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Cardiovascular disease (CVD) is a serious public health issue in China, accounting for more than 40% of all mortality, and it is the
leading cause of death worldwide. Atherosclerosis is the pathological basis for much CVD, including coronary heart disease, acute
myocardial infarction, and stroke. Endothelial dysfunction is an initiating and exacerbating factor in atherosclerosis. Recent
research has linked oxidative stress and mitochondrial damage to endothelial dysfunction. Nuclear factor erythroid 2-related
factor 2 (Nrf2) is a transcription factor with antioxidant effects that is strongly connected to several CVDs. However, the
mechanism by which Nrf2 reduces CVD is unknown. Research indicates that Nrf2 improves endothelial function by resisting
oxidative stress and mitochondrial damage, thereby delaying atherosclerosis. This article examines the mechanisms and potential
targets of Nrf2 affecting endothelial cell function to improve atherosclerosis and to provide ideas for the development of new

CVD treatments.

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death
and premature death in China, posing a significant public
health risk. In 2019, CVD caused 18.6 million deaths
worldwide and roughly 58% of all cardiovascular deaths in
Asia [1]. The morbidity and mortality of CVD will only
increase with the increasing elderly population [2]. At
present, the treatment of CVD relies mainly on coronary
revascularization and oral antiplatelet aggregation drugs.
Coronary revascularization is an invasive operation with a
risk of surgical complications, while long-term antiplatelet
aggregation drug use has a risk of bleeding. Because many
people cannot tolerate surgery or long-term antiplatelet drug
therapy [3-5], clinicians hope to develop new methods for
preventing and treating CVD.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a
transcription factor with antioxidant effects strongly related
to several CVDs [6]. Nrf2 regulates the biosynthesis, utili-
zation, and regeneration of glutathione, thioredoxin, and

NADPH, as well as the production of reactive oxygen species
via the mitochondria and NADPH oxidase, to maintain
cellular redox homeostasis [7]. Nrf2 can lower the risk of
atherosclerosis-related chronic diseases by improving en-
dothelial function [8-10]. This article examines the mech-
anisms and potential targets of Nrf2 affecting endothelial cell
dysfunction and delaying atherosclerosis, starting from the
pathophysiological basis of CVDs to provide ideas for the
development of new therapeutic methods for CVDs.

2. Endothelial Cells

The blood vessel wall forms a selective barrier to molecular
transport between blood and tissue, and endothelial cells
form the inner lining of blood vessels, controlling the ex-
change of substances between blood and tissues. Endothelial
cells form continuous thin monolayers that maintain vas-
cular homeostasis by interacting with cells in the vessel wall
and lumen [11]. They control vascular tone by releasing
vasodilatory factors, such as nitric oxide (NO) and
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contractile factors; regulate blood flow and coagulation by
producing factors that regulate platelet activity, the coagu-
lation cascade, and the fibrinolytic system; and secrete ad-
hesion molecules and cellular cytokines to coordinate the
inflammatory response [12].

3. Endothelial Cells and Atherosclerosis

Atherosclerosis is a chronic disease process involving lipid
accumulation [13]. It begins with endothelial cell dysfunc-
tion and is arbitrated by a cascade of intracellular and in-
tercellular responses [14]. Endothelial cell dysfunction
results in the infiltration of low-density lipoprotein (LDL)
particles and their subsequent oxidation to oxidized LDL
(oxLDL) [15]. Increased chemokine secretion by endothelial
cells and increased adhesion protein expression on their
surface allow them to recruit inflammatory cells, particularly
monocytes, to the arterial intima. Monocytes differentiate
into macrophages, which subsequently phagocytose lipids
into foam cells, which undergo necrosis and apoptosis,
forming the lipid core of progressive atherosclerotic lesions
[16]. Injured endothelial cells secrete growth factors to ac-
tivate smooth muscle cells (SMCs) in the arterial media,
migrate into the intima through fenestrations in the inner
elastic membrane, and phagocytose lipids mediated by li-
poprotein lipase receptors on the surface to form SMC-
derived foam cells. In the late stages of atherosclerosis, SMCs
secrete extracellular matrix (collagen and elastin), forming
fibrous caps that increase the instability of atherosclerotic
plaques [17]. Communication between endothelial cells and
other vascular cell populations in this atherogenic envi-
ronment stimulates the release of proinflammatory cues,
increasing the native inflammatory response and promoting
atheromatous plaque development [18]. Reduced collagen
synthesis and increased degradation due to inflammation
cause progressive thinning of the fibrous cap, resulting in
plaque rupture, thrombosis, and vascular occlusion [14]. The
disturbance of vascular endothelial structure and function is
a key link in the occurrence and development of athero-
sclerotic vascular diseases [19-21].

