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INTRODUCTION

Protein with 83 residues, VPA0419 (residues 17–99,

numbered 1–83) (gi|81726230, SwissProt/TrEMBL ID

Q87J34_VIBPA, accession number Q87J34)1 from Vibrio

parahaemolyticus and 99-residue protein yiiS (gi|81722782,

SwissProt/TrEMBL ID Q83IT9_SHIFL, accession number

Q83IT9)2,3 from Shigella flexneri were selected as targets

for the Protein Structure Initiative-2 and assigned to the

Northeast Structural Genomics Consortium (NESG) for

structure determination (NESG target ID VpR68 for

VPA0419 and SfR90 for yiiS). VPA0419 and yiiS share

36% sequence identity, but show no significant sequence

identity with any protein with known three-dimensional

structure in the Protein Data Bank (PDB4). The two pro-

teins belong to Pfam5 domain family PF04175 which cur-

rently contains 123 members with unknown three-dimen-

sional structures and functional annotation, all of which

appear to be found in gamma proteobacteria (for a

sequence alignment, see Fig. S1 in Supporting Informa-

tion). The NMR structures of VPA0419 and yiiS were

solved using a protocol for high-throughput protein struc-

ture determination6 and represent the first ones for protein

family PF04175. As these structures are the first for

PF04175, ‘‘high leverage’’7 of the experimental structures

can be expected for calculating homology models.8,9

METHODS

Proteins VPA0419 and yiiS were cloned, expressed,

and purified following standard protocols developed by

the NESG for production of U-13C,15N-labeled protein

samples.10 Briefly, the truncated VPA0419 gene encod-

ing residues 17–99 from Vibrio parahaemolyticus and

the full-length yiiS gene from Shigella flexneri were

cloned into a pET21 (Novagen) derivative, yielding the

plasmids VpR68-17-99-21.2 and SfR90-21.8, respec-

tively. The resulting constructs contain eight nonnative
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residues at the C-terminus (LEHHHHHH) that facili-

tate protein purification. The construct of VPA0419 was

designed using consensus disorder prediction methods

(Y. Huang and G.T. Montelione, personal communca-

tion); several constructs with different truncations of

the N-terminal 14–22 residues were made, and the con-

struct providing the best expression, solubility, and

NMR spectral quality, residues 17–99, was selected for

structure determination. Escherichia coli BL21 (DE3)

pMGK cells, a codon enhanced strain, were transformed

with VpR68-17-99-21.2 for protein VPA0419 and

SfR90-21.8 for protein yiiS, and cultured in MJ9 mini-

mal medium containing (15NH4)2SO4 and U-13C-glu-

cose as sole nitrogen and carbon sources to produce

U-13C,15N-labeled proteins. VPA0419 and yiiS were

purified using an AKTAxpress (GE Healthcare) based

two-step protocol consisting of IMAC (HisTrap HP)

and gel filtration (HiLoad 26/60 Superdex 75) chroma-

tography. The final yields of purified U-13C,15N

VPA0419 (>98% homogenous by SDS-PAGE; 10.8 kDa

by MALDI-TOF mass spectrometry) and U-13C,15N yiiS

(>98% homogenous by SDS-PAGE; 12.4 kDa by

MALDI-TOF mass spectrometry) were �43 and �34

mg/L, respectively. In addition, U-15N, 5% biosyntheti-

cally directed fractionally 13C-labeled samples were gen-

erated to stereo-specifically assign Val and Leu methyl

groups.11 All NMR samples were prepared at �1 mM

protein concentration in 95% H2O/5% 2H2O solutions

containing 20 mM NH4OAc (VPA0419) or 20 mM MES

(yiiS) along with 100 mM NaCl, 5 mM CaCl2, 10 mM

DTT, and 0.02% NaN3 at pH 5.5 (VPA0419) or pH 6.5

(yiiS). Isotropic overall rotational correlation times of

�4.5 ns for VPA0419 and �5.0 ns for yiiS were inferred

from 15N spin relaxation times and indicate that both

proteins are monomeric in solution. This conclusion

was further confirmed by analytic gel filtration (Agilent

Technologies) followed by a combination of static light

scattering and refractive index (Wyatt Technology).10

NMR spectra were recorded at 258C on Varian INOVA

600 (for VPA0419) and INOVA 750 (for yiiS) spect-

rometers equipped with cryogenic probes. Four through-

bond correlated G-matrix Fourier transform12 (GFT)

NMR experiments,12–14 complemented by 3D HNNCO

as described,15 were collected for backbone and side

chain resonance assignments (total measurement time:

�100 h for each protein). For both proteins, simultane-

ous 3D 15N/13Caliphatic/13Caromatic-resolved [1H,1H]-

NOESY14 (mixing time: 70 ms; measurement time: 24 h

for each protein) was acquired on an a Varian INOVA

750 spectrometer to derive 1H–1H distance constraints.

2D constant-time [13C,1H]-HSQC spectra were recorded

as was described15 for the 5% fractionally 13C-labeled

samples in order to obtain stereo-specific assignments for

isopropyl groups of Val and Leu. Spectra were processed

and analyzed with the programs NMRPIPE16 and

XEASY,17 respectively.

