
0123456789();: 

Antibodies are a critical component of the humoral adap-
tive immune response for the neutralization and destruc-
tion of disease-causing molecules, viruses and cells.  
Upon initial exposure to a foreign antigen, the immune 
system mounts a diverse polyclonal B cell response, 
producing a repertoire of antibodies that recognize 
multiple overlapping and non-overlapping antigenic 
epitopes. Although these initial antibodies have low 
binding affinities, activated antibody-producing B cells 
undergo a conserved affinity maturation process through 
somatic hypermutation and clonal selection to generate 
antibodies with successively greater affinities1–3. Target 
neutralization and elimination is subsequently triggered 
through multiple tightly regulated processes, including 
protein-mediated and cell-mediated effector functions.

The discovery of the hybridoma technology by Köhler 
and Milstein4, followed by the development of stan
dardizable, high-yield recombinant antibody discovery,  
production and purification platforms, ushered in a 
new era of antibody-based drugs. Indeed, antibod-
ies have grown into an established and exceptionally 
versatile class of therapeutic agents for treating a wide 
spectrum of human diseases, owing to their high spec-
ificity, modular and adaptable architecture, predictable 
bioavailability and pharmacokinetics and availability of 

standardized manufacturing platforms. In May 2022, an 
estimated 1,000 therapeutic antibodies were at various 
stages of clinical development and 119 antibodies had 
obtained first marketing approval in Europe and the 
USA (excluding biosimilars; a list of antibody therapeu-
tics approved or in regulatory review in the EU or US is 
available through the Antibody Society).

Many factors contribute to the success of antibody- 
based treatments, but central to the pharmacodynamic 
mechanism is the interaction of antibodies with their 
targets, and more specifically the affinity and avidity 
of binding interactions5,6. Avidity therein is defined as 
the accumulated binding strength of multiple affinities 
contributed by individual non-covalent interactions 
in crosslinking events. For example, antibody-based 
effector functions are triggered by multivalent target 
binding on the cell surface7–11 in which avidity-driven 
surface clustering of IgG molecules serves as a thresh-
old for effector function activation. Indeed, single  
antibody–antigen binding interactions may be insuffi-
cient for successfully eliminating pathogens or diseased 
cells11–14 and neutralization of soluble proteins based on 
single binding interactions display a limited potency 
ceiling that can be surpassed by orders of magnitude 
using antibody cocktails15–17. Recent innovative antibody 

Hybridoma technology
A method for the generation  
of (monoclonal) antibodies with 
a single-antigen specificity by 
fusing a short-lived antibody- 
producing B cell from an 
immunized animal with  
an immortal myeloma cell.

Avidity in antibody effector functions 
and biotherapeutic drug design
Simone C. Oostindie   1,2, Greg A. Lazar3, Janine Schuurman   1 and  
Paul W. H. I. Parren   2,4,5 ✉

Abstract | Antibodies are the cardinal effector molecules of the immune system and are being 
leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune 
response is the production of an epitope-diverse, polyclonal antibody mixture that is capable  
of neutralizing invading pathogens or disease-causing molecules through binding interference 
and by mediating humoral and cellular effector functions. Avidity — the accumulated binding 
strength derived from the affinities of multiple individual non-covalent interactions — is 
fundamental to virtually all aspects of antibody biology, including antibody–antigen binding, 
clonal selection and effector functions. The manipulation of antibody avidity has since emerged 
as an important design principle for enhancing or engineering novel properties in antibody 
biotherapeutics. In this Review, we describe the multiple levels of avidity interactions that trigger 
the overall efficacy and control of functional responses in both natural antibody biology and  
their therapeutic applications. Within this framework, we comprehensively review therapeutic 
antibody mechanisms of action, with particular emphasis on engineered optimizations and 
platforms. Overall, we describe how affinity and avidity tuning of engineered antibody formats 
are enabling a new wave of differentiated antibody drugs with tailored properties and novel 
functions, promising improved treatment options for a wide variety of diseases.

1Genmab, Utrecht, 
Netherlands.
2Department of Immunology, 
Leiden University Medical 
Center, Leiden, Netherlands.
3Department of Antibody 
Engineering, Genentech,  
San Francisco, CA, USA.
4Sparring Bioconsult, Odijk, 
Netherlands.
5Lava Therapeutics, Utrecht, 
Netherlands.

✉e-mail: p.parren@
lavatherapeutics.com

https://doi.org/10.1038/ 
s41573-022-00501-8

REVIEWS

NAture RevIewS | DRuG DIsCovERy	  volume 21 | October 2022 | 715

https://www.antibodysociety.org/resources/approved-antibodies/
https://www.antibodysociety.org/resources/approved-antibodies/
http://orcid.org/0000-0002-6088-9206
http://orcid.org/0000-0002-9738-9926
http://orcid.org/0000-0002-4365-3859
mailto:p.parren@lavatherapeutics.com
mailto:p.parren@lavatherapeutics.com
https://doi.org/10.1038/s41573-022-00501-8
https://doi.org/10.1038/s41573-022-00501-8
http://crossmark.crossref.org/dialog/?doi=10.1038/s41573-022-00501-8&domain=pdf


0123456789();: 

formats capable of leveraging antibody avidity, such as 
bispecific and multispecific antibodies and antibodies 
with engineered Fc-mediated effector functions, have 
steered the antibody landscape towards more tailored 
drug design strategies5,18–21. Notably, the recent decision 
of the World Health Organization to revise their generic 
naming scheme for antibodies and create separate cat-
egories for Fc-engineered and multispecific antibodies, 
in addition to changing nomenclature for unmodified 
antibodies and antibody fragments, highlights the 
success and maturity of these novel formats as human 
therapeutic agents22.

In this Review, we describe recent advances in 
understanding avidity interactions in the context of 
both natural immunity and therapeutic antibody-based 
mechanisms of action. Special emphasis is placed on 
engineering strategies and platforms that tune avidity 
to boost therapeutic activity, including multispecific 
and multiparatopic targeting, valency modulation and 
the optimization of functional interactions with effector 
molecules. We do not discuss the vast field of obligate 

bispecific antibodies owing to space constraints and we 
refer readers to a recent review by Labrijn et al.20 for more 
information. Within our conceptual framework, we dis-
cuss current translational efforts regarding avidity-based 
antibody concepts in the clinic and provide perspectives 
that we believe will aid the development of the next wave 
of differentiated biotherapeutics.

The role of avidity in antibody biology
The strength of a single binding interaction between 
an antibody Fab fragment and antigen is defined by 
the term affinity, which we term zero-order avidity 
for the purpose of this Review. Avidity arising from 
different affinity interactions mediated by the antibody 
Fab and Fc domains and modulated by the hinge region 
(Box 1) can be grouped into tiers depending on the level 
of multivalency achieved: first-order avidity, referring 
to bivalent Fab interactions with antigen; second-order 
avidity, referring to simultaneous Fab–antigen and 
Fc–Fc or Fab–Fab interactions; and third-order avidity, 
referring to interactions between immune complexes 
and immune effector molecules. The term avidity is 
used below as an overarching term to describe the 
binding strength that results from these multidimen-
sional affinity interactions23. It is noted that all tiers of 
avidity interactions may be increased for polyclonal 
sera and antibody cocktails binding a multitude of 
non-overlapping epitopes.

Antibody functional responses
The importance of avidity for antibody–antigen recog-
nition in both natural immunity and antibody therapies 
has long been recognized6,23,24. The primary mechanism 
by which antibodies combat infection is through bind-
ing and directly neutralizing a pathogenic target antigen 
by preventing its interaction with host receptors and 
blocking its function, such as mediating viral entry into 
a cell. As early as 1937, Burnet et al. recognized that a 
single antibody binding event was likely to be insufficient 
to inactivate viruses and argued that neutralization of 
viruses by antibodies occurs through multivalent anti-
body binding to a high proportion of viral epitopes12,25. 
This polyclonal immune complexation, rather than sin-
gle molecular binding events, is the central trigger for 
downstream humoral and cellular responses. Further, 
antibody Fc domains allow for interactions with multiple 
immune effector molecules present in human plasma or 
expressed on immune cells and a single binding interac-
tion between an antigen-bound antibody and an effector 
molecule is generally insufficient to induce an effective 
Fc-mediated response. All together, avidity binding 
interactions through both Fab and Fc — with the hinge 
in a modulatory role — constitute a remarkably sensi-
tive adaptor system that enables the rapid initiation and 
amplification of different effector mechanisms to combat 
disease (Box 1).