4. Nrf2

In 1994, researchers discovered Nrf2 in a study of beta-globin
gene regulation. Nrf2, also known as NFE2L2, helps to regulate
the cellular oxidative stress response. Nrf2 is classified in the
Cap-n-Collar family of basic leucine zipper proteins, with 7
functional domains involved in the regulation of their stability
or transcriptional activity [22]. Under basal conditions, Nrf2
binds to the Keap1/Cul3 ubiquitin ligase complex with a half-
life of 10-30 minutes and is in a low activity state. When
exposed to oxidative stress or other stimuli, the cysteine res-
idues in Kelch-like epichlorohydrin-associated protein 1
(Keap1) are modified, decreasing its activity and inhibiting its
binding to Nrf2. After release from the complex, Nrf2 enters
the nucleus and forms a heterodimer with the small protein
Maf (Nrf2-Maf) [7, 23]. Heterodimers connect to antioxidant
response elements (AREs) in the initiation domain in a se-
quence-specific manner [24], promoting antioxidant enzyme
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transcription. These antioxidant genes have important anti-
tumor, anti-inflammatory, antiapoptotic, antioxidant, and
tissue protection effects [25, 26].

5. Role of Nrf2 in Atherosclerosis-Associated
Endothelial Dysfunction

In addition to regulating vascular tone and permeability,
healthy endothelial cells maintain hemostasis and coagu-
lation, transport oxygen and nutrients to tissues, coordinate
inflammatory and immune responses, and induce angio-
genesis [27, 28]. Endothelial injury is a complex pathological
process involving increased endothelial cell activation and
endothelial dysfunction. When endothelial injury occurs,
endothelial cells within the vascular lumen transform into a
proinflammatory, proadhesive, procoagulant phenotype, in
a process called endothelial cell activation. This is imme-
diately followed by decreased endothelial NO bioavailability,
altered vascular tone, and endothelial cell transformation to
other phenotypes, collectively referred to as endothelial
dysfunction [29-31]. Many studies have shown that Nrf2 has
anti-inflammatory, proangiogenic, antioxidative damage,
and mitochondrial protection roles in atherosclerosis-re-
lated endothelial cell dysfunction [32-35]. However, the
mechanism of Nrf2 in endothelial cell oxidative stress and
mitochondrial damage is unclear. Therefore, the role of Nrf2
in oxidative stress and mitochondrial injury in endothelial
cells will be elaborated.

6. Nrf2 Improves Endothelial Dysfunction by
Inhibiting Oxidative Stress

6.1. Oxidative Stress and Endothelial ~Dysfunction.
Oxidative stress is important in mediating cytokine pro-
duction and secretion, linking ROS to endothelial dys-
function [31, 36]. NO is the main reason that endothelial
cells maintain vascular homeostasis. The production of NO
in vivo uses l-arginine as a substrate, instigated by NO
synthase (NOS), and generates Il-citrulline and NO [37].
Several factors affect the vascular distribution of NO ulti-
mately resulting in reduced NO release, including impaired
endothelial cell membrane receptors paired with NO ago-
nists or reduced endothelial diffusivity, physiological
changes, inappropriate use of l-arginine, reduced enzymes
responsible for converting or changing cGMP levels, re-
duced substrates for synthesizing NO, or significant deg-
radation of NO [38]. Endothelial dysfunction is associated
with decreased NO bioavailability as a result of decreased
NO production and increased consumption. Superoxide
anions react with NO to generate peroxynitrite (ONOO-),
which promotes protein tyrosine nitration in vivo, affects
protein structure and function, and further impairs endo-
thelial function [39, 40]. Guzik et al. [41] studied the role of
superoxide production due to NAD(P) H oxidase in human
atherosclerosis in relation to NO-mediated vasodilation. Xu
et al. [42] found that berberine protects against the human
coronary artery endothelial cell disorder induced by
Kawasaki disease by impairing oxidation and endoplasmic
reticulum stress.
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6.2. Nrf2 Improves Endothelial Dysfunction by Inhibiting
Oxidative Stress. A growing body of evidence suggests that
the Nrf2-driven antioxidative pathway has vascular pro-
tective effects in CVDs such as atherosclerosis, hypertension,
diabetes, myocardial infarction, and heart failure [43, 44].
Oxidative damage induced by ROS or lipid peroxidase ag-
gravates endothelial cell damage, which in turn activates the
transcription factor Nrf2 in endothelial cells, and stimulated
Nrf2 exerts its protective capacity by inducing downstream
gene transcription [45]. This pathway involves more than
200 genes with antioxidative capabilities by increasing the
ability of cells to combat oxidative stress and promote cell
survival. These genes include antioxidant proteins that
maintain intracellular glutathione homeostasis and decrease
intracellular reactive oxygen levels, phase II detoxification
enzymes, such as glutathione S-transferase (GST) and
NADPH quinone oxidoreductase 1 (NQO1), which are
mainly involved in decomposing toxic substances and
promoting the metabolism and elimination of toxic sub-
stances and transporters, including multidrug resistance-
related proteins implicated in the control of endogenous and
exogenous substance output and uptake [44, 46, 47]. Chen
et al. [8] discovered that expressing Nrf2 in human aortic
endothelial cells increased ARE-driven transcriptional ac-
tivity and increased intracellular HO-1 protein levels to
protect endothelial cells from tumor necrosis factor (TNF)-
a-mediated cytotoxicity. Ginsenoside Rg3 upregulates the
Nrf2-ARE pathway by activating AKT and improves en-
dothelial dysfunction caused by oxidative stress [48]. Sim-
ilarly, paeoniflorin inhibits the tert-butyl hydroperoxide-
induced overproduction of intracellular ROS and apoptosis
in human umbilical vein endothelial cells via the Nrf2/HO-1
signal transduction pathway [49]. Blood flow through the
vessel wall causes mechanotransduction, mainly including
shear stress and tensile stress, which contributes to the
maintenance of endothelial function and homeostasis. Shear
stress is regarded as the most important element influencing
the development of atherosclerosis [50, 51]. High unidi-
rectional shear stress promotes endothelial Nrf2 signaling,
whereas arterial regions exposed to low oscillatory shear
stress are prone to atherosclerosis, in part due to reduced
endothelial nitric oxide synthase expression and the atten-
uated antioxidant and anti-inflammatory properties of Nrf2
activation [52].