Sequence specific backbone (1HN, 15N, 1Ha, 13Ca) and
1Hb/13Cb resonance assignments were obtained by using

(4,3)DHNNCabCa/CabCa(CO)NHNandHabCab(CO)NHN

along with the program AUTOASSIGN,18 and polypep-

tide backbone 13C0 resonances were assigned using 3D

HNNCO. More peripheral side chain chemical shifts

were assigned with aliphatic (4,3)D HCCH and 3D
15N/13Caliphatic/13Caromatic-resolved [1H,1H]-NOESY. Over-

all, assignments were obtained for 100%/99% of back-

bone and 1Hb/13Cb resonances of VPA0419/yiiS, and for

99% of the side chain resonances of both proteins which

are assignable with the NMR experiments listed earlier

(excluding the N-terminal NH3
1, Pro 15N, 13C0 preceding

prolyl residues, Lys NH3
1, Arg NH2, OH, side chain

13C0, and aromatic 13Cg). Furthermore, 64%/100% of Val

and Leu isopropyl moieties and 49%/28% of b-methyl-

ene groups with non-degenerate proton chemical shifts

were stereo-specifically assigned for VPA0419/yiiS (Table

I). Chemical shifts were deposited in the BioMagRes-

Bank22 (accession code 15608 for VPA0419 and 15762

for yiiS). 1H–1H upper distance limit constraints for

structure calculations were obtained from NOESY (Table

I). In addition, backbone dihedral angle constraints were

derived from chemical shifts using the program TALOS23

for residues located in well-defined secondary structure

elements (Table I). The programs CYANA24,25 and

AUTOSTRUCTURE26 were used in parallel to assign

long-range NOEs.6 The final structure calculations were

performed using CYANA followed by explicit water bath

refinement using the program CNS.27

Computational structure analyses are provided by the

NESG function annotation database (http://luna.bioc.

columbia.edu/honiglab/nesg). This resource provides in-

formation on structural neighbors identified by the struc-

ture alignment methods SKAN28,29 and DALI,30

sequence neighbors extracted from UniProt31 using PSI-

BLAST,32 solvent accessible cavities identified by

SCREEN,33 electrostatic surface potentials estimated by

DELPHI,34 protein signatures recognized by INTERPRO-

SCAN,35 and amino acid conservation profiles estimated

by CONSURF.36 For structure visualization, the ASTEX-

VIEWERTM 2.037 is implemented. Further details on the

applied methods are provided at http://luna.bioc.columbia.

edu/honiglab/nesg/documentation/.

RESULTS AND DISCUSSION

High-quality three-dimensional NMR structures (Table

I) were obtained for proteins VPA0419 and yiiS, and the

coordinates were deposited in the PDB4 (Fig. 1; accession

code 2jz5 for VPA0419 and 2k3i for yiiS). As was

expected for two proteins with 36% sequence identity,

both proteins exhibit quite similar three-dimensional

structures: the root mean square deviation (rmsd) calcu-

lated between the mean coordinates of the backbone
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heavy atoms N, Ca, and C0 of regular secondary structure

elements is only 0.88 Å. The two proteins exhibit a

mixed a/b fold containing a three-stranded antiparallel

b-sheet with topology A(:)C(;)B(:) and comprising res-

idues 14–20/29–36, 45–50/63–71, and 58–65/76–83. Two

a-helices I and II, comprise, respectively, residues 24–41/

39–59 and 68–82/87–101, and are attached on one side

of the b-sheet. a-Helix I is inserted between b-strands A
and B, while a-Helix II is C-terminal.

As mentioned in the introduction, both VPA0419 and

yiiS belong to protein domain family PF04175,5 a ‘‘do-

main of unknown function’’ family (DUF406) whose

members appear to be found only in gamma proteobacte-

ria. Although PSI-BLAST32 searches using VPA0419 and

yiiS as queries against UniRef10039 returned a few closely

related annotated sequences [e.g. a sequence annotated as

putative C-4 dicarboxylate transport protein (fragment)

or one annotated as DNA mismatch repair protein shar-

ing 98% and 36% sequence identity, respectively, with

yiiS over the entire protein length], it was unclear why

these sequences carried such annotations in UniRef and

we could not validate them. To the best of our knowl-

edge, the only tentative functional annotation published

in literature for any member of family PF04175 refers to

a Haemophilus influenzae protein (Swiss-Prot ID P44027;

25% sequence identity with protein yiiS over 84 resi-

dues). This protein has been suggested to play an auxil-

iary role in penetration of the bacterial cells in between

human epithelial cells.40 However, the specific mecha-

nism by which this protein is involved is not known, so

that a biochemical functional annotation of members of

PF04175 can likewise not be derived.