In our view, the response kinetics and thresholds 
governing functional antibody responses can be defined 
as the net result of distinct activation phases, including 
scanning of the antibody over the antigen (zero-order 
avidity), antigen–antibody binding and complex forma-
tion (first-order avidity), clustering of antibody–antigen 

Box 1 | Human immunoglobulin architecture

Human immunoglobulins 
consist of three distinct 
regions: an antigen- 
binding fragment (Fab) 
region that binds antigen, 
a crystallizable fragment 
(Fc) region that interacts 
with immune effector 
molecules and a hinge 
region that links the 
Fab to the Fc and 
defines conformational 
flexibility. A monomeric 
immunoglobulin molecule 
is Y-shaped and is usually 
composed of four distinct 
protein chains, including 
two identical heavy chains 
(HCs) and light chains 
(LCs) (dark and light red, respectively, in the figure). HCs are composed of three or four 
constant domains (CH), depending on the antibody isotype, and LCs contain a single 
constant domain (CL). The constant domains together form the Fc region, the hinge 
region and the base of the Fab region. The Fab region comprises the variable domains 
that determine antigen binding specificity and affinity. Disulfide bonds shape the 
overall quaternary structure of the molecule by linking the two HCs in the hinge region 
and the HC and LC in the Fab region. In humans, variations in the HC constant domain 
during an immune response generate five different isotypes; IgM, IgD, IgG, IgA and IgE, 
with IgG and IgA further subdivided into subclasses 1–4 and 1–2, respectively. IgG, IgD 
and IgE exist as monomers, whereas IgA and IgM may contain an additional polypeptide 
J-chain that allows the formation of dimers and pentamers, respectively. A small fraction 
of IgM antibodies exists as hexamers in which the J-chain protein is replaced by an 
extra monomer subunit. IgA may further contain a secretory component that provides 
protection against proteolytic degradation. The CH2 and CH3 domains of IgG interact 
with the neonatal Fc receptor (FcRn), which protects the antibody from catabolism and 
thereby substantially increases its plasma half-life202,203. Immunoglobulin isotypes and 
subclasses can further be distinguished by variation in the hinge length, the number 
and location of disulfide bridges and N-linked or O-linked glycosylation within the HC. 
The hinge region serves as a connector and also modulates effector function potency; 
indeed, modification of the hinge length and flexibility has allowed for fine tuning  
of IgG effector activity180. Together, changes in antibody valency, hinge length and 
flexibility, as well as glycosylation status can influence avidity interactions and overall 
functional response kinetics.
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Antibody cocktails
A mixture of two, three or 
more antibodies combined into 
a single formulation.

Multiparatopic
An antibody containing 
antigen-binding domains 
recognizing two, three or  
more epitopes on the same 
target protein.
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complexes on the cell surface, potentially facilitated by 
the formation of simultaneous intermolecular Fc–Fc 
and Fab–Fab contacts (second-order avidity), and 
Fc-mediated binding of immune effector molecules 

up to a threshold that triggers an amplification of the 
functional response (third-order avidity). These stages 
are followed by the regulation and contraction of the 
response (Fig. 1). Association and dissociation rate con-
stants and local concentration determine the on-rate 
and off-rate of antibody binding kinetics and complex 
formation is favoured when the on-rate is faster than the 
off-rate. The conditions required to reach an activation 
threshold may vary between effector systems; for exam-
ple, different types of effector mechanisms require differ-
ent antibody concentrations because they are triggered 
at distinct target occupancy levels26 (Fig. 2). Other factors, 
including antigen expression and distribution, different 
immunoglobulin subclasses, and effector elements such 
as complement factors, effector cell subtypes, Fc receptor 
subtypes, polymorphisms and expression levels, can also 
affect the overall avidity of antibody interactions and the 
consequent amplification of a functional response27,28. 
Regulation and contraction of the response is induced 
by target-related outputs such as the elimination of tar-
get cells, target densities dropping below the amplifi-
cation threshold or inhibition by regulatory molecules 
expressed on the target or effector cell or recruited from 
plasma. Similarly, systemic regulation can occur when 
there is a shortage of effector molecules or cells, or by the 
presence of interfering immunoglobulin subclasses29–31. 
Conversely, insufficient regulation may cause auto
immunity through excessive or constitutive activation 
of the antibody functional response.

The humoral adaptive immune response
The role of avidity in humoral immunity is evident early 
in the initiation of the immune response. Upon entry of 
foreign antigens into lymphoid tissues, naive B cells pres-
ent in lymph node follicles are activated through anti-
gen binding to their IgM B cell receptors (BCRs) (Box 2). 
BCRs expressed on mature B cells are membrane-bound 
immunoglobulin molecules that are activated following 
antigen-induced aggregation32. Although several dif-
ferent models have been proposed for BCR activation, 
considerable evidence suggests that BCRs undergo 
activation-dependent localization to membrane micro-
domains, probably facilitating higher-order BCR clus-
tering and signal transduction33,34. Upon activation, 
some B cells become plasma cells, which switch from 
primarily expressing membrane-associated IgM to abun-
dantly secreting it by a mechanism of alternative RNA 
processing35. Secreted IgM antibodies are predominantly 
pentameric molecules (hexameric molecules comprise 
<5% of serum IgM)36,37 that, despite binding with charac-
teristically low intrinsic affinity (KD of 10–4 to 10–6 mol l–1), 
are able to avidly engage immunogens owing to their ten 
identical antigen binding sites and high conformational 
flexibility38. IgM antibodies are especially effective in pro-
tecting against microbes with highly expressed, closely 
spaced surface epitopes, which is in part a consequence 
of efficient avidity-based interactions between surface 
antigen-bound IgM and the complement system.

In an ongoing immune response, B cell clonal selec-
tion and affinity maturation can drive the intrinsic 
affinity of the Fab domain up to 10–10 mol l–1 (refs.39,40). 
Additionally, class switching from IgM to IgG, IgA, 
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Fig. 1 | Response kinetics governing antibody functional responses. Avidity arising 
from combinations of affinity interactions are grouped in distinct tiers that integrate the 
common biological mechanisms of input, output and feedback. Monovalent antibody 
binding events, termed zero-order avidity interactions for the purpose of this Review, 
vary from highly transient to long-lasting, depending on affinity. This antibody scanning 
mode progresses to first-order avidity binding through bivalent Fab–antigen interactions 
and second-order avidity binding through concomitant Fab–Fab or Fc–Fc interactions. 
Third-order avidity is engaged when antibody oligomerization passes a threshold for 
Fc-mediated binding of soluble or cell-bound immune effector molecules, including 
configurations allowing interactions with IgG Fc receptors (FcγRs) or the complement 
component C1. The antibody functional response may be regulated or dampened at any 
avidity tier by, for example, elimination of target cells, target densities dropping below 
the amplification threshold or regulatory molecules expressed on either the target cell 
or the effector cell or recruited from plasma.
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IgE and their subtypes results in swapping of anti-
body Fc domains and associated functional properties. 
Conversely, B cell activation is subject to physiological 
control mechanisms through Fc-mediated antibody 
feedback, where secreted antibodies inhibit B cell acti-
vation by forming antibody–antigen immune complexes 
that, in the context of interaction with BCR-bound 
antigen, co-engage the inhibitory IgG Fc receptor IIb 
(FcγRIIB). Avidity ligation of both the BCR and FcγRIIB 
results in inhibitory feedback of BCR complex signalling 

through phosphatases recruited by  the  immuno
receptor tyrosine-based inhibitory motif (ITIM) in the 
cytoplasmic tail of FcγRIIB32,41,42 (Fig. 3a).

Fc-mediated effector functions
Classical antibody Fc-mediated effector mechanisms 
such as complement-dependent cytotoxicity (CDC), 
antibody-dependent cellular cytotoxicity (ADCC) and 
antibody-dependent cellular phagocytosis (ADCP) 
are key mechanisms for the elimination of pathogens 
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Fig. 2 | Factors affecting antibody functional response activation. a | Schematic representation of dose–response 
relationships for different Fc-mediated effector mechanisms. Functional responses reach the activation threshold at 
antibody doses that vary per effector mechanism; here illustrated in order of increasing antibody concentrations required 
for antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and complement- 
dependent cytotoxicity (CDC). b | Increasing antibody doses result in increasing target occupancy and antibody densities 
on the target cell surface, thereby favouring distinct tiers of avidity binding; saturation may favour monovalent antibody 
binding. Fc-mediated effector functions are triggered at different target occupancy levels. IgG Fc receptor (FcγR)-induced 
ADCC involves the release of cytotoxic granules containing granzymes and perforin (an example of a natural killer (NK)  
cell is shown); ADCP involves the uptake and lysosomal degradation of target cells (an example of a macrophage is shown); 
CDC involves the triggering of an amplifiable cascade of complement proteins present in blood, terminating in the 
generation of a lytic membrane-attack complex. In addition to direct killing, the production of cytokines or bioactive 
complement fragments may contribute to additional attraction and activation of effector cells. The antibody density 
required for reaching the activation threshold is defined by different parameters including antibody affinity, valency  
and concentration; structural constraints related to epitope recognized and antibody isotype, antigen expression and 
distribution; and the type and presence of effector molecules and regulatory molecules.
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or diseased cells such as infected or cancerous cells. 
Although the processes of antigen binding by the  
Fab domain and effector function activation by the Fc 
domain were long thought to act independently, mul-
tiple studies have challenged this view and an optimal 

configuration of immune complexes probably exists for 
different types of effector functions. In addition to differ-
ent Fc-density requirements for activation (Fig. 2), there 
is accumulating evidence for allosteric or intramolecu-
lar cooperativity28,44; for example, the optimal immune 
complex stoichiometry required for complement acti-
vation may be facilitated by IgG Fc–Fc interactions and 
modulated by their Fab domains45. Fab and Fc function 
may even be considered interdependent, given that effi-
cient complement activation requires clustering of cell- 
bound IgGs through concerted antigen–Fab and Fc–Fc  
interactions, thereby forming optimal docking sites 
for recruitment of C1q46. Furthermore, the binding of  
IgG–antigen complexes to FcγRIIIA was recently shown 
to be stabilized through contacts with the IgG light-chain 
constant region, as well as by Fab and Fc conformational 
changes44. First-order and second-order avidity interac-
tions are therefore a prerequisite for third-order avidity 
interactions and resulting functional responses.

