K with modulus greater than R0 and there is a nonnegative
eigenvector ω associated with R0 [Berman and Plemmons (1970), Theorem 1.3.2].
This eigenvector is in a sense the distribution of infected individuals that produces
the greatest number R0 of secondary infections per generation. Thus, R0 and the
associated eigenvector ω suitably define a “typical” infective, and the basic repro-
duction number can be rigorously defined as the spectral radius of the matrix KL.
The spectral radius of a matrix KL, denoted by ρ(KL), is the maximum of the moduli
of the eigenvalues of KL. If KL is irreducible, then R0 is a simple eigenvalue of KL
and is strictly larger in modulus than all other eigenvalues of KL. However, if KL is
reducible, which is often the case for diseases with multiple strains, then KL may
have several positive real eigenvectors corresponding to reproduction numbers for
each competing strain of the disease.

We have interpreted the reproduction number for a disease as the number of sec-
ondary infections produced by an infected individual in a population of susceptible
individuals. If the reproduction number R0 = ρ(FV−1) is consistent with the dif-
ferential equation model, then it should follow that the disease-free equilibrium is
asymptotically stable if R0 < 1 and unstable if R0 > 1.

This is shown through a sequence of lemmas.



9.10 The Next Generation Matrix 397

The spectral bound (or abscissa) of a matrix A is the maximum real part of all
eigenvalues of A. If each entry of a matrix T is nonnegative, we write T ≥ 0 and
refer to T as a nonnegative matrix. A matrix of the form A = sI −B, with B ≥ 0, is
said to have the Z sign pattern. These are matrices whose off-diagonal entries are
negative or zero. If in addition, s ≥ ρ(B), then A is called an M-matrix. Note that in
this section, I denotes an identity matrix, not a population of infectious individuals.
The following lemma is a standard result from [Berman and Plemmons (1970)].

Lemma 9.1. If A has the Z sign pattern, then A−1 ≥ 0 if and only if A is a nonsin-
gular M-matrix.

The assumptions we have made imply that each entry of F is nonnegative and
that the off-diagonal entries of V are negative or zero. Thus V has the Z sign pattern.
Also, the column sums of V are positive or zero, which, together with the Z sign
pattern, implies that V is a (possibly singular) M-matrix [Berman and Plemmons
(1970), condition M35 of Theorem 6.2.3]. In what follows, it is assumed that V
is nonsingular. In this case, V−1 ≥ 0, by Lemma 9.1. Hence, KL = FV−1 is also
nonnegative.

Lemma 9.2. If F is nonnegative and V is a nonsingular M-matrix, then R0 =
ρ(FV−1)< 1 if and only if all eigenvalues of (F −V ) have negative real parts.

Proof. Suppose F ≥ 0 and V is a nonsingular M-matrix. By Lemma 9.1, V−1 ≥
0. Thus, (I −FV−1) has the Z sign pattern, and by Lemma 1, (I −FV−1)−1 ≥ 0
if and only if ρ(FV−1) < 1. From the equalities (V −F)−1 = V−1(I −FV−1)−1

and V (V −F)−1 = I +F(V −F)−1, it follows that (V −F)−1 ≥ 0 if and only if
(I −FV−1)−1 ≥ 0. Finally, (V −F) has the Z sign pattern, so by Lemma 9.1, (V −
F)−1 ≥ 0 if and only if (V −F) is a nonsingular M-matrix. Since the eigenvalues of
a nonsingular M-matrix all have positive real parts, this completes the proof. ��
Theorem 9.1. Consider the disease transmission model given by (9.35). The disease-
free equilibrium of (9.35) is locally asymptotically stable if R0 < 1, but unstable if
R0 > 1.

Proof. Let F and V be as defined as above, and let J21 and J22 be the matrices of
partial derivatives of g with respect to x and y evaluated at the disease-free equilib-
rium. The Jacobian matrix for the linearization of the system about the disease-free
equilibrium has the block structure

J =

[
F −V 0

J21 J22

]
.

