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Retention time dataset for 
heterogeneous molecules 
in reversed–phase liquid 
chromatography
Yan Zhang1,2,3, Fei Liu  1 ✉, Xiu Qin Li2,3, Yan Gao2,3, Kang Cong Li2,3 & Qing He Zhang  2,3 ✉

Quantitative structure–property relationships have been extensively studied in the field of predicting 
retention times in liquid chromatography (LC). However, making transferable predictions is inherently 
complex because retention times are influenced by both the structure of the molecule and the 
chromatographic method used. Despite decades of development and numerous published machine 
learning models, the practical application of predicting small molecule retention time remains limited. 
The resulting models are typically limited to specific chromatographic conditions and the molecules 
used in their training and evaluation. Here, we have developed a comprehensive dataset comprising 
over 10,000 experimental retention times. These times were derived from 30 different reversed-phase 
liquid chromatography methods and pertain to a collection of 343 small molecules representing a wide 
range of chemical structures. These chromatographic methods encompass common LC setups for 
studying the retention behavior of small molecules. They offer a wide range of examples for modeling 
retention time with different LC setups.

Background & Summary
Liquid chromatography (LC) coupled to mass spectrometry (MS) is extensively used for both targeted and 
untargeted analysis in many fields1–4. LC−based separation aids in distinguishing isomeric and isobaric mol-
ecules, resulting in cleaner fragmentation spectra, and improves detection of low−abundance molecules by 
minimizing ionization competition5. In addition, chromatographic retention time (RT) provides crucial iden-
tification data, especially for molecules with indistinct mass/spectra but differing RTs6. However, the use of RT 
in identification workflows is often limited by the lack of reference standards and the inconsistent RT across 
different chromatographic methods (CMs), which affects the availability of comprehensive datasets.

Predicting RT for specific molecules within a given CM has become a popular alternative7–9. In untargeted 
metabolomics, the use of quantitative structure−retention relationship (QSRR) strategies predicts RT for poten-
tial candidates, reducing false positives10,11. However, the need for different QSRR models for different LC setups 
complicates this approach12–16. Strategies to address these complexities include using universal retention indices 
for different CMs11,17, mapping RTs from one CM to another5,18,19 and integrating chromatographic descriptors 
into QSRR models20,21. While current public datasets cover diverse CMs22–24, the limited molecular overlap 
remains a challenge in modeling LC setups and their RTs.

We developed a dataset of Multiple Chromatographic Methods–based Retention Time (MCMRT), which 
contains over 10,000 experimental RT entries for a set of 343 small molecules from 30 different CMs25. These 
molecules were carefully selected to represent various chemical classes and exhibit a wide range of physico-
chemical properties, effectively mimicking the diverse chemical space encountered in reverse–phase (RP) LC 
analyses. The CMs were tailored to reflect common LC setups in untargeted analyses, incorporating different 
C18 columns, gradient profiles, mobile phases, additives, etc. The extensive molecular overlaps among the CMs 
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in MCMRT make it easier to transfer machine learning models between different LC setups, enhancing their 
practical applicability in predicting RTs under various chromatographic conditions.

Methods
Chemicals and regents. The 343 small molecules were sourced from various suppliers, including LGC 
Standards and Wellington Laboratories in Canada, Sigma–Aldrich in the USA, Dr. Ehrenstorfer in Germany, and 
several institutions in China like the National Institutes for Food and Drug Control and the National Institute of 
Metrology, alongside other providers such as Altascientific and J&K Scientific. These molecules were classified 
according to their ionization efficiency and chemical class. This classification facilitated their distribution into 
eight mixtures, with concentrations adjusted to span from 500 μg/mL to 20 mg/mL. The solubility and stability 
of each standard were taken into account when selecting suitable solvents for the preparation of these mixtures, 
which were then stored at −20 °C until analysis. Before use, the mixtures were combined to form a final mixture 
at a concentration of 20 μg/mL for all molecules. Exceptions were made for molecules with lower ionization 
efficiency, which received concentration adjustment to ensure their effective detection. Detailed information on 
the sourcing of these molecules and the methodology for mixture preparation is available in Table S1 (see sup-
plementary xlsx file).