7. Nrf2 Suppresses Endothelial Dysfunction by
Improving Mitochondrial Function

7.1. Mitochondrial Function and Endothelial Cell Dysfunction.
Mitochondrial dysfunction contributes to increased oxida-
tive stress in atherosclerosis, promoting inflammatory re-
sponses and lesion formation [53]. Mitochondria can also
produce ROS (mtROS) under basal conditions in complexes
I and III of the mitochondrial electron transport chain.
Simultaneously, limited ROS production has important
signaling functions, which has attracted much attention.
However, various pathological stressors can induce an ab-
normal increase in mtROS production, which in turn leads
to impaired NO synthesis in endothelial cells and the

production of inflammatory cytokines, which favor ath-
erosclerosis. Therefore, targeting mtROS may be an effective
way to avoid endothelial damage and atherosclerosis [54].

Endothelial cells have a low mitochondrial content, but
mitochondrial dynamics are critical to maintaining endo-
thelial cell homeostasis under normal conditions. Several
studies show that altered mitochondrial dynamics are linked
to increased mtROS production and are implicated in en-
dothelial damage and various vascular diseases [55]. More-
over, mitochondrial dynamics include both fusion and fission,
and proteins involved in mitochondrial dynamics contribute
to guanosine triphosphatase (GTPase) function [56], in-
cluding various proteins. Mitochondrial fusion proteins 1
(MFN1) and 2 (MFN2) are proteins that regulate mito-
chondrial outer membrane fusion with the N-terminal
GTPase structural domain and C-terminus to induce mito-
chondrial fusion protein oligomerization. MFN2 is also as-
sociated with mitochondrial autophagy. Optic dystrophin 1 is
a protein that controls mitochondrial inner membrane fusion,
ensuring the consistency of mitochondrial inner membrane
structure, while also participating in mitochondrial cristae
remodeling. Drpl, a member of the GTPase family that is
found in the cytoplasm and is involved in fission of the
mitochondrial outer membrane, is the protein that regulates
mitochondrial fission [57, 58]. DRP1-mediated mitochondrial
fission has been linked to endothelial dysfunction, including
endothelium-dependent diastolic dysfunction, reduced
microvessels, and decreased wound healing and angiogenic
capacity [59-61]. Regulating Drpl phosphorylation, inhibit-
ing mitochondrial fission, and restoring mitochondrial
morphology can protect mitochondrial function in vascular
endothelial cells [62]. Protein disulfide isomerase A1 (PDIA1)
is a thiol reductase of the mitochondrial fission protein Drpl.
In endothelial cells, depletion of PDIA1 induces the thiolation
of Drpl at Cys644, promotes mitochondrial fragmentation
and increased ROS, and impairs endothelial cell function and
angiogenesis [61]. Several studies have shown that reduced
MEFNI1 and MFN2 expression increases human umbilical vein
endothelial cell injury and promotes the development of
atherosclerosis [63, 64]. Retinol-binding protein 4 (RBP4)
incubation inhibited mitochondrial MFN1 protein expression
in human aortic endothelial cells, increased mitochondrial
superoxide production, and aggravated mitochondrial dam-
age [65].