The disease-free equilibrium is locally asymptotically stable if the eigenvalues of the
Jacobian matrix all have negative real parts. Since the eigenvalues of J are those of
(F−V ) and J22, and the latter all have negative real parts by assumption, the disease-
free equilibrium is locally asymptotically stable if all eigenvalues of (F −V ) have
negative real parts. By the assumptions on F and V , F is nonnegative and V is a
nonsingular M-matrix. Hence, by Lemma 2 all eigenvalues of (F−V ) have negative
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real parts if and only if ρ(FV−1)< 1. It follows that the disease-free equilibrium is
locally asymptotically stable if R0 = ρ(FV−1)< 1.

Instability for R0 > 1 can be established by a continuity argument. If R0 ≤ 1,
then for any ε > 0, ((1+ε)I−FV−1) is a nonsingular M-matrix and by Lemma 9.1,
((1+ ε)I −FV−1)−1 ≥ 0. By Lemma 9.2, all eigenvalues of ((1+ ε)V −F) have
positive real parts. Since ε > 0 is arbitrary, and eigenvalues are continuous functions
of the entries of the matrix, it follows that all eigenvalues of (V −F) have nonnega-
tive real parts. To reverse the argument, suppose all the eigenvalues of (V −F) have
nonnegative real parts. For any positive ε , (V + εI −F) is a nonsingular M-matrix,
and by Lemma 9.2, ρ(F(V + εI)−1)< 1. Again, since ε > 0 is arbitrary, it follows
that ρ(FV−1)≤ 1. Thus, (F −V ) has at least one eigenvalue with positive real part
if and only if ρ(FV−1) > 1, and the disease-free equilibrium is unstable whenever
R0 > 1.

These results validate the extension of the definition of the reproduction number
to more general situations. In the vaccination model (9.29) of the previous section
we calculated a pair of final size relations that contained the elements of a matrix K.
This matrix is precisely the next generation matrix with large domain KL = FV−1

that has been introduced in this section.

Example 1. Consider the SEIR model with infectivity in the exposed stage,

S′ = −βS(I + εE),

E ′ = βS(I + εE)−κE, (9.38)
I′ = κE −αI,

R′ = αI.

Here the disease states are E and I,

F =

[
εEβN + IβN

0

]
,

and

F =

⎡⎢⎢⎣
εβN βN

0 0

⎤⎥⎥⎦ , V =

⎡⎢⎢⎣
κ 0

−κ α

⎤⎥⎥⎦ , V−1 =

⎡⎢⎢⎣
1
κ 0

1
α

1
α

⎤⎥⎥⎦ .

Then we may calculate

KL = FV−1 =

⎡⎢⎢⎣
εβN

κ + βN
α

βN
α

0 0

⎤⎥⎥⎦ .

Since FV−1 has rank 1, it has only one nonzero eigenvalue, and since the trace of
the matrix is equal to the sum of the eigenvalues, it is easy to see that
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R0 =
εβN

κ
+

βN
α

,

the element in the first row and first column of FV−1. If all new infections are in a
single compartment, as is the case here, the basic reproduction number is the trace
of the matrix FV−1.

In general, it is possible to reduce the size of the next generation matrix to the
number of states at infection [Diekmann and Heesterbeek (2000)]. The states at
infection are those disease states in which there can be new infections. Suppose that
there are n disease states and k states at infection with k < n. Then we may define an
auxiliary n×k matrix E in which each column corresponds to a state at infection and
has 1 in the corresponding row and 0 elsewhere. Then the next generation matrix is
the k× k matrix

K = ET KLE.

It is easy to show, using the fact that EET KL = KL, that the n×n matrix KL and the
k× k matrix K have the same nonzero eigenvalues and therefore the same spectral
radius. Construction of the next generation matrix that has lower dimension than the
next generation matrix with large domain may simplify the calculation of the basic
reproduction number.