HPLC–grade reagents acetonitrile (ACN), methanol (MeOH), acetone and formic acid (FA) were supplied 
by Merck (Germany). Analytical–grade ammonium acetate and formate were purchased from Sigma-Aldrich 
(USA). Ultrapure water was prepared with a Milli-Q IQ 7000 system, also supplied by Merck (Germany).

instrumental analysis. The analytical experiments were carried out using a Vanquish UHPLC system 
(Thermo Fisher Scientific, USA) coupled to an Orbitrap Q–Exactive Plus mass spectrometer (Thermo Fisher 
Scientific, USA) operated by TraceFinder V4.1 Software. All analyses were performed in both positive and nega-
tive ionization modes, utilizing a comprehensive full mass scan. The instrumental parameters were set as follows: 
two scan ranges covering 80–400 Da and 350–1600 Da, with a high resolution of 70,000; an Automatic Gain 
Control (AGC) target set as 1e6; a maximum injection time of 100 ms; sheath gas flow at 40; auxiliary gas at 8; and 
sweep gas at 1. The spray voltage was meticulously calibrated to 2.5 kV, with the heater temperature maintained at 
350 °C and the Capillary Temperature at 250 °C, complemented by an RF–Lens setting of 60.

To ensure utmost precision in mass measurements, a tuning mix was injected at the onset of each CM run 
for calibration purposes. A detailed outline of the LC setups, including 30 different CMs, is provided in Table 1 
and Table S2 (see supplementary xlsx file). All retention data for each CM were collected in a single day, with 
three replicate analyses.

Determination of retention time. The determination of RT was conducted using Xcalibur V4.3 soft-
ware. First, the exact mass-to-charge (m/z) ratios of potential adducts for each molecule were calculated, e.g., 
[M + H]+, [M + H]2+, [M + NH4]+, [M + Na]+, [M–H]−, and [M + HCO2]−. Then, these adducts were used to 
extract the associated chromatographic peaks, allowing for a mass deviation of 5 ppm. To ensure accurate RT 
determinations, all RT values for the molecules were carefully determined through manual assessment. In cases 
where the m/z ratio of one adduct of a molecule (e.g., [M + H]+) differed by less than 5 ppm from another adduct 
of a different molecule (e.g., [M + Na]+), the RTs of all possible adducts were carefully combined to confirm the 
correct RTs. For isomeric or isobaric molecules, separate standard solutions for each molecule were analyzed to 
accurately determine their distinct RT values.

Data Records
repository and data overview. The dataset is publicly accessible through the Science Data Bank25 at 
https://doi.org/10.57760/sciencedb.15823. It is organized into 30.xlsx files, each corresponding to a unique CM 
run. Each file contains two worksheets. The first worksheet in each file is dedicated to RT data, where molecules 
are identified using isomeric SMILES strings encoded to represent their molecular structures. To ensure consist-
ency, all SMILES strings adhere to the PubChem standardization procedure26. RT data for all observed molecules 
were recorded in MCMRT, including those with RTs close to the dead time. The RT values provided are the aver-
ages of three replicate analyses. Additionally, the relative standard deviation (RSD) between the three replicates 
is included to indicate method variability and support data quality. Furthermore, the repository offers extensive 
molecular data, including InChI codes, IUPAC names, MCMRT numbers, CAS numbers, PubChem numbers, 
and chemical formulas. The second worksheet provides comprehensive chromatographic information, including 
details on data sources, instruments used, analytical columns, temperatures, mobile phases, gradient profiles, 
runtimes, flow rates, and dead times used to calculate retention factors. Retention factors are also provided in the 
first worksheet. This thorough documentation ensures the dataset’s robustness and utility for researchers.