Mitophagy is a defensive process by which the body
selectively removes damaged mitochondria and is a fun-
damental mechanism of mitochondrial homeostasis.
Mitophagy promotes mitochondrial turnover and prevents
the accumulation of dysfunctional organelles. A moderate
amount of mitophagy can prevent endothelial cell damage
and avoid further CVD development [66].

7.2. Nrf2 Suppresses Endothelial Dysfunction by Improving
Mitochondrial Function. There is growing evidence that
Nrf2 is closely linked to mitochondrial functions, including
mitochondrial antioxidant defense, mitochondrial dynam-
ics, mitochondrial autophagy, biogenesis, and mitochon-
dria-related intermediary metabolism [67-70]. Mitoquinone



(MitoQ) is a mitochondrial-targeting antioxidant. Yang et al.
[71] discovered that MitoQ intervention increased Nrf2 and
HO-1 expression in high glucose-induced brain microvas-
cular endothelial cells, while improving the mitochondrial
membrane potential and decreasing mtROS generation.
There is evidence that mtROS is necessary for Nrf2 acti-
vation and that the Nrf2-Keap1l complex binds directly to the
outer mitochondrial membrane protein PGAMS5, sensing
ROS from mitochondria [72]. Nrf2 regulates mtROS ho-
meostasis via the ARE-mediated activation of antioxidant
enzymes in mitochondria, and a reduction in Nrf2/ARE
activity leads to increased oxidative stress and mitochondrial
dysfunction in blood vessels, resulting in endothelial damage
[73]. Intracellular chloride channel 1 (CLIC1) is an oxidative
stress sensor in endothelial cells. CLIC1 overexpression
inhibits Nrf2 nuclear translocation, contributing to the
hydrogen peroxide-induced activation of mitochondrial
fission in human umbilical vein endothelial cell functional
impairment [74]. Zhu et al. [34] found that Nrf2 activation
inhibits Drpl-mediated mitochondrial fission, improving
endothelial dysfunction. As a potent antioxidant in mito-
chondria, coenzyme Q10 exerts beneficial effects on mouse
glomerular endothelial cells by restoring the Nrf2/ARE
signaling pathway and promoting mitophagy [75].

8. Nrf2 and Atherosclerosis

Atherosclerosis is a chronic systemic disease characterized
by lipid metabolism disorders, vascular endothelial damage,
lipid deposition in the vascular wall, mononuclear-macro-
phage hyperplasia, and atherosclerotic plaque formation.
Nrf2 depletion in macrophages leads to increased foam cell
formation, increases the inflammatory phenotype, and ag-
gravates atherosclerosis [76]. Z-Lig, a natural benzoquinone
derivative, acts as an Nrf2 inducer and protects vascular
endothelial cells from atherosclerosis caused by a high-fat
diet. It reduces lipid peroxidation and increases antioxidant
enzyme activity in Ldlr-/-mice [77]. Nrf2 is essential for
lowering serum total cholesterol and reducing atheroscle-
rotic plaques in an apolipoprotein E (ApoE) knockout an-
imal model [78]. Nrf2 knockdown significantly increased the
oxLDL-induced elevation of ROS levels, increasing the risk
of CVD [79]. Nevertheless, there is some evidence that Nrf2
also exacerbates atherosclerosis. Barajas et al. [78] found that
ApoE (-/-) Nrf2 (-/-) mice had reduced atherosclerotic
lesions, while the occurrence of atherosclerosis was not
affected in ApoE(-/-) Nrf2(-/+) mice. This is consistent
with the report of Barajas et al. [78, 80]. In addition, the Nrf2
signaling pathway promotes inflammasome activation and
contributes to atherosclerosis progression [81]. Further re-
search should examine the complex role of Nrf2 in ath-
erosclerosis to give new perspectives on the future
therapeutic direction of Nrf2 in atherosclerosis.

9. Conclusion

Atherosclerosis is a disease that imposes a heavy burden on
families, society, and the nation. Vascular endothelial injury
is its main driver. In this review, we explain how the Nrf2
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pathway protects endothelial cells from oxidative stress and
mitochondrial dysfunction. In addition, the Nrf2-mediated
transcription of antioxidant enzymes reduces endothelial
cell damage, which in turn improves atherosclerosis. In this
context, we believe that the Nrf2-ARE pathway could be an
effective therapeutic target to reduce the occurrence and
development of these diseases. However, the opposite effect
seen in Nrf2-deficient animals casts doubt on whether Nrf2
activation can ameliorate atherosclerosis. Therefore, addi-
tional studies are needed to explore novel therapeutics for
atherosclerosis targeting the Nrf2 signaling pathway.
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