In Example 1 above, the only disease state at infection is E, the matrix A is[
1
0

]
,

and the next generation matrix K is the 1×1 matrix

K =
[

εβN
κ + βN

α

]
.

Example 2. Consider the vaccination model (9.29). The disease states are IU and
IV . Then

F =

[
βNU (IU +δ IV )
σβNV (IU +δ IV

]
,

and

F =

⎡⎢⎢⎣
βNU δβNU

σβNV σδβNV

⎤⎥⎥⎦ V =

⎡⎢⎢⎣
αU 0

0 αV

⎤⎥⎥⎦ .

It is easy to see that the next generation matrix with large domain is the matrix K
calculated in Section 3.3. Since each disease state is a disease state at infection,
the next generation matrix is K, the same as the next generation matrix with large
domain. As in Example 1, the determinant of K is zero and K has rank 1. Thus the
control reproduction number is the trace of K,
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Rc =
βNU

αU
+

δσNV

αV
.

The next two examples include demographics (births and deaths).

Example 3. (A multi-strain model of gonorrhea) The following example comes
from Lima and Torres (1997). The system of equations is

ds
dt

= ρ −μS(t)− cλ1S(t)I1(t)
N(t)

− cλ2S(t)I2(t)
N(t)

+(1− p)γ1I1(t)+ γ2I2(t),

dI1

dt
=

cλ1S(t)I1(t)
N(t)

− (μ + γ1)I1(t),

dI2

dt
=

cλ2S(t)I2(t)
N(t)

− (μ + γ2)I2(t)+ pγ1I1(t),

where S is the susceptible class, I1 is the class infected with strain 1, and I2 is the
class of individuals infected with a mutated strain. The “birth” rate of the population
is ρ , μ is the natural mortality rate, c is the probability of successful contact, λi is
the of strain i, γi is the recovery rate of strain i, and p is the proportion of the original
infected population that become infected by the mutated strain.

The disease-free equilibrium for this model is [S=N, I1 = 0, I2 = 0]. Next we will
reorder our variables:

[ dI1
dt

dI2
dt

]T
and note that we need only the infected classes to

calculate R0. Then the new infection terms are cλ1S(t)I1(t)
N(t) in the dI1

dt equation and
cλ2S(t)I2(t)

N(t) in the dI2
dt equation, pγ1I1(t) enter the I2 class, but only after they have

been infected with strain 1. Then

F =

[ cλ1S(t)I1(t)
N(t)

cλ2S(t)I2(t)
N(t)

]
and V =

[
(μ + γ1)I1(t)

(μ + γ2)I2(t)− pγ1I1(t)

]
.

Since we have only two infected classes, n = 2, and our Jacobian matrices are

F =

[ cλ1S(t)
N(t) 0

0 cλ2S(t)
N(t)

]∣∣∣∣∣
DFE

=

[
cλ1 0
0 cλ2

]

V =

[
μ + γ1 0
−pγ1 μ + γ2

]∣∣∣∣
DFE

=

[
μ + γ1 0
−pγ1 μ + γ2

]
.

Then we can calculate the inverse of V,

V−1 =

[
1

μ+γ1
0

pγ1
(μ+γ1)(μ+γ2)

1
μ+γ2

]
,

and
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FV−1 =

[
cγ1

μ+γ1
0

cγ2 pγ1
(μ+γ1)(μ+γ2)

cγ2
μ+γ2

]
.

To calculate the spectral radius of FV−1 we find the eigenvalues of the matrix:

ρ(FV−1) = max
{

cλ1

μ + γ1
,

cλ2

μ + γ2

}
.

We often call R1 =
cλ1

μ+γ1
the reproductive number for strain 1 and R2 =

cλ2
μ+γ2

the
reproductive number for strain 2. Then the basic reproductive number is

R0 = max[R1,R2].