Data description. The MCMRT repository currently houses 10,073 RT entries, encompassing 343 unique 
molecules and 30 different CMs. These CMs utilized RP columns, specifically six different C18 columns with 
varying dimensions (50–150 × 2.1–4.6 mm) and particle sizes (1.7–5 μm). Except for the Thermo Hypersil GOLD 
column (100 × 2.1 mm, 1.9 μm) and the Acclaim 120 C18 column (4.6 × 150 mm, 5 μm), all columns were new at 
the time of use. To ensure proper equilibration, two blank gradient runs were performed prior to each CM run. 
Among the published datasets22, the most frequently utilized columns were the Waters ACQUITY UPLC BEH 
C18 and Waters ACQUITY UPLC HSS T3, both included in MCMRT. The gradient profiles were designed with 
both single and multi–slopes, employing either isocratic or gradient flow rates ranging from 0.2 to 1 mL/min. 
While constant flow rates are more common in RPLC, gradient flow rates were included to explore their potential 
effects on RTs. This approach was inspired by the work of Gago-Ferrero et al.24 who introduced flow rate varia-
tions in their CMs, creating a widely used dataset for suspect and non-target screening of environmental sam-
ples10,11,27. Total run times for these methods varied from 10 to 100 min. The column temperatures were varied 
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between 30 °C and 45 °C to optimize separation efficiency. Regarding the mobile phases, 18 CMs utilized a water/
MeOH (90:10, v/v) mixture for mobile phase A, 12 utilized water for mobile phase A, 24 used MeOH for mobile 
phase B, and 6 chose ACN for mobile phase B. While ACN generally offers higher efficiency, we used MeOH in 
most CMs based on initial experiments indicating that RT variations were more influenced by additives than the 
solvent itself. This choice was also guided by the work of Gago-Ferreroa et al.24, who used MeOH in their CMs. 
Preferred mobile phases included water with 0.1% formic acid (weak phase) and either acetonitrile or MeOH 
with 0.1% formic acid (strong phase)22. MCMRT also explores various mobile phase compositions, optimized 

CM Molecules Column specifications Mobile phase A Mobile phase B Run Time (min)

1 335 ACQUITY PRIMER HSS T3 
(100 × 2.1 mm, 1.8 μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 10

2 335 Acclaim RSLC 120 C18 (100 × 2.1 mm, 
2.2 μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 15

3 335 Acclaim RSLC 120 C18 (100 × 2.1 mm, 
2.2 μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 21

4 335 Thermo Hypersil GOLD (100 × 2.1 mm, 
1.9 μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 21

5 335 ACQUITY BEH C18 (100 × 2.1 mm, 1.7 
μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 21

6 335 ACQUITY PRIMER HSS T3 
(100 × 2.1 mm, 1.8 μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 21

7 335 Acclaim RSLC 120 C18 (100 × 2.1 mm, 
2.2 μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 30

8 335 Acclaim RSLC 120 C18 (100 × 2.1 mm, 
2.2 μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 30

9 335 Thermo Hypersil GOLD (100 × 2.1 mm, 
1.9 μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 30

10 335 Acclaim RSLC 120 C18 (100 × 2.1 mm, 
2.2 μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 30

11 335 ACQUITY BEH C18 (100 × 2.1 mm, 1.7 
μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 30

12 335 Acclaim RSLC 120 C18 (100 × 2.1 mm, 
2.2 μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 45

13 335 ACQUITY PRIMER HSS T3 
(100 × 2.1 mm, 1.8 μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 60

14 335 ACQUITY UPLC HSS T3 (2.1 × 50 mm,1.8 
μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 60

15 335 Acclaim 120 C18 (4.6 × 150 mm, 5 μm) 90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 60

16 335 ACQUITY PRIMER HSS T3 
(100 × 2.1 mm, 1.8 μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH MeOH + 0.01% FA + 5 mM NH4COOH 100

17 335 Thermo Hypersil GOLD (100 × 2.1 mm, 
1.9 μm) H2O + 0.1% FA + 4 mM NH4COOH MeOH + 0.1% FA + 4 mM NH4COOH 14