Neutralization
Fab-domain-mediated neutralization is the most direct 
mechanism by which antigens and pathogens can be 
inactivated. Indeed, binding affinity is a principal driver 
of potency for some highly successful therapeutic anti-
bodies that neutralize cytokines, growth factors or com-
plement factors. Binding of the Fab domain to specific 
pathogenic structures prevents interactions with host 
cells, thereby blocking toxin activity or viral entry into 
the cell. Although efficient neutralization fundamen-
tally depends on strong affinity, recent studies provide 
compelling evidence for additional avidity mechanisms 
for optimizing pathogen recognition. For example, the 
repetitive nature of certain Plasmodium falciparum cir-
cumsporozoite protein (PfCSP) epitopes drives the selec-
tion of homotypic Fab–Fab interactions between PfCSP 
repeat region-specific antibodies47,48 (Fig. 3b). These 
second-order avidity interactions presumably increase 
B cell receptor clustering and selective clonal expansion 
of PfCSP-reactive B cells.

One of the most striking illustrations of the selective 
pressure of repeating microbial epitopes involves the 
heavy chain variable (VH)-domain swapping observed 
in anti-HIV-1 human antibody 2G12, which enables 
multivalent interactions with conserved carbohydrate 
clusters on the HIV-1 envelope glycoprotein subunit 
gp120 (ref.49). A single large and rigid binding domain 
is formed by the two heavy chains cross-contacted by 
both light chains in which the novel VH–VH interface 
creates an additional antigen binding site for increased 
contacts with glycan structures (Fig. 3b, right). Notably, 
further studies demonstrated the existence of a supra-
molecular antibody structure consisting of 2G12 dimers 
with two large (Fab)2 binding units and two Fc domains 
providing >50-fold greater neutralization potency over 
monomeric 2G12 (ref.50). We note that although the 
germline precursor to this antibody adopts a conven-
tional structure, five somatic mutations were sufficient 
for domain exchange, suggesting that this unique struc-
tural rearrangement could be exploited for generating 
therapeutic antibodies against (2G12-like) carbohydrate 
epitopes on other viruses51,52.

Box 2 | Human immunoglobulin functional properties

BCR
Each of the immunoglobulin classes and subclasses may be expressed in monomeric  
form with an integral membrane domain to form a B cell receptor (BCR) on the surface  
of a B cell. Expression of the membrane and secreted forms of antibody is regulated by 
alternative RNA processing. Secreted immunoglobulin is identical in sequence to the  
BCR except for the absence of the transmembrane region and potential post-translational 
modifications or quaternary structures.

IgM
In plasma, IgM largely exists as pentamers linked together by disulfide bonds and a 
polypeptide J-chain, but a small fraction exists as a covalent IgM hexamer in absence  
of a J-chain. Owing to their structural and functional differences, pentameric and 
hexameric IgM might be viewed as distinct IgM subclasses68. Studies have shown that both 
pentameric and hexameric IgM adopt a hexagonal platform conformation supporting 
high-avidity binding interactions with C1q and efficient complement activation upon 
antigen binding204,205. Pentameric IgM can be exported at mucosal surfaces by the 
polymeric immunoglobulin receptor to form secretory IgM in complex with a fragment 
derived from the polymeric immunoglobulin receptor, the secretory component206.

IgG
IgG is the most abundant immunoglobulin class in human serum and accounts for 
approximately 10–20% of plasma protein. The four different subclasses, in order of 
decreasing abundance, are IgG1, IgG2, IgG3 and IgG4. Each subclass contains a unique 
profile with respect to antigen binding, complement binding and binding to Fc 
receptors for IgG (FcγRs). Structural determinants in the core hinge region can 
influence antibody function; for example, increasing hinge length and flexibility 
enhances binding to antigen for immune complex formation and binding to the 
complement component C1q94,180,207. The flexibility of the Fab arms affects the relative 
binding of subclasses to FcγRs and C1q, with IgG3 having the strongest binding, 
followed by IgG1, IgG4 and IgG2. Furthermore, modification of glycans attached to 
amino acid N297 affects FcγR binding. Notably, human polyclonal IgG4 antibodies 
undergo a process named Fab-arm exchange under natural physiological conditions,  
in which half-molecules (HC–LC pairs) recombine with half-molecules from other  
IgG4 antibodies. This is a continuous and stochastic process resulting in bispecific, 
functionally monovalent IgG4 antibodies in blood64.

IgD
IgD is primarily expressed as a transmembrane antigen receptor on naive mature B cells. 
IgD possesses a long hinge region with high flexibility and is capable of acquiring a 
T-shaped structure. This structural flexibility potentially contributes to the regulation of 
B cell responsiveness to different types of antigens owing to preferential binding of IgD 
to multimeric antigens over monomeric antigens208,209. Secreted IgD weakly interacts 
with complement or FcδRs. It binds basophils, mast cells, monocytes and dendritic  
cells in an FcδR-independent manner, contributing to mucosal homeostasis through  
the production of antimicrobial peptides and inflammatory cytokines.

IgA
IgA has two subclasses — IgA1 and IgA2 — that contain a heavily glycosylated T-shaped 
hinge and a more rigid Y-shaped hinge, respectively. IgA in serum exists as a monomer 
(±90%) and a J-chain-linked dimer (±10%)210. The latter is the precursor for secretory 
IgA, which is exported across mucosal surfaces in copious amounts by the polymeric 
immunoglobulin receptor to form IgA in complex with the secretory component.  
IgA immune complexes efficiently interact with FcαRI on myeloid cells, including 
neutrophils and macrophages211.

IgE
IgE is the least abundant and fastest-clearing isotype in human plasma (its half-life is less 
than a day, compared to about 3 weeks for IgG). IgE binds to the high-affinity FcεRI on 
mast cells and the low-affinity CD23 on haematopoietic cell types212. IgE glycosylation  
is essential for IgE–FcεRI interactions and this requirement is primarily attributed to  
one of seven N-linked glycan sites (N394)213. IgE can remain bound to FcεRI for weeks  
to months, thereby contributing to long tissue persistence214.
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The crucial importance of avidity in antibody- 
mediated neutralization of toxins and viruses is further 
exemplified by HIV-1 itself, which escapes neutralizing 
antibodies by impeding bivalent high-avidity antibody 
binding, in addition to other mechanisms such as its 
rapid mutation rate and shielding of conserved epitopes 
on the trimeric spike protein. As a result, antibodies 
against HIV-1 envelope glycoproteins are thought to 
predominantly bind the viral surface monovalently53–55. 
Several studies suggest that evasion of bivalent anti-
body binding occurs owing to the low spike protein 
density on the virion surface and an unfavourable dis-
tribution of epitopes on the viral spike protein trimer, 
thereby limiting interspike and intraspike crosslinking, 

respectively56 (Fig. 3b, right). By contrast, antibodies tar-
geting viruses such as influenza and respiratory syncytial 
virus can bind bivalently and thereby take advantage of 
second-order avidity effects57,58.

Often, Fc-domain-mediated third-order avidity 
interactions are required to augment toxin or patho-
gen inactivation through recruitment of complement 
or FcγRs on immune cells (Fig. 2). In the case of HIV-1,  
in vivo protection by broadly neutralizing antibodies 
(bNAbs) was shown to be augmented for antibodies with 
Fc domains capable of engaging activating FcγRs59,60. 
Similarly, in an elegant Fc engineering approach, Gunn 
and colleagues recently used a library of Fc variants 
with identical Fab domains to demonstrate the critical 
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importance of FcγR-mediated effector functions and 
complement activation in antibody-mediated protection 
against Ebola virus infection61.

The potentially deleterious effects of effector func-
tions, such as antibody-dependent enhancement of viral 
infection, represent an important design consideration. 
Interactions between virus-bound antibodies and FcγRs 
or complement receptors may enhance viral entry and 
replication in phagocytic cells, as has been demon-
strated for flaviviruses such as dengue virus62. A cock-
tail of antibodies targeting distinct epitopes on dengue 
virus envelope glycoprotein E and engineered to reduce 
FcγR binding (L234A–L235A mutations) induced effi-
cient dengue virus neutralization without precipitating 
infection63. This indicates that potentiating first-order 
and second-order avidity interactions in a polyclonal 
antibody mixture while minimizing third-order avid-
ity may be crucial for obtaining optimal protection in 
certain cases.