Example 4. (A three population model of West Nile virus) The following example
comes from Chowell-Puente et al. (2004b). The system of equations is

S′M = μMNM −βHSMb
NH

NM

PHNM

NH +NB

IH

NH
−βBSMb

NB

NM

PBNM

NH +NB

IB

NB
−SMμM,

I′M = βHSMb
NH

NM

PHNM

NH +NB

IH

NH
+βBSMb

NB

NM

PBNM

NH +NB

IB

NB
− IMμM,

S′B = Λ −βMSBb
NM

NB

NB

NH +NB

IM

NM
−SBμB,

I′B = βMSBb
NM

NB

NB

NH +NB

IM

NM
− IBμB,

S′H = μHNH −βMSHb
NM

NH

NH

NH +NB

IM

NM
−SH μH ,

I′H = βMSHb
NM

NH

NH

NH +NB

IM

NM
− (μ +θ)IH ,

R′
H = θ IH −μHRH ,

where Si refers to the susceptible class of species i, and Ii refers to the infected
class of species i for i = M,B,H, mosquitoes, birds, and humans, respectively. Then
Pi is the mosquito biting preference for species i, μi is the natural mortality rate
of species i, b is the number of bites per mosquito per unit time, θ is the human
recovery rate, βM is the transmission probability from mosquito to host per bite, βB
is the transmission probability from birds to mosquito, and βH is the transmission
probability from humans to mosquito.

The disease-free equilibrium for this model is [SM = NM, IM = 0,SB = Λ
μB
, IB =

0,SH = NH , IH = 0,RH = 0]. Next we will reorder our variables

[IM, IB, IH ,SM,SB,SH ,RH ]

and again note that we need only the infected classes. Then the new infections enter
our F vector as
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F =

⎡⎢⎣βHSMb NH
NM

PH NM
NH+NB

IH
NH

+βBSMb NB
NM

PBNM
NH+NB

IB
NB

βMSBb NM
NB

NB
NH+NB

IM
NM

βMSHb NM
NH

NH
NH+NB

IM
NM

⎤⎥⎦ ,

and our V vector is the remaining terms,

V =

⎡⎣ IMμM
IBμB

(μ +θ)IH

⎤⎦ .

Then our Jacobian matrices are

F|DFE =

⎡⎢⎢⎢⎢⎣
0 βBbPBNM

NH+ Λ
μB

βH bPH NM
NH+ Λ

μB
βMbΛ

μB(NH+ Λ
μB

0 0
βMbNH
NH+ Λ

μB

0 0

⎤⎥⎥⎥⎥⎦ ,

V|DFE =

⎡⎣ μM 0 0
0 μB 0
0 0 μH +θ

⎤⎦ ,

and

V−1 =

⎡⎢⎣
1

μM
0 0

0 1
μB

0
0 0 1

μH+θ

⎤⎥⎦ ,

FV−1 =

⎡⎢⎢⎢⎢⎣
0 βBbPBNM

(NH+ Λ
μB

)μB

βH bPH NM
(NH+ Λ

μB
)(μH+θ)

βMbΛ
μB(NH+ Λ

μBμM

0 0
βMbNH

NH+ Λ
μBμM

0 0

⎤⎥⎥⎥⎥⎦ ,

from which we calculate the eigenvalues and determine that the spectral radius is

R0 =

√√√√ bNH
Λ
μB

+NH

βM

μM

bPHNM
Λ
μB

+NH

βH

μH +θ
+

b Λ
μB

Λ
μB

+NH

βM

μM

bPBNM
Λ
μB

+NH

βB

μB

We have described the next generation matrix method for continuous models.
There is an analogous theory for discrete systems, described in [Allen and van den
Driessche (2008)].
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9.10.1 A Global Asymptotic Stability Result

There are some situations in which R0 < 1 in which it is possible to show that the
asymptotic stability of the disease - free equilibrium is global, that is, all solutions
approach the disease - free equilibrium, not only those with initial values sufficiently
close to this equilibrium.