18 335 Thermo Hypersil GOLD (100 × 2.1 mm, 
1.9 μm) H2O + 0.1% FA + 4 mM NH4COOH MeOH + 0.1% FA + 4 mM NH4COOH 21

19 335 Acclaim RSLC 120 C18 (100 × 2.1 mm, 
2.2 μm)

90% H2O + 10% MeOH + 0.01% 
FA + 5 mM NH4COOH ACN 21

20 330 ACQUITY PRIMER HSS T3 
(100 × 2.1 mm, 1.8 μm) H2O + 0.1% FA ACN + 0.1% FA 20

21 330 Thermo Hypersil GOLD (100 × 2.1 mm, 
1.9 μm) H2O + 0.1% FA ACN + 0.1% FA 21

22 330 ACQUITY PRIMER HSS T3 
(100 × 2.1 mm, 1.8 μm) H2O + 0.1% FA ACN + 0.1% FA 45

23 330 ACQUITY UPLC HSS T3 (2.1 × 50 mm,1.8 
μm) H2O + 0.1% FA ACN + 0.1% FA 45

24 330 Acclaim 120 C18 (4.6 × 150 mm, 5 μm) H2O + 0.1% FA ACN + 0.1% FA 45

25 343 ACQUITY PRIMER HSS T3 
(100 × 2.1 mm, 1.8 μm) H2O + 5 mM NH4CH2COOH ACN + 5 mM NH4CH2COOH 20

26 343 ACQUITY UPLC HSS T3 (2.1 × 50 mm,1.8 
μm) H2O + 5 mM NH4CH2COOH ACN + 5 mM NH4CH2COOH 20

27 343 ACQUITY PRIMER HSS T3 
(100 × 2.1 mm, 1.8 μm) H2O + 5 mM NH4CH2COOH ACN + 5 mM NH4CH2COOH 20

28 343 ACQUITY UPLC HSS T3 (2.1 × 50 mm,1.8 
μm) H2O + 5 mM NH4CH2COOH ACN + 5 mM NH4CH2COOH 30

29 343 Acclaim 120 C18 (4.6 × 150 mm, 5 μm) H2O + 5 mM NH4CH2COOH ACN + 5 mM NH4CH2COOH 30

30 343 Acclaim RSLC 120 C18 (100 × 2.1 mm, 
2.2 μm) H2O + 5 mM NH4COOH ACN + 5 mM NH4COOH 21

Table 1. Chromatographic conditions, source and number of included molecules for CMs used in this study.

https://doi.org/10.1038/s41597-024-03780-5


4Scientific Data |          (2024) 11:946  | https://doi.org/10.1038/s41597-024-03780-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

with different additives such as 0.01% formic acid with 5 mM ammonium formate, 0.1% formic acid with 4 mM 
ammonium formate, 0.1% formic acid, 5 mM ammonium formate, and 5 mM ammonium acetate. These mobile 
phase compositions were referenced from existing published datasets11,14,23,24,28, facilitating the comparison and 
integration of new data with historical data for better understanding and utilization. An analysis of representative 
chromatographic parameters in the repository highlights the significant influence of column selection and mobile 
phase compositions on RTs and peak orders29. Detail information about the instrumental and chromatographic 
conditions are described in Table 1 and Table S2 (see supplementary xlsx file).