Autoimmunity
The avidity of autoantibodies against self-antigens 
can increase their pathogenicity, as demonstrated by 
the induction of symptoms of myasthenia gravis in 
monkeys by bivalent IgG1 antibodies against the ace-
tylcholine receptor when infused alone, but not when 
combined with IgG4 antibodies. This can be explained 
by the finding that IgG4 antibodies in plasma cannot 
engage in first-order Fab-mediated avidity interactions 
as they become functionally monovalent in vivo by the 
dynamic process of Fab-arm exchange between IgG4 
antibodies of unrelated specificity64. Notably, inter-
species exchange between human and macaque IgG4 

antibodies occurs with higher efficiency than intraspe-
cies exchange because of the increased stability of the 
human/macaque IgG4 heterodimer65,66, which may have 
contributed to the observed effects. Paradoxically, avid-
ity binding may also ameliorate autoimmune disease, 
as was demonstrated in the case of myasthenia gravis 
caused by autoantibodies against muscle-specific kinase 
(MuSK). Signalling through MuSK has an essential role 
in maintaining neuromuscular junctions and a recent 
study demonstrated that monospecific, functionally 
bivalent anti-MuSK antibodies act as partial agonists 
and are therefore less pathogenic than bispecific, func-
tionally monovalent IgG4 anti-MuSK antibodies, which 
abolished MuSK signalling. These findings suggest that 
a lack of first-order avidity of IgG4 molecules could 
be a pathogenic mechanism in other IgG4-mediated 
autoimmune diseases67.

Complement activation
The complement system is a potent innate immune 
defence mechanism composed of an amplifiable enzy-
matic cascade that kills pathogens and attracts immune 
effector cells. Complement is activated through three 
distinct pathways: the classical pathway, the lectin path-
way and the alternative pathway, which depend on the 
binding of C1q, mannan-binding lectin or spontane-
ously activated complement to pathogenic surfaces, 
respectively. All pathways ultimately converge in the 
generation of C3 and C5 convertases that cooperate in 
the production of opsonins, anaphylatoxins, chemoat-
tractants and the formation of the membrane attack 
complex, which breaches the target cell membrane to 
kill the cell68.

The classical pathway is triggered upon binding of 
C1q to the Fc region of cell-bound IgG or IgM. C1q 
consists of six collagen-like triple-helical stalks con-
nected to globular headpieces that resemble the shape 
of a bunch of tulips69. The binding affinity of mono-
meric IgG Fc for C1q is weak (KD ≈ 10–4 M), resulting in 
highly transient interactions. Consequently, functional 
C1q binding and activation requires second-order and 
third-order avidity interactions, leading to an increase in 
KD by four orders of magnitude70. IgM antibodies natu-
rally exist in a multimeric form, which allows them to 
interact with C1q to activate complement following a 
conformational change36,37,71. By contrast, IgGs require 
assembly into ordered antigen-bound hexamers to 
form an optimal structure for binding and activating 
C1 (ref.7). Mass spectrometry, cryo-electron tomography 
and mutational studies have given compelling evidence 
for the requirement of higher-order IgG oligomers for 
optimal complement activation, demonstrating that IgG 
monomers, dimers and trimers do not contribute much 
to CDC and that engagement of least four C1q binding 
sites is required for C1 activation14,45,46. The assembly 
of IgG hexamers on antigenic surfaces results from an 
intricate process in which incoming IgGs are predom-
inantly recruited from solution through second-order 
avidity events in which Fc–Fc interactions facilitate anti-
gen binding (Fig. 3c). At low antigen densities or high 
IgG concentrations, monovalently bound IgGs may 
contribute to oligomerization mediated through lateral 

Fig. 3 | Avidity in antibody biology. a | B cell receptors (BCRs) constitute antibodies 
expressed with a transmembrane region on the B cell surface. First-order avidity 
interactions induce BCR crosslinking and phosphorylation of the BCR-associated 
transducer molecules that recruit SYK and LYN tyrosine kinases, resulting in protein 
kinase C (PKC) activation, mitogen-activated protein kinase (MAPK) activation and 
calcium release. Second-order and third-order avidity binding of antibody-antigen 
immune complexes recruit FcγRIIB, which comprises an immunoreceptor tyrosine-based 
inhibitory motif (ITIM motif) that activates phosphatases and reduces BCR signalling. 
b | Fab-domain-mediated neutralization of pathogen structures, preventing interactions 
with host cells and blocking pathogen entry into the cell. Binding of a protective antibody 
against the repetitive P. falciparum circumsporozoite protein (PfCSP) epitope consisting 
of repeats of the amino acids NPNA is facilitated by second-order avidity Fab–Fab 
interactions between Fabs from neighbouring IgGs (bound in pairs). Neighbouring Fabs 
each bind a two NPNA repeat and are shifted 77° along the NPNA spiral, with five IgGs 
completing a full circle. The Fabs of the IgGs are oriented non-symmetrically in a 
repeating light chain-bottom/heavy chain-top orientation. facilitating Fab–Fab contacts 
(left). HIV-1 virions escape second-order avidity binding by sparse surface expression  
of HIV-1 envelope glycoprotein spikes. The neutralizing antibody 2G12 evolved a 
domain-swapped structure in which each heavy chain contacts both light chains,  
thereby creating a large rigid surface that facilitates avid binding of conserved 
carbohydrate clusters on the HIV-1 envelope spike (right). c | Clustering of immune 
complexes is initiated by IgG molecules that assemble into ordered hexameric structures 
through non-covalent Fc–Fc interactions, which facilitate third-order avidity binding and 
activation of C1 or intracellular signalling through recruitment of signalling molecules 
such as cIAP1 and TRAF2. IgG hexamer formation proceeds through recruitment of 
additional IgG molecules through second-order avidity interactions mediated by the  
Fc domains until ring closure. d | Antibodies that predominantly bind monovalently  
(such as those with moderate affinity or those engineered for monovalent binding) may 
elicit stronger effector functions because higher cell surface densities of Fc domains can 
be achieved. Part a adapted from ref.41, Springer Nature Limited.

◀

Antibody-dependent 
enhancement
A phenomenon in which 
non-neutralizing antibodies  
(or neutralizing antibodies  
at a suboptimal concentration) 
bind to pathogens without 
blocking or clearing infection 
and instead exacerbate 
disease by leading to increased 
infection or enhanced immune 
activation.
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diffusion46,72. Interestingly, functionally monovalent 
antibodies, such as bispecific antibodies comprising only 
a single Fab arm that is capable of antigen binding on a 
target cell, were shown to induce CDC more potently 
than the corresponding bivalent (parent) antibodies, 
potentially owing to optimal geometric positioning 
and a superior ability to form hexamers and engage C1 
(refs.7,14,45,46,72). The high amplification potential of the 
IgG hexamer-complement system is counterbalanced by 
strong regulation through numerous soluble factors — 
for example, C1 inhibitor, C4Bp, and complement fac-
tors I and H — and cell-surface-expressed proteins such 
as CD46, CD55 and CD59, which block the complement 
cascade from progressing at multiple checkpoints73.

As discussed earlier, an ideal immune complex stoi
chiometry probably exists for efficient activation and 
amplification of Fc-mediated effector functions such as 
the complement cascade. Aside from optimal immuno
globulin oligomerization, a number of additional factors 
can influence triggering of complement activity. For exam-
ple, there are several structural prerequisites that affect 
IgG Fc–Fc interactions and optimal positioning of IgG 
hexamers on the cell surface, including antigen-dependent 
constraints such as their size and distribution, and 
epitope geometry and orientation. Antigen-dependent 
and epitope-dependent constraints are most clearly 
exemplified by the enigmatic existence of two functional 
types of antibodies against the established therapeutic 
target CD20 in B cell malignancies and inflammatory 
diseases. Type I CD20 antibodies induce CD20 trans-
location into lipid rafts and induce cell killing through 
complement activation and ADCC, whereas type II  
CD20 antibodies do not cluster CD20 and instead kill 
through apoptosis and ADCC74,75. Recent studies employ-
ing structural and thermodynamic analyses have shed 

light on the mechanistic basis of this class distinction, 
showing that CD20 forms a dimer that provides two bind-
ing sites for type I CD20 antibodies such as rituximab and 
ofatumumab, facilitating avidity interactions and comple-
ment activation. These interactions include Fab–Fab and 
Fc–Fc second-order avidity interactions enabled by the 
two binding sites on the CD20 dimer. By contrast, each 
antigen binding site of the type II CD20 antibody obinu-
tuzumab can bind only a single CD20 dimer, therefore 
precluding second-order avidity interactions that facili-
tate complement activation9,76. These insights suggest that 
besides Fc–Fc interactions, Fab–Fab homotypic interac-
tions can also be exploited to avidity-engineer therapeutic 
antibody function.

Combinations of IgG antibodies simultaneously 
targeting CD20 and CD37 antigens can induce syn-
ergistic CDC of tumour B cells by forming mixed 
hetero-hexameric complexes on the cell surface, even 
where the monoclonal parent antibodies are unable to 
activate complement77. This synergy between antibod-
ies targeting two different antigens is probably caused 
by a favourable distribution of target epitopes on the 
cell surface that facilitates avidity binding. Conversely, 
structural constraints such as hinge length and glycan 
heterogeneity influence IgG oligomerization and com-
plement activation78–81. The composition of polyclonal 
mixtures of IgG subclasses or including other antibody 
classes such as IgA and IgE may therefore affect com-
plement activation through competition for antigen 
binding and differences in flexibility, conformation and 
valency (Box 2).