We will say that a vector is nonnegative if each of its components is nonnegative,
and that a matrix is nonnegative if each of its entries is non - negative. We rewrite
the system (9.35) as

x′ = −Ax− f̂ (x,y), (9.39)
y′j = g j(x,y) , j = 1, . . . ,m.

If R0 < 1, we have shown that the disease - free equilibrium is asymptotically stable,
and that −A =−(F −V ) is a non - singular M - matrix.

Theorem 9.2 (Castillo-Chavez, Feng, and Huang (2002)). If −A is a nonsingular
M-matrix and f̂ ≥ 0, if the assumptions on the model (9.35) made earlier in this
section are satisfied, and if R0 < 1, then the disease-free equilibrium of (9.39) is
globally asymptotically stable.

Proof. The variation of constants formula for the first equation of (9.39) gives

x(t) = e−tAx(0)−
∫ t

0
e−(t−s)A f̂ (x(s),y(s))ds.

It can be shown that e−tA ≥ 0 if −A is an M-matrix, because

−A = B− sI

with B ≥ 0,
e−tA = etBe−stI = etBe−st I = etBe−st ,

and etB ≥ 0, since B ≥ 0. This, together with the assumption that f̂ ≥ 0, implies that

0 ≤ x(t)≤ e−tAx(0),

and since e−tAx(0)→ 0 as t → ∞ it follows that x(t)→ 0 as t → ∞.

There are examples to show that the disease-free equilibrium may not be globally
asymptotically stable if the condition f̂ ≥ 0 is not satisfied.

Exercises

1. For each of the models (9.16), (9.18), and (9.19) use the next generation ap-
proach to calculate their reproduction numbers.



404 9 Epidemic Models

2. Use the next generation approach to calculate the basic reproduction number
for the model (9.26) but with infectivity in the exposed class having a reduction
factor ε .

3. Formulate an SEITR model and calculate its reproduction number.
4. For each of the examples in this section determine whether the disease-free

equilibrium is globally asymptotically stable when R0 < 1.

9.11 Directions for Generalization

A fundamental assumption in the model (9.2) is homogeneous mixing, that all in-
dividuals are equivalent in contacts. A more realistic approach would include sepa-
ration of the population into subgroups with differences in behavior. For example,
in many childhood diseases the contacts that transmit infection depend on the ages
of the individuals, and a model should include a description of the rate of contact
between individuals of different ages. Other heterogeneities that may be important
include activity levels of different groups and spatial distribution of populations.
Network models may be formulated to include heterogeneity of mixing, or more
complicated compartmental models can be developed.

An important question that should be kept in mind in the formulation of epidemic
models is the extent to which the fundamental properties of the simple model (9.2)
carry over to more elaborate models.

An epidemic model for a disease in which recovery from infection brings only
temporary immunity cannot be described by the models of this chapter because of
the flow of new susceptibles into the population. This effectively includes demo-
graphics in the model, and such models will be described in the next chapter.

Many of the important underlying ideas of mathematical epidemiology arose in
the study of malaria begun by Sir R.A. Ross (1911). Malaria is one example of a
disease with vector transmission, the infection being transmitted back and forth be-
tween vectors (mosquitoes) and hosts (humans). Other vector diseases include West
Nile virus and HIV with heterosexual transmission. Vector transmitted diseases re-
quire models that include both vectors and hosts.

9.12 Some Warnings

An actual epidemic differs considerably from the idealized models (9.2) and (9.28).
Some notable differences are these:

1. When it is realized that an epidemic has begun, individuals are likely to modify
their behavior by avoiding crowds to reduce their contacts and by being more
careful about hygiene to reduce the risk that a contact will produce infection.

2. If a vaccine is available for the disease that has broken out, public health mea-
sures will include vaccination of part of the population. Various vaccination
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strategies are possible, including vaccination of health care workers and other
first line responders to the epidemic, vaccination of members of the popula-
tion who have been in contact with diagnosed infectives, and vaccination of
members of the population who live in close proximity to diagnosed infectives.