The molecules in MCMRT span diverse chemical classes and exhibit a broad range of octanol/water parti-
tion coefficients (log Kow −8.1 to 11.6) and molecular weights (89 to 1449 Da) (Fig. 1a). They encompass 11 
ClassyFire groups at the superclass level30, including benzenoids (27.7%), organic acids and derivatives (20.4%), 
organoheterocyclic compounds (18.7%), lipids and lipid-like molecules (9.9%), phenylpropanoids and polyket-
ides (7.6%), organohalogen compounds (7.3%), organic oxygen compounds (3.5%), organosulfur compounds 
(1.2%), organic nitrogen compounds (1.2%), organophosphorus compounds (1.2%), and other compounds 
(1.5%). Figure 1b,c provide an overview of the elemental composition within these molecules, showcasing a 
diversity of elements (C, H, O, N, P, S, Cl, Br, F, and I). The METLIN dataset contains 80,038 molecules and 
covers seven similar superclasses23. Additionally, Gago-Ferreroa et al.’s dataset (referred to as CM 03 P) includes 
retention time data for 1820 emerging pollutants, such as pesticides, pharmaceuticals from different therapeutic 
categories, illicit drugs, industrial chemicals, and transformation products, representing a diverse set of chemical 
structures24. However, compared to these datasets, MCMRT includes some unique compound classes, such as 
organophosphorus flame retardants and perfluoro and polyfluoro organic compounds, which are absent in both 
the METLIN and CM 03 P datasets. METLIN focuses on metabolomics and aims to include molecules likely to 
be found in human samples, which explains the absence of certain classes. In contrast, MCMRT aims to provide 
broad coverage of chemical structures, including those not typically found in human samples. MCMRT also 
includes several pairs of isomers, further enhancing its utility in various analytical applications. A full list of 
these molecules is provided in Table S3 (see supplementary xlsx file), with their common name, IUPAC name, 
InChI, SMILES, PubChem number, CAS number, formula, Molecular Weight, predicted log Kow and superclass.

Among the 343 diverse molecules in MCMRT, eight environmental hormones were detected exclusively 
in non-acidic mobile phases (CMs 25–30). These hormones include bisphenol A, bisphenol B, bisphenol F, 
4-octylphenol, 4-nonylphenol, diethylstilbestrol, hexestrol, and estriol. These compounds primarily ionize in 
negative ion mode, exhibiting significant responses. The presence of acidic additives in mobile phases likely 
suppresses their ionization efficiency, resulting in detection limits not being met at the used concentration levels 
in acidic mobile phases (CMs 01–24). Additionally, five molecules were undetected in mobile phases containing 
solely acidic additives (CMs 20–24). Among these, one is an environmental hormone whose ionization efficiency 
may have been further reduced by the high concentration of 0.1% formic acid. The other four molecules—bro-
mopropylate, permethrin, halfenprox, and bifenthrin—primarily responded as [M + NH4]+ or [M + Na]+ ions. 
In acidic mobile phases, their [M + NH4]+ peaks were not detected, and their [M + H]+ and [M + Na]+ peaks 
were too weak to be detected. In contrast, the remaining 330 molecules were consistently detected across all 
CMs (Table S4, see supplementary xlsx file). This significant overlap enables cross-comparison and the study 
of retention behavior under various chromatographic conditions. Furthermore, MCMRT includes CMs that 
systematically vary a single chromatographic parameter, providing valuable insights into the effects of these var-
iations. For instance, there are variations in column type between CM 04 and CM 05, mobile phase composition 
between CM 03, CM 19, and CM 30, running time between CM 01 and CM 13, and gradient profile between 
CM 09 and CM 10.

Overall, MCMRT serves as a crucial resource for exploring the complex relationship between LC setups and 
molecular RTs. With its comprehensive coverage of LC setups and systematic variations in chromatographic 
parameters, this resource is poised to significantly enhance the work of researchers who are exploring the opti-
mization of LC methods or the development of predictive models that incorporate these chromatographic con-
ditions. While replicating all setups may not be practical, MCMRT allows researchers to select the most relevant 
setups for their studies. This flexibility enables the evaluation of model performance across different chromato-
graphic conditions, thereby enhancing the robustness and applicability of their models. This dataset is expected 
to play a crucial role in the methodological transition across diverse LC setups, providing valuable references for 
molecular behavior under various conditions. Such insights are crucial for making customized adjustments to 
methodologies. Furthermore, MCMRT is positioned to improve the accuracy and reliability of scientific work by 
enabling the cross-validation of methods, ensuring that the RTs of known compounds are consistent with those 
recorded in the dataset across different CMs. In its contribution to the broader field, MCMRT aims to promote 
methodological consistency and uniformity in data reporting by providing a benchmark for RTs across a range 
of CMs. This initiative is a step toward fostering a more integrated and collaborative scientific community, where 
shared knowledge leads to collective advancement.