Our search for proteins that are structurally similar to

VPA0419 and yiiS (see Supporting Information for addi-

tional details) reveals that their three-dimensional archi-

tecture is rather common among proteins with known

Table I
Structure Statistics for NMR Structures of Proteins VPA0419 and yiiS

VPA0419 yiiS

Completeness of stereospecific assignmentsa (%)
bCH2 49 (27/55) 28 (11/39)
Val and Leu methyl groups 64 (9/14) 100 (9/9)

Conformationally restricting distance constraints
Intraresidue [i 5 j] 439 346
Sequential [|i – j| 5 1] 493 588
Medium range [1 < |i – j| < 5] 323 443
Long range [|i – j| > 5] 554 621
Total 1809 1998

Dihedral angle constraints
u 45 47
w 45 47

Average number of constraints per residue 21.0 20.2
Average number of long-range distance constraints per residue 6.4 6.3
CYANA target function (�2) 0.95 � 0.20 0.90 � 0.13
Average number of distance constraints violations per CYANA conformer
0.2–0.5 � 0 0
>0.5 � 0 0

Average number of dihedral-angle constraint violations per CYANA conformer
>58 0 0

Average rmsd to the mean CNS coordinates (�)
Regular secondary structure elements,b backbone heavy atoms 0.48 � 0.10 0.57 � 0.10
Regular secondary structure elements,b all heavy atoms 0.92 � 0.10 1.00 � 0.06
Ordered residues,c backbone heavy atoms 1.21 � 0.24 0.73 � 0.11
Ordered residues,c all heavy atoms 1.48 � 0.18 1.12 � 0.09
Heavy atoms of molecular core including best-defined side chainsd 0.73 � 0.13 0.86 � 0.09

PROCHECK19 G-factors raw score (u and w / all dihedral angles)c 20.09/20.13 20.08/20.11
PROCHECK19 G-factors Z-score (u and w / all dihedral angles)c 20.04/20.77 0.00/20.65
MOLPROBITY20 clash score (raw / Z-score)c 19.82/21.90 19.26/21.78
AutoQF R/P/DP scores21 (%) 95/97/78 93/96/71
Ramachandran plot summaryc (%)

Most favored regions 95.1 94.7
Additionally allowed regions 4.9 5.2
Generously allowed regions 0.0 0.1
Disallowed regions 0.0 0.1

aRelative to pairs with nondegenerate chemical shifts for residues 1–83 (VPA0419) and 29–100 (yiiS).
bResidues 14–19, 24–40, 46–49, 58–64, 68–81 for VPA0419; 29–36, 39–56, 64–72, 75–83, 87–100 for yiiS.
cResidues 1-83 for VPA0419; 29-100 for yiiS.
dBackbone and side-chain heavy atoms of residues 14,15,17–19, 26, 27, 29, 31, 32, 35, 38, 40, 41, 45, 48, 50, 59–61, 69, 72, 73,

76 for VPA0419; 29, 36, 39, 42–46, 52, 53, 56, 69–71, 75–84, 89–93 for yiiS.
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structures deposited in the PDB.4 For example, the struc-

ture alignment programs SKAN28,29 and DALI30 return

numerous ‘hits’ when using VPA0419 and yiiS as queries,

including several RNA binding domains such as the spli-

ceosomal U2B‘‘ protein41 and the S10 component of the

30S ribosomal subunit.42 However, the RNA binding

region in these domains is generally located on the sol-

vent exposed side of the b-sheet, an area that in

VPA0419 and yiiS exhibits only slightly positive to neu-

tral surface electrostatic potential (GRASP228). Further-

more, potential RNA binding residues appear in general

not to be conserved in VPA0419 and yiiS. Although this

does not necessarily rule out the possibility that the two

proteins bind to RNA, a functional annotation for

VPA0419 and yiiS can thus not be inferred from these

structurally similar proteins.

The only structural match for VPA0419 and yiiS for

which we could derive a tentative suggestion for a

functional annotation turned out to be the single

domain enzymes Pterin-4a-Carbinolamine Dehydratases

(PCDs).43 The structure of the Thermus thermophilus

protein DCoH44 can be superposed onto yiiS and

VPA0419 with, respectively, r.m.s.d. values for superposi-

tion of the Ca atoms of 2.8 Å (70 aligned residues) and

3.1 Å (66 aligned residues) when using the program

SKAN.28,29 The sequence identity inferred from a struc-

ture-based sequence alignment, on the other hand, is

very low: 11% and 12% for, respectively, yiiS and

VPA0419. Very similar results are obtained for the mouse

and rat homologs (PDB IDs 1ru045 and 1dcp46). Hence,

the hypothesis presented in the following could not have

been drawn based on sequence similarity alone and

depended on the knowledge of the three-dimensional

structures.

Although residues of the PCDs involved in binding of

the metabolite pterin-4a-carbinolamine are not conserved

in VPA0419 and yiiS, they do correspond to a surface

region structurally aligned with residues that are highly

conserved in PF04175 (in particular also the most con-

served residue Glu 89; see Supporting Information with

additional information and Fig. S2). This suggests that in

both VPA0419 and yiiS (and therefore all members of

PF04175), this region (i.e. the one including Glu 89) is

involved in binding of a ligand, thereby possibly consti-

tuting a catalytic site of a yet uncharacterized enzyme

specific to gamma proteobacteria. Future experiments

designed to screen for ligands that bind to proteins

VPA0419 and/or yiiS can be envisaged to test this

hypothesis.
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