3. Isolation may be imperfect; in-hospital transmission of infection was a major
problem in the SARS epidemic.

4. In the SARS epidemic of 2002–2003, in-hospital transmission of disease from
patients to health care workers or visitors because of imperfect isolation ac-
counted for many of the cases. This points to an essential heterogeneity in dis-
ease transmission that must be included whenever there is any risk of such
transmission.

9.13 Project: Discrete Epidemic Models

The discrete analogue of the continuous-time epidemic model (9.2) is

S j+1 = S jG j,

I j+1 = S j
(
1−G j

)
+σ I j, (9.40)

G j = e−β I j/N , j = 1,2, . . . ,

where S j and I j denote the numbers of susceptible and infective individuals at time j,
respectively, G j is the probability that a susceptible individual at time j will remain
susceptible to time j+1, and σ = e−α is the probability that an infected individual
at time j will remain infected to time j+ 1. Assume that the initial conditions are
S(0) = S0 > 0, I(0) = I0 > 0, and S0 + I0 = N.
Exercise 1. Consider the system (9.40).

(a) Show that the sequence {S j + I j} has a limit

S∞ + I∞ = lim
j→∞

(S j + I j).

.
(b) Show that

I∞ = lim
j→∞

I j = 0.

(c) Show that

log
S0

S∞
= β

∞

∑
m=0

Im

N
.

(d) Show that

log
S0

S∞
= R0

[
1− S∞

N

]
,

with R0 =
β

1−σ .
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Next, consider the case that there are k infected stages and there is treatment in
some stages, with treatment rates that can be different in different stages. Assume
that selection of members for treatment occurs only at the beginning of a stage.
Let I(i)j and T (i)

j denote the numbers of infected and treated individuals respectively
in stage i (i = 1,2, . . . ,k) at time j. Let σ I

i denote the probability that an infected
individual in the I(i) stage continues on to the next stage, either treated or untreated,
and let σT

i denote the probability that an individual in the T (i) stage continues on to
the next treated stage. In addition, of the members leaving an infected stage I(i), a
fraction pi enters treatment in T (i+1), while the remaining fraction qi continues to
I(i+1). Let mi denote the fraction of infected members who go through the stage I(i),
and ni the fraction of infected members who go through the stage T (i). Then,

m1 = q1, m2 = q1q2, . . . , mk = q1q2 · · ·qk,
n1 = p1, n2 = p1 +q1 p2, . . . , nk = p1 +q1 p2 + . . .+q1q2 · · ·qk−1 pk.

The discrete system with treatment is

S j+1 = S jG j,

I(1)j+1 = q1S j(1−G j)+σ I
1I(1)j ,

T (1)
j+1 = p1S j(1−G j)+σT

1 T (1)
j (9.41)

I(i)j+1 = qi(1−σ I
i−1)I

(i−1)
j +σ I

i ηiI
(i)
j ,

T (i)
j+1 = pi(1−σ I

i−1)I
(i−1)
j +(1−σT

i−1)T
(i−1)
j +σT

i T (i)
j ,

[i = 2, . . . ,k, j ≥ 0], with

G j = e−β ∑k
i=1

(
εiI

(i)
j /N+δiT

(i)
j /N

)
,

where εi is the relative infectivity of untreated individuals at stage i and δi is the
relative infectivity of treated individuals at stage i. Consider the initial conditions

I(1)0 (0) = q1I0, T (1)
0 (0) = p1I0, I(i)0 (0) = T (i)

0 (0) = 0, i ≥ 2, S0 + I0 = N.

Exercise 2. Consider the system (9.41). Show that

log
S0

S∞
= Rc

[
1− S∞

N

]
, (9.42)

with

Rc = β
k

∑
i=1

[ εimi

1−σ I
i
+

δini

1−σT
i

]
.