technical Validation
To ensure the accuracy of the resulting dataset, it was crucial to validate the experimental RTs for various mole-
cules within each CM and to confirm the accuracy of RT relationships across different CMs. Initially, the exper-
imental RTs in MCMRT for three CMs —CM 03, CM 11, and CM 21—were compared with data from other 
laboratories using the same CMs. Specifically, CM 11 was compared with CM 11 A (data from collaborating 
laboratory A, Table S5, see supplementary xlsx file), CM 21 was compared with CM 21B (data from collabo-
rating laboratory B, Table S6, see supplementary xlsx file), and CM 03 was compared with CM 03 P (data from 
Gago-Ferreroa et al.24, Table S7, see supplementary xlsx file). The results showed that CM 11 and CM 11 A 
had 335 overlapping molecules with RT deviations ranging from 0.03 to 1.21 min and an average deviation of 
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0.65 min (Fig. 2a). For CM 21 and CM 21B, there were 330 overlapping molecules with RT deviations ranging 
from 0.01 to 0.56 min and an average deviation of 0.14 min (Fig. 2b). CM 03 and CM 03 P had 154 overlapping 
molecules with RT deviations ranging from 0.01 to 1.21 min and an average deviation of 0.58 min (Fig. 2c). 
These findings indicate that the same molecules analyzed with identical CMs in different laboratories can result 
in different RTs. This discrepancy may be attributed to variations in chromatographic systems between labo-
ratories or differences in column conditions. Importantly, the experimental RTs between these pairs of CMs 
exhibited strong correlations, with R² values ranging from 0.996 to 0.999. The correlation between CM 03 and 
CM 03 P was slightly lower (R² = 0.996), potentially due to discrepancies in molecule names provided by the 
online data source for CM 03 P, leading to mismatched RTs. In contrast, the data for CM 11 A and CM 21B were 
obtained from collaborating laboratories where the methods for determining RTs and defining molecule names 
were consistent, thereby avoiding such issues. This underscores the importance of standardized RT reporting to 
minimize discrepancies.

To reduce the low reproducibility of RT data caused by differences in column conditions and LC systems, the 
retention factor data for each molecule was also provided (Table S8, see supplementary xlsx file). The mathemat-
ical form of the retention factor k′ is as follows:

k
RT RT

RT
x 0

0
=

−′

where k′ is the retention factor, RTx is the RT of the molecule, and RT0 is the dead time. In MCMRT, the RT of 
4-Amino-1,2,4-triazole (MCMRT ID 001) was used as the dead time because it is typically not significantly 
retained on the column in RPLC.

To further enhance data usability and comparability between methods, a set of calibrants and a detailed cali-
bration procedure were recommended in our previous publication29. The procedure involves measuring the RTs 
of the calibrants under both CMs and using these values to establish an RT projection model. For the pairs of 
CM 11 and CM 11 A, CM 21 and CM 21B, and CM 03 and CM 03 P, 35 molecules were randomly selected from 
the overlapping molecules based on their RT distribution to construct the RT projection models from CM 11 

Fig. 1 Chemical diversity of molecules in MCMRT. (a) Molecular weight and log Kow predicted by EPISuite for 
each molecule. Each data point corresponds to one molecule from the mixture; its color indicates the superclass 
defined by ClassyFire; its size indicates the adduct ion detected by ESI-HRMS. Panels (b,c) show the elemental 
composition of each molecule. Columns are aligned vertically for each individual molecule. The left axis represents 
the relative abundance of each element, while the right axis represents the absolute number of carbon atoms.
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to CM 11 A (Fig. 2d), CM 21 to CM 21B (Fig. 2e), and CM 03 to CM 03 P (Fig. 2f). The remaining overlapping 
molecules’ RTs in CM 11, CM 21, and CM 03 were then used to predict their RTs in CM 11 A, CM 21B, and 
CM 03 P. Comparing the predicted and experimental RTs in these CMs, ~85% of the prediction errors were less 
than 0.2 min (relative deviation of 3%). This demonstrates that the RT values in CM 11, CM 21, and CM 03 are 
largely accurate. Information on calibrants and predicted RTs can be found in Tables S5–S7 (see supplementary 
xlsx file).

Fig. 2 Interlaboratory validation of retention time data. Panels (a–c) show the relationship between the 
experimental retention times of all overlapping molecules in the MCMRT (CM 11, CM 21, and CM 03) and 
non-MCMRT (CM 11 A, CM 21B, and CM 03 P) datasets. Panels (d–f) show the relationship between the 
predicted retention times and experimental retention times of overlapping molecules in the non-MCMRT 
datasets (CM 11 A, CM 21B, and CM 03 P) after applying the retention time projection model calibration from 
the MCMRT datasets (CM 11, CM 21, and CM 03).

Fig. 3 Relationships of experimental retention times between two different CMs in MCMRT.

https://doi.org/10.1038/s41597-024-03780-5


7Scientific Data |          (2024) 11:946  | https://doi.org/10.1038/s41597-024-03780-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

Next, the relationship between experimental RTs in different CMs was demonstrated using the overlap-
ping set of 330 molecules within the MCMRT (Fig. 3). The R2 values ranged from 0.688 to 0.999, depending 
on the similarity of LC setups. The R2 values were highest (0.892–0.998) for CMs with identical mobile phase 
compositions and decreased slightly for CMs with similar compositions (0.906–0.993), different compositions 
(0.798–0.947), and very different compositions (0.698–0.860). These results confirm the accuracy of retention 
time relationships across the 30 CMs.

Finally, the 30 CM-specific datasets for the 330 overlapping molecules in MCMRT were analyzed using a 
self-organizing mapping (SOM) clustering algorithm, to characterize their retention behavior within each CM 
and between different CMs. The SOM clustering algorithm is an unsupervised machine learning technique that 
organizes data into clusters based on similarities, providing a visual and analytical means to detect patterns in 
high-dimensional datasets22,31,32. These molecules were categorized into 25 groups based on their RT variations 
across the 30 CMs (Fig. 4 and Table S4, see supplementary xlsx file). This categorization revealed distinct clus-
ters of molecules with consistent retention behaviors, regardless of the mobile phase compositions, indicating 
robust retention properties for certain compound classes. Notably, some molecules exhibited stable retention 
times across various mobile phases, while others displayed noticeable shifts depending on the presence of spe-
cific additives such as formic acid or ammonium formate. This differentiation is crucial for understanding the 
impact of chromatographic parameters on molecular retention and highlights the need for diverse experimental 
setups to capture a comprehensive range of retention behaviors. These findings emphasize the importance of 
including a diverse array of molecules in the dataset to encompass multiple variations in RT. Further details on 
the methodology and results of this clustering analysis can be found in our previously published work29. These 
insights underline the necessity of comprehensive datasets that incorporate diverse molecular structures and 
chromatographic conditions to enhance the robustness and applicability of RT predictions.

In summary, our validation and analysis confirmed that the MCMRT dataset accurately determines RTs for 
a diverse array of molecules within each CM and captures precise RT relationships across different CMs25. The 
inclusion of heterogeneous molecules provides a comprehensive representation of RT variations, making the 
dataset a valuable resource for developing predictive models and enhancing the reliability of LC-MS analyses 
across various chromatographic conditions.

Code availability
The source code of RT projection and SOM clustering algorithm was provided in GitHub (https://github.com/
Yanzi-Zhang-oss/Post-projection-calibration-of-retention-time-across-liquid-chromatography-setups).

Received: 1 February 2024; Accepted: 14 August 2024;
Published: xx xx xxxx

Fig. 4 Experimental retention times of 330 overlapping molecules in 30 different CMs. These molecules are 
divided into 25 groups based on their retention behavior (panels a–y). Each retention time profile corresponds 
to one molecule in MCMRT.
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