FcR-mediated cellular effector functions
FcγRs are bound by the different human IgG isotypes 
with varying affinities (Box 3). Only FcγRI can bind 
monomeric IgG with high (nanomolar range) affinity 
and as a consequence may hamper avidity interactions 
within immune complexes in vivo, given that the recep-
tor is probably nearly saturated by the high IgG content 
in serum. Cytokine stimulation during inflammation 
may induce FcγRI clustering in membrane microdo-
mains, thereby facilitating avidity binding of immune 
complexes over monomeric IgG82. All other FcγRs 
exhibit low, micromolar affinities for monomeric IgG, 
and as a consequence require third-order avidity inter-
actions for IgG binding under physiological conditions83, 
thereby preventing inappropriate effector cell activation 
in the absence of a pathogenic trigger. Multimerization 
of cell-bound IgG strengthens FcγR binding interac-
tions over a threshold that triggers receptor signalling 
through phosphorylation of immunoreceptor tyrosine 
activating motif (ITAM) domains, which in turn leads 
to elimination of target cells through ADCC or ADCP. 
Notably, FcγRIIIA — which is responsible for mediating 
ADCC by natural killer (NK) cells — binds afucosylated 
IgG, with 40-fold greater affinity than fucosylated 
IgG84. The relevance of this for immune regulation was 
demonstrated by the observation that afucosylated IgG 
is selectively produced against membrane antigens on 
enveloped viruses — triggered by an as-yet-unknown 
mechanism — and the degree of afucosylation corre-
lates with disease severity in COVID-19 and dengue 

Box 3 | IgG Fc receptors

The Fc domain of antibodies interacts with a family of FcRs expressed on various immune 
cells to mediate effector functions such as antibody-dependent cellular cytotoxicity 
(ADCC) and antibody-dependent cellular phagocytosis (ADCP). IgG binds to FcγRs 
(Box 2), which are broadly classified as either activating or inhibitory, depending on 
whether their intracellular signalling domain contains an immunoreceptor tyrosine 
activating motif (ITAM) or immunoreceptor tyrosine inhibitory motif (ITIM), respectively. 
Activating FcγRs in humans include FcγRI (CD64), FcγRIIA (CD32a) and FcγRIIIA (CD16a) 
and the less well characterized FcγRIIC (CD16c). By contrast, FcγRIIB (CD32b) represents 
the sole inhibitory FcγR, which regulates the function of activating FcγRs, controls 
antibody production by B cells and serves as the main scavenging receptor in the  
liver. Finally, FcγRIIIB (CD16b) uniquely contains no intracellular signalling domain  
and is instead anchored to the membrane by glycosylphosphatidylinositol. FcγRs  
are differentially expressed on lymphoid-derived and myeloid-derived effector cells, 
although the receptor distribution is unique to each cell type215. FcγRIIIA is expressed  
on monocytes, macrophages and natural killer (NK) cells, and is the main receptor for 
mediating ADCC, promoting release of cytotoxic granules and pro-apoptotic signalling 
molecules after engaging IgG-opsonized target cells. Phagocytes such as macrophages 
and dendritic cells express a combination of different FcγRs, including FcγRI, FcγRIIA, 
FcγRIIIA and FcγRIIB, that mediate ADCP for innate destruction of IgG-opsonized  
targets cells and also promote cross-presentation to T cells to elicit immunological 
memory216–218. Studies have shown that the balance of signals between activating FcγRIIA 
and inhibitory FcγRIIB are important determinants of the ability of antibody–antigen 
immune complexes to activate monocytes and dendritic cells186,216,219,220. Although the 
link between FcγRs and cellular immunity has historically been viewed as indirect 
through antigen presentation by cells, it was recently demonstrated that FcγRIIA is 
capable of directly promoting activation of CD4+ T cells by IgG immune complexes221.

Afucosylated
Describes an IgG antibody  
that lacks one or both fucose 
residues in the N-linked 
branched glycan moiety of the 
Fc domain, leading to strongly 
enhanced affinity for FcγRIIIA.
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virus haemorrhagic fever85,86. Similar observations have 
been made in antibody responses against red blood 
cells and platelets in pregnancy-associated alloimmu-
nization and related pathologies87. This suggests that 
the tuning of third-order avidity interactions through 
modulating affinity for Fc receptors is used as a natural 
mechanism to protect against infection and that disease 
risk is increased if regulation is insufficient.

Non-IgG antibody subclasses bind to corresponding 
FcRs, including FcαRI (IgA), FcεRI and FcεRII/CD23 
(IgE), FcµR (IgM), IgδR (IgD) and Fcα/µR (IgA/IgM). 
IgA has a key role in mucosal tissues by regulating the 
tolerance to and protection from exposure to antigens, 
food, commensal microorganisms and enteric patho-
gens, whereas IgE has a role in the host defence against 
parasites such as helminths and is known for its role 
in allergic reactions through the high-affinity binding 
to FcεRI of mast cells (Box 2). IgA immune complexes 
bind FcαRI expressed on myeloid cells (including neu-
trophils, eosinophils, monocytes and macrophages) 
through third-order avidity interactions. Indeed, IgA 
antibodies have been reported to recruit neutrophils 
through release of leukotriene B4 and induce ADCC of 
tumour cells via the FcαRI88–92. Neutrophil-mediated 
ADCC may be mediated through a process called tro-
gocytosis, which involves a stepwise destruction of the 
plasma membrane and uptake of the resulting plasma 
membrane fragments93.

A multitude of factors influence the strength of avid-
ity and degree of antibody–FcR crosslinking, including 
antibody and FcR binding affinity, location of the anti-
genic epitope, and cell surface rigidity10. Several studies 
have characterized FcγR polymorphic variants that display 
varying binding affinities for different IgG subclasses, 
which may impact FcγR crosslinking and activation83,94. 
Mazor et al. showed that antibodies of intermediate 
affinity targeting CD4, epidermal growth factor receptor 
(EGFR) and human epidermal growth factor receptor 2 
(HER2) elicited stronger ADCC and ADCP (as assessed 
by higher maximum kill) than high-affinity antibody 
variants43. The observed difference was attributed to 
increased cell-surface opsonization owing to a greater 
propensity for monovalent binding through faster 
off-rates compared to high-affinity antibodies, leading 
to a higher local density of Fc domains (Fig. 3d). Indeed, 
dynamic, monovalent binding allows greater antibody 
mobility and flexibility95, which may favour the forma-
tion of third-order avidity interactions with FcγR on 
cells beyond a threshold for functional activation. This is 
supported by previously mentioned studies demonstrat-
ing that monovalent binding may facilitate third-order 
avidity interactions with C1, thereby enhancing comple-
ment activation, whereas high-affinity binding can lead 
to stagnation7,72,96. Further, at low IgG concentrations, 
phagocytosis of emulsion droplets was shown to be 
more efficient compared to solid particles97; the authors 
speculated that lateral diffusion of IgGs attached to the 
emulsion droplet surface was prevented in solid particles 
displaying higher cell surface rigidity. These examples 
illustrate the interplay between affinity and avidity inter-
actions in tuning antibody effector functions and their 
response to immune complexes.

Avidity engineering of antibody therapeutics
Antibodies have become widely established as therapies 
for numerous diseases, including cancer, infectious dis-
eases, inflammatory diseases and autoimmunity13. The 
design of therapeutics against hard-to-hit targets that 
provide meaningful improvements for patients com-
pared to contemporary drug regimens is shifting anti-
body drug development from canonical IgG antibodies 
towards formats with novel functionalities. The search 
for approaches to enhance antibody function is not sur-
prising considering the limitations imposed by mono-
specificity; indeed, the use of monoclonal antibodies as 
a single agent for therapy seems contradictory in light 
of the polyclonal, avidity-tuned nature of antibodies 
generated during the natural immune response.

The avidity engineering toolbox
A broad spectrum of novel antibody engineering strat-
egies and formats that enhance or tune avidity are 
emerging. These strategies include those that optimize 
physiological immune pathways, such as effector func-
tion enhancement, and those that enable non-native 
mechanisms of action, for example effector cell 
redirection or receptor agonism.

Below, we describe an ‘avidity engineering toolbox’ 
and discuss the impact of different strategies on the 
different phases of antibody functional response activa-
tion as defined above and in Fig. 1. Avidity engineering 
strategies include targeting multiple epitopes; targeting 
multiple cell surface receptors in cis; tuning antibody 
valency; and tuning binding strength for complement or 
FcγRs. Antibody therapies employing these engineering 
strategies have advanced into clinical development and 
as of May 2022, the commercial clinical pipeline includes 
35 programmes leveraging avidity to increase antibody 
function (Table 1). In the subsections below, we high-
light some of these key engineering strategies exploiting 
avidity to boost antibody functional responses.

Multispecific targeting
In recent years, a growing number of antibody format 
technologies have been introduced that enable increased 
antibody binding by targeting more than one epitope 
or target. Although these antibodies were initially 
developed to improve selectivity by targeting multi-
ple disease-related antigens or signalling pathways, 
multi-targeting concepts may simultaneously enhance 
functional activity by promoting avidity interactions 
in early phases of the antibody functional response. 
Multi-targeting concepts include combinations of two 
or more antibody molecules with different defined spe-
cificities — for example, antibody mixtures or designer 
polyclonals — and antibody architectures and formats 
combining two or more specificities in a single antibody 
molecule such as bispecific or multispecific antibodies.

Targeting multiple epitopes. Multi-targeting anti-
body technologies directed towards non-overlapping 
epitopes on the same target come closest to exploiting 
the potentiation of first-order and second-order avidity 
interactions as they occur in natural polyclonal antibody 
responses (Fig. 4a). These technologies can increase target 

Polymorphic
Indicates that the protein 
occurs as two or more variants 
or alleles in the population 
with functional polymorphisms 
of Fc receptors referring  
to isoforms with different 
immunoglobulin-binding 
properties.

NAture RevIewS | DRuG DIsCovERy

R e v i e w s

	  volume 21 | October 2022 | 723



0123456789();: 

Table 1 | Avidity-based therapeutic antibody concepts in the clinic and engineering platforms

Agent (company) Target Format Indication 
(selected)

Development status 
(selected trials)

Targeting multiple epitopes
Sym015 (Symphogen) MET Mixture of two IgG1 antibodies binding non-overlapping 

epitopes on the Semaphorin domain of MET
Solid tumours 
(NSCLC)

Phase IIa completed 
(NCT02648724)

REGN5093 (Regeneron) MET Biparatopic, bispecific IgG4 antibody targeting two  
non-overlapping epitopes on MET (Veloci-Bi bispecific 
technology)

Solid tumours 
(NSCLC)

Phase I/II 
(NCT04077099)

REGN5093-M114 
(Regeneron)

MET Biparatopic, bispecific IgG4 antibody targeting two 
non-overlapping epitopes on MET (Veloci-Bi bispecific 
technology) conjugated to a maytansinoid

Solid tumours 
(NSCLC)

Phase I/II 
(NCT04077099)

Sym004 (Symphogen) EGFR Mixture of two IgG1 antibodies (futuximab, modotuximab) 
binding non-overlapping epitopes on EGFR

Solid tumours 
(mCRC)

Phase III completed 
(NCT02083653)

KN026 (Alphamab) HER2 Biparatopic, bispecific IgG1 antibody targeting two 
non-overlapping epitopes on HER2 (CRIB technology)

Solid tumours 
(breast and 
gastric cancer)

Phase I (NCT03619681, 
NCT03847168)

MBS301 (Beijing 
Mabworks Biotech)

HER2 Afucosylated, biparatopic, bispecific IgG1 antibody 
targeting two non-overlapping epitopes on HER2 
(knobs-into-holes bispecific technology)

Solid tumours 
(HER2+)

Phase I (NCT03842085)

Zanidatamab, ZW25 
(Zymeworks)

HER2 Biparatopic, bispecific IgG1 antibody targeting two 
non-overlapping epitopes on HER2 (Azymetric bispecific 
technology)

Solid tumours 
(HER2+)

Phase II (NCT04466891, 
NCT03929666, 
NCT04224272)

ZW49 (Zymeworks) HER2 Biparatopic, bispecific IgG1 antibody targeting two 
non-overlapping epitopes on HER2 (Azymetric bispecific 
technology) conjugated to a maytansinoid (Zymelink 
antibody-drug condensate technology)

Solid tumours 
(HER2+)

Phase I (NCT03821233)

REGN-COV, casirivimab/
imdevimab (Regeneron)

SARS-CoV-2 
spike

Mixture of two human IgG1 antibodies, binding 
non-overlapping epitopes on the SARS-CoV-2 viral spike

COVID-19 EUA, Phase III completed 
(NCT04381936)

Evusheld, tixagevimab/
cilgavimab, (AstraZeneca, 
VanderBilt)

SARS-CoV-2 
spike

Mixture of two human IgG1 antibodies with mutations 
that extend half-life (M252Y,S254T,T256E) and reduce 
Fc receptor and C1q interactions (L234F, L235E, P331S), 
binding non-overlapping epitopes on the SARS-CoV-2 
viral spike

COVID-19 EUA, Phase III 
(NCT04625725)

BMS-986414/BMS-986413 
(Bristol Myers Squibb/
Rockefeller University)

SARS-CoV-2 
spike

Mixture of two human IgG1 antibodies with mutations that 
extend half-life (M428L/N434S), binding non-overlapping 
epitopes on the SARS-CoV-2 viral spike

COVID-19 Phase II/III 
(NCT04518410)

ADM03820 (Ology 
Bioservices)

SARS-CoV-2 
spike

Mixture of two human IgG1 antibodies binding 
non-overlapping epitopes on the SARS-CoV-2 viral spike

COVID-19 Phase I (NCT04592549)

SAR441236 (Sanofi) HIV-1 envelope Triparatopic IgG1 bNAb from the VRC01-LS, PGDM1400 
and 10E8v4 therapeutic antibodies, targeting the CD4bs, 
gp41 MPER and V1/V2 glycan-directed binding sites on 
HIV-1 (CODV-Ig technology)

HIV-1 Phase I (NCT03705169)

Inmazeb, atoltivimab/
maftivimab/odesivimab 
(Regeneron)

Zaire ebolavirus 
(ZEBOV) 
glycoprotein

A mixture of three afucosylated IgG1 antibodies that 
each bind to different, non-overlapping epitopes on the 
ZEBOV glycoprotein

ZEBOV Approved 
(NCT03576690)

Targeting multiple cell surface receptors
LAVA-051 (Lava 
Therapeutics)

CD1d, Vδ2 TCR A trispecific γδ T cell engager comprised of a 
single-domain antibody (VHH) that binds both CD1d 
and the iNKT TCR, and a VHH targeting the Vγ9Vδ2 TCR, 
which triggers iNKT and Vγ9Vδ2 T cell activation

Haematologic 
malignancies 
(CLL, MM, 
AML)

Phase I /II 
(NCT04887259)

Sym013 (Symphogen) EGFR, HER2, 
HER3

A mixture of six humanized monoclonal IgG1 antibodies 
(three pairs) that bind to non-overlapping epitopes on 
EGFR, HER2 and HER3

Advanced 
epithelial 
malignancies

Phase I/II terminated 
(NCT02906670)

Tuning antibody valency
IGM-8444 (IgM 
Biosciences)

DR5 Pentameric IgM antibody with ten binding sites specific 
for DR5

Solid tumours Phase I (NCT04553692)

INBRX-109 (Inhibrx) DR5 Four single-domain antibodies (tetravalent) fused to an 
Fc domain (sdAb technology; binding units derived from 
heavy-chain-only antibodies)

Solid tumours Phase I (NCT03715933, 
NCT04950075)

INBRX-106 (Inhibrx) OX40 Six single-domain antibodies (hexavalent) fused to an 
Fc domain (sdAb technology; binding units derived from 
heavy-chain-only antibodies)

Solid tumours Phase I (NCT04198766)

ABBV-621, APG350, 
Eftozanermin alpha 
(Abbvie/Apogenix)

TRAIL Hexavalent TNFRSF agonist comprising a fusion protein 
composed of three receptor binding domains in a single 
chain arrangement, linked to a silenced human IgG1 
Fc-domain (HERA-ligand technology)

Multiple 
myeloma

Phase Ib (NCT04570631)
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Agent (company) Target Format Indication 
(selected)

Development status 
(selected trials)

Tuning antibody valency (cont.)

PF-06755347 , GL-2045 
(Pfizer/Gliknik)

C1q Recombinant human IgG1-based Fc multimer; fusion of 
the complete IgG1 hinge-CH2-CH3 coding region to the 
IgG2 hinge region (Stradomer technology)

Autoimmune 
diseases

Phase I (NCT03275740)

Tuning antibody oligomerization

GEN3014, HexaBody- 
CD38 (Genmab)

CD38 IgG1 antibody containing an E430G hexamerization- 
enhancing Fc mutation (HexaBody technology)

Haematologic 
malignancies 
(MM)

Phase I/II 
(NCT04824794)

Targeting multiple epitopes and tuning antibody oligomerization

GEN3009, 
DuoHexaBody-CD37 
(Genmab/AbbVie)

CD37 Biparatopic, bispecific IgG1 antibody targeting two 
non-overlapping epitopes on CD37 containing an E430G 
hexamerization-enhancing Fc mutation (DuoHexaBody 
technology)

Haematologic 
malignancies  
(B cell NHL, 
CLL)

Phase I /II 
(NCT04358458)

GEN1029, HexaBody  
DR5/DR5 (Genmab)

DR5 Mixture of two IgG1 antibodies targeting 
non-overlapping epitopes on DR5, both containing 
an E430G hexamerization-enhancing Fc mutation 
(HexaBody technology)

Solid tumours Phase I (terminated) 
(NCT03576131)

Tuning binding to Fc effector receptors

GS-1811, JXT-1811 
(Gilead Sciences/Jounce 
Therapeutics)

CCR8 IgG1 antibody afucosylated for enhanced ADCC Solid tumours Phase I (NCT05007782)

BMS-986340 (Bristol 
Myers Squibb)

CCR8 IgG1 antibody afucosylated for enhanced ADCC Solid tumours Phase I (NCT04895709)

SEA-CD70 (Seattle 
Genetics)

CD70 IgG1 containing afucosylated for enhanced ADCC  
(SEA technology)

Myeloid 
malignancies 
(MDS, AML)

Phase I (NCT04227847)

Elipovimab, GS-9722 
(Gilead Sciences)

HIV-1 envelope IgG1 bNAb (derived from PGT121) containing S239D/
I332E and M428L/N434S Fc mutations for improved PK, 
enhanced ADCC and ADCP (high cytotoxicity XmAb and 
Xtend Fc domain technology)

HIV-1 Phase Ib 
(GS-US-420-3902a)

Monjuvi, tafasitamab 
(MorphoSys/Incyte)

CD19 IgG1 antibody containing S239D/I332E Fc mutations for 
enhanced ADCC and ADCP (high-cytotoxicity XmAb Fc 
domain technology)

Haematologic 
malignancies 
(DLBCL)

Approved

Margenza, margetuximab 
(Macrogenics)

HER2 IgG1 antibody containing L235V/F243L/R292P/Y300L/
P396L Fc mutations for enhanced ADCC

Solid tumours 
(HER2+ breast 
cancer)

Approved

Poteligeo, mogamulizumab 
(Kyowa Hakko Kirin)

CCR4 IgG1 antibody afucosylated for enhanced ADCC 
(Potelligent Technology)

Adult T cell 
leukaemia or 
lymphoma

Approved

Gazyva, obinutuzumab 
(Roche)

CD20 IgG1 antibody afucosylated for enhanced ADCC 
(GlycoMab Technology)

Haematologic 
malignancies 
(CLL, FL)

Approved

Fasenra, benralizumab 
(Astra Zeneca/Kyoa 
Hakko Kirin)

IL-5Rα IgG1 antibody afucosylated for enhanced ADCC 
(Potelligent Technology)

Asthma Approved

Targeting multiple cell surface receptors and tuning binding to Fc effector receptors

Rybrevant, amivantamab 
(Janssen/JNJ)

EGFR, MET IgG1 bispecific antibody afucosylated for enhanced 
ADCC (DuoBody technology)

Solid tumours 
(metastatic 
NSCLC with 
EGFR exon 
20 insertion 
mutations)

Approved

MCLA-129 (Merus/Betta 
pharmaceuticals)

EGFR, MET IgG1 bispecific antibody afucosylated for enhanced 
ADCC (Biclonics and GlymaxX technology)

Solid tumours 
(NSCLC)

Phase I/II 
(NCT04868877)

Data available as of 1 May 2022. Engineering data were obtained from public documents (scientific literature, abstracts, posters and patent publications). This overview 
table excludes clinical programmes investigating bispecific antibodies, for which we refer to Labrijn et al.20. ADCC, antibody-dependent cellular cytotoxicity; ADCP, 
antibody-dependent cellular phagocytosis; AML, acute myeloid leukaemia; bNAb, broadly neutralizing antibody; CCR, CC-chemokine receptor; CLL, chronic lymphocytic 
leukaemia; CODV-Ig, crossover dual variable Ig-like protein; COVID-19, coronavirus disease 2019; CRIB, charge repulsion-induced bispecificity; DLBCL, diffuse large  
B cell lymphoma; DR5, death receptor 5; EGFR, epidermal growth factor receptor; EUA, emergency use authorization; Fc, crystallizable fragment; FL, follicular lymphoma; 
HER2, human epidermal growth factor receptor 2; iNKT cell, type I natural killer T cell; mCRC, metastatic colorectal cancer; MDS, myelodysplastic syndrome; MET, 
tyrosine-protein kinase MET; MM, multiple myeloma; MPER, membrane-proximal external region; NHL, non-Hodgkin lymphoma; NSCLC, non-small-cell lung cancer; 
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; sdAb, single-domain antibody; TCR, T cell receptor; TNFRSF, tumour necrosis factor receptor superfamily; 
TRAIL, tumour necrosis factor-related apoptosis-inducing ligand; VHH, variable domain of a heavy chain-only antibody. aAdinsight entry, trial not listed in ClinicalTrials.gov.

Table 1 (cont.) | Avidity-based therapeutic antibody concepts in the clinic and engineering platforms
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occupancy and local Fc-domain density to enhance 
antibody clustering and overall functional activity, and 
some may even lead to novel functions. For example, in 
separate studies targeting the oncogenic drivers EGFR 
and MET, combinations of two antibodies against 
non-overlapping epitopes on the same cell surface recep-
tor showed enhanced antitumour activity over individ-
ual antibodies in preclinical and clinical studies98–100. 
Both EGFR and MET antibody combinations promoted 

receptor internalization and degradation, which 
for EGFR could be attributed to enhanced receptor 
crosslinking and clustering within detergent-insoluble, 
plasma-membrane-associated tubules98,101. Increased 
receptor internalization can also be achieved using multi
specific antibody formats. Biparatopic antibodies indi-
vidually targeting HER2 and MET are currently being 
developed to induce increased degradation of target 
receptors or alternatively, as biparatopic antibody–drug 

a

b

Multi-epitope 
clustering of receptors

Biparatopic antibodies

T cell activation

Cytoplasm

clAP1

TRAF2
trimer

TNFR
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TNFSF–Fc
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conjugates, which rely on efficient internalization of 
the conjugated drug for optimal cytotoxicity (Table 1). 
Biparatopic antibodies are also being developed to 
enhance neutralization, as described in a recent study in 
which a biparatopic antibody provided superior inhibi-
tion of the ectonucleotidase activity of CD73 compared 
to mixtures of the parent antibodies by freezing the 
ectoenzyme in an inactive conformation102.

Classical Fc-mediated effector functions may be 
enhanced through multi-epitope targeting. Antibody 
combinations targeting multiple epitopes of either MET 
or EGFR were reported to more potently trigger comple-
ment activation than monoclonal antibodies targeting 
a single epitope of either protein98,103,104. Potentiation of 
CDC through multi-epitope targeting has been reported 
for a number of other cell surface targets including 
CD37, human leukocyte antigen (HLA), the Neisseria 
meningitides factor H-binding protein, folate receptor 
alpha (FRα)105–108, and against multiple myeloma and 
Burkitt lymphoma cell lines using engineered bipara-
topic heavy-chain-only antibody constructs targeting 
CD38 (ref.109). We speculate that avidity engineering 
of multispecific antibodies may effectively overcome 
complement defence mechanisms through increased 
second-order avidity interactions, exploiting the natural 
capability of antibodies to hexamerize and induce CDC.

Targeting non-overlapping epitopes using multi- 
specific antibody technologies has been explored to 
reduce virus resistance and lower the risk of viral escape. 
Trispecific antibody formats combining Fab-derived 
binding domains of broadly neutralizing antibodies 
(bNAbs) directed against different functional HIV-1 
epitopes on the envelope spike exhibited greater neu-
tralization potency and activity against a larger set of 
diverse HIV-1 isolates compared to combinations of the 
parental bNAbs both in vitro and in vivo110,111.

Formats that enhance antibody binding by targeting 
multiple, non-overlapping epitopes on a single anti-
gen represent the largest group of clinical programmes 

leveraging avidity tuning (Table 1). Such formats range 
from mixtures of two or more non-competing antibod-
ies to bispecific or multispecific antibody architectures 
that combine different epitope binding specificities 
into a single molecule. For example, multiple clinical 
programs are currently investigating therapeutics that 
target multiple epitopes on EGFR family members over-
expressed in many solid tumour indications100,112,113. 
Clinical data show that patients who initially respond 
to EGFR-specific antibodies eventually become resis
tant. A proof-of-concept study using the anti-EGFR 
antibody cocktail Sym004 consisting of the antibodies 
futuximab and modotuximab (Symphogen) showed 
clinical activity in a patient with metastatic colorectal 
cancer with acquired EGFR mutation-mediated resist-
ance to cetuximab114. Unselected patients treated with 
Sym004 did not show an increase in overall survival in 
a phase II study, although a retrospective analysis indi-
cated a survival benefit for a patient subgroup negative 
for RAS/BRAF/EGFR extracellular domain mutations 
(NCT02083653)99.

Multi-epitope-targeting antibody cocktails are being 
explored for prophylaxis or treatment of infection with 
the highly variant RNA virus severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). A combi-
nation of casirivimab and imdevimab (Regeneron, 
NCT04381936) targeting non-overlapping epitopes on 
the SARS-CoV-2 S glycoprotein was shown to prevent 
in vitro selection of escape mutants of a pseudovirus 
expressing the SARS-CoV-2 S glycoprotein, whereas 
neutralization escape quickly developed in the presence 
of the individual antibodies or combinations of antibod-
ies against overlapping epitopes115–118. The cocktail was 
found to be inactive against the omicron BA.1 variant 
of SARS-COV-2 although it did neutralize the emerg-
ing omicron BA.2 subvariant, albeit with a reduction in 
potency of two orders of magnitude119,120. A recent study 
using in vitro and in vivo models of SARS-CoV-2 infec-
tion demonstrated synergism between two potently neu-
tralizing non-competing antibodies121. These antibodies 
were optimized for extended half-life and reduced FcγR 
and C1q binding and are being developed as tixa-
gevimab and cilgavimab (AstraZeneca, NCT04625725). 
It should be noted that Fc-mutated antibodies with 
a reduced potential for third-order avidity interac-
tions would be unable to leverage the contribution of 
Fc-mediated effector functions to in vivo therapy122–124, 
although these mutations would decrease the potential 
risk for Fc-mediated enhancement of disease125.

Multi-epitope targeting is being explored in a  
phase I clinical trial of a triparatopic antibody that con-
tains binding domains from three bNAbs (VRC01LS, 
PGDM1400 and 10E8v4 (Sanofi)) against the HIV-1 
envelope spike (NCT03705169)111. Further, a cocktail of 
the three non-competing IgG1 antibodies atoltivimab, 
maftivimab and odesivimab (REGN-EB3, Regeneron) 
was recently approved for treatment of Zaire Ebola 
virus (ZEBOV) (NCT03576690)126. The antibodies were 
selected for their ability to bind the ZEBOV glycoprotein 
simultaneously and were produced as afucosylated IgGs 
owing to the role of Fc-mediated effector functions in 
protecting against Ebola virus infection127–129.

Fig. 4 | Antibody avidity engineering strategies. a | Enhancing first-order and second- 
order avidity binding by dual-epitope targeting or biparatopic antibodies facilitates 
antibody clustering and increased functional responses (left). Targeting multiple antigens 
by designer polyclonals may increase antibody and antigen clustering through Fc–Fc 
interactions. Examples of hetero-hexamer formation between two antibodies are shown 
to generate assemblies for dual target-mediated C1 binding and complement activation 
(right). b | Multivalent/multiligand molecules such as the hexavalent tumour necrosis 
factor superfamily (TNFSF)–Fc (HERA) technology and multivalent antibody architectures 
induce tumour necrosis factor receptor superfamily (TNFRSF) member clustering  
and agonism (left). IgG molecules engineered for an increased ability for on-target 
hexamerization may trigger complement activation or act as signalling agonists by 
inducing cell surface receptor clustering. A dimer of an IgG engineered for enhanced 
self-association is shown with exemplary amino acid residues that facilitate Fc–Fc 
interactions (shown in red) (right). c | The activation threshold for effector functions may 
be decreased by affinity tuning. Exemplary combinations of amino acid residues that can 
be mutated to enhance C1q binding affinity are shown in red and purple. Complement 
activation remains conditional on first-order and second-order avidity binding (left). FcγR 
binding may be tuned by protein engineering and glycoengineering (right). Exemplary 
combinations of amino acid residues that can be mutated to enhance FcγR binding affinity 
are shown in red (as in tafasitamab) (Table 1) and purple (as in margetuximab) (Table 1), 
respectively. IgG molecules lacking a fucose residue in one or both heavy chains in the Fc 
domain results in increased FcγRIIIA binding and ADCC (for approved glycoengineered 
antibodies, see Table 1). Part b adapted with permission from ref.159, MDPI.
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Targeting multiple cell surface receptors in cis. Antibody 
cocktails targeting two or more cell surface receptors rep-
resent an archetypical example of avidity engineering by 
employing the learnings of natural polyclonal antibody 
responses. Targeting multiple cell surface receptors may 
increase both antibody occupancy (Fig. 3d) and antigen 
clustering through crosslinking and Fc–Fc interactions, 
resulting in enhanced third-order avidity interactions. 
We recently described a mixture of two antibodies 
targeting CD20 and CD37 antigens on tumour B cells  
that co-engaged in hetero-hexameric complexes, 
thereby potentiating complement activation61 (Fig. 4a, 
right). Jacobsen and colleagues reported a mixture of 
six antibodies which, in synergistic pairs, target each 
of the HER family members EGFR, HER2 and HER3 
(ref.130). This mixture, known as Pan-HER (Sym013, 
Symphogen) was shown to downregulate the expression 
of all three targets and overcome acquired resistance in 
HER family-expressing tumours caused by compensa-
tory receptor upregulation; the cocktail entered clin-
ical development, but was terminated after phase I 
(NCT02906670).

Other approaches to targeting multiple cell surface 
receptors include combining multiple binding specifici-
ties into a single molecule in the form of bispecific or 
multispecific antibodies that bridge different receptors on 
the same cell (in cis) or on different cell types (in trans). 
One of the strengths of bispecific or multispecific anti-
bodies is their capacity to activate novel ‘designed’ func-
tions that cannot be achieved by antibody mixtures 
(for bispecific antibodies, these are referred to as ‘obligate’ 
mechanisms of action)20. Further, their therapeutic 
index can be increased through the localized tethering 
of receptors, which can focus therapeutic activity to pre-
ferred cells or tissues and limit on-target and off-tumour 
toxicity131. This concept makes use of a particular aspect 
of avidity binding that has been referred to as cross-arm 
binding, in which the first binding event restricts the sec-
ond binding arm to a small volume, thereby increasing 
its effective concentration and probability of binding132,133. 
Notably, the increase in avidity achievable by cross-arm 
binding is highly dependent on the epitope, target 
expression levels, antibody format and valency.

The most widely studied ‘obligate’ bispecific antibod-
ies employ in trans bridging to redirect the cytotoxic 
activity of T cells or other effector cell types to eliminate 
tumour cells. We refer the reader to recent reviews for a 
deeper discussion of this important therapeutic antibody 
class20,134.

An interesting example of how in cis bridging can 
unlock obligate mechanisms of action is represented by 
amivantamab (Table 1), a recently FDA-approved and 
EMA-approved bispecific antibody targeting EGFR 
and MET (Janssen). Crosslinking of MET using biva-
lent antibodies causes undesired tumour cell activa-
tion and amivantamab circumvents this by combining 
a single, non-crosslinking MET-binding arm with an 
EGFR-binding arm in a bispecific configuration that 
effectively blocks both MET and EGFR signalling135,136. 
The potential to engage in third-order avidity interac-
tions was increased by engineering the bispecific anti-
body for low fucosylation. This example is noteworthy 

in terms of avidity tuning as it illustrates the importance 
of understanding both antibody and target biology in the 
design of effective antibody-based therapeutics.

Avidity binding to a protein complex can be achieved 
by a single binding domain. Lameris et al. recently 
described a single-domain antibody, VHH1D12, 
against the antigen-presenting glycoprotein CD1d, a 
glycolipid-presenting molecule closely related to the 
HLA class I proteins. VHH1D12 can simultaneously 
interact with CD1d and the type I natural killer T cell 
receptor (TCR), which triggers antitumour activity by 
type I natural killer T (NKT) cells owing to CD1d–TCR 
crosslinking137. The ability of a single antibody bind-
ing site to interact with multiple proteins or structures 
has previously been described for antibodies against 
HIV-1, for which polyreactivity increased the observed 
affinity for the virion138. Specifically, bNAbs against the 
HIV envelope glycoprotein membrane-proximal region 
(MPER) were shown to interact with both the gp41 
subunit and the viral lipid membrane139.

Combined in cis and in trans bridging of receptors 
can also be achieved by engineering additional anti-
body fragments onto bispecific antibodies, thereby 
creating tri-specific or multi-specific antibodies that 
enable simultaneous targeting of multiple cell types and 
same-cell receptors140,141. For example, the trispecific 
antibody LAVA-051 (Lava therapeutics) — based on 
VHH1D12 linked to an additional single-domain anti-
body targeting the Vγ9Vδ2 TCR of γδ T cells — recruits 
both type I NKT cells and Vγ9Vδ2 T cells for tumour 
cell killing. LAVA-051 is currently being investigated 
as a next-generation T cell engager for the treatment 
of haematological cancers (NCT04887259) (Table 1). 
In an additional example, Shivange and colleagues 
recently reported on the generation of a single-agent, 
bispecific-anchored cytotoxicity-activator (BaCa), an 
antibody that co-engages death receptor 5 (DR5, also 
known as TRAIL-R2) and FRα, which are expressed 
together on ovarian cancer cells. The BaCa antibody 
was reported to bind FRα and crosslink DR5 both in cis 
and in trans, by which FRα served as a tumour-specific 
anchor and primary clustering point for DR5 agonist sig-
nalling. Consistent with the potential for an avidity gain 
resulting from cross-arm binding, in cis killing required 
lower antibody concentrations than killing in trans142.

Tuning avidity through antibody valency
Over the past few years, engineering strategies for 
enhancing antibody clustering to improve antibody 
function have primarily aimed at increasing antibody 
valency by replicating antibody binding or Fc domains 
in fragments and IgG-like or IgM-like structures. 
Indeed, several studies have reported on the design of 
antibody formats containing multiple Fc domains to 
enhance FcγR crosslinking and ADCC143–146. In a recent 
study, Miller and colleagues adapted the tetramerization 
domain of the tumour suppressor p53 and fused it to 
different antigen binding domains to create octavalent 
monospecific and bispecific antibody variants with 
increased functional activity, known as quads147. Further, 
CDC can be enhanced for all four human IgG isotypes 
through covalent hexamerization, which is achieved 
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by genetically fusing the 18-amino-acid µ-tailpiece of 
IgM to their carboxyl termini, thus generating multi
valent structures that efficiently bind and activate 
complement148.

Some receptors, including those with multimeric cog-
nate ligands or those that interact at cell–cell synapses, 
require higher-order oligomerization of adjacent com-
plexes for activation of downstream signalling. The most 
widely studied receptors of this class are members of the 
tumour necrosis factor receptor superfamily (TNFRSF), 
which are of growing interest to drug developers 
owing to their function in regulating cell survival and 
inflammatory signalling. Regular binding