Hint. Equation (9.42) can be proved by showing the following equalities first:
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log
S0

S∞
= β

k

∑
i=1

⎡⎣εi

∞

∑
j=1

I(i)j

N
+δi

∞

∑
j=1

T (i)
j

N

⎤⎦ ,

mi(N −S∞) = (1−σ I
i )

∞

∑
j=0

I(i)j , i ≥ 2,

ni(N −S∞)

1−σT
i

=
∞

∑
j=0

T (i)
j , i ≥ 2.

[References: Feng (2007), Feng, Xu, & Zhao (2007).]

9.14 Project: Fitting Data for an Influenza Model

Consider an SIR model (9.2) with basic reproduction number 1.5.

1. Describe the qualitative changes in (S, I,R) as a function of time for different
values of β and α with β ∈ {0.0001,0.0002, . . . ,0.0009}, for the initial condi-
tion (S, I,R) = (106,1,0).

2. Discuss the result of part (a) in terms of the basic reproductive number (what is
β/γ?). Use a specific disease such as influenza to provide simple interpretations
for the different time courses of the disease for the different choices of β and
γ .

3. Repeat the steps in part (a) for values of R0 ∈ {1.75,2,2.5}, and for each value
of R0, choose the best pair of values (β ,α) that fits the slope before the first
peak in the data found in the table for reported H1N1 influenza cases in México
below. (Hint: normalize the data so that the peak is 1, and then multiply the data
by the size of the peak in the simulations.)

9.15 Project: Social Interactions

Suppose we have a system with multiple classes of mathematical biology teachers
(MBT) at time t. The classes roughly capture the MBT individual attitudes toward
learning new stuff. “Reluctant” means the class of MBTs that come into the door as
new hires without a disposition to learn new stuff; the positive class corresponds to
those who join the MBTs with the right attitude; and the rest of the classes should
be self-explanatory.
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Day Cases Day Cases Day Cases Day Cases Day Cases Day Cases
75 2 95 4 115 318 135 83 155 152 175 328
76 1 96 11 116 399 136 75 156 138 176 298
77 3 97 5 117 412 137 87 157 159 177 335
78 2 98 7 118 305 138 98 158 186 178 330
79 3 99 4 119 282 139 71 159 222 179 375
80 3 100 4 120 227 140 73 160 204 180 366
81 4 101 4 121 212 141 78 161 257 181 291
82 4 102 11 122 187 142 67 162 208 182 251
83 5 103 17 123 212 143 68 163 198 183 215
84 7 104 26 124 237 144 69 164 193 184 242
85 3 105 20 125 231 145 65 165 243 185 223
86 1 106 12 126 237 146 85 166 231 186 317
87 2 107 26 127 176 147 55 167 225 187 305
88 5 108 33 128 167 148 67 168 239 188 228
89 7 109 44 129 139 149 75 169 219 189 251
90 4 110 107 130 142 150 71 170 199 190 207
91 10 111 114 131 162 151 97 171 215 191 159
92 11 112 155 132 138 152 168 172 309 192 155
93 13 113 227 133 117 153 126 173 346 193 214
94 4 114 280 134 100 154 148 174 332 194 237

Table 9.2 Reported casec for H1N1-pandemic in Mexico.

R(t) : reluctant MBTs
P(t) : positive MBTs

M(t) : masterful MBTs
U(t) : unchangeable (that is, negative) MBTs
I(t) : inactive MBTs

Assume that N(t) = R(t)+P(t)+M(t)+U(t)+ I(t) and that the total number of
MBTs is constant, that is, N(t) = K

μ for all t, where K is a constant. The model is

dP
dt

= qK −βP
M
K

+δR−μP,

dR
dt

= (1−q)K − (δ +μ)R−αR,

dM
dt

= βP
M
K

− (γ +μ)M,

dU
dt

=−μU +αR,

dI
dt

= γM−μI,

where q, β , δ , μ , γ , and α are constants and 0 ≤ q ≤ 1.

1. Interpret the parameters.
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2. Look at the stability of the simplest equilibrium (your choice).
3. From ℜ0, discuss what would be the impact of changing parameters q, γ , and

δ .
4. What are your conclusions from this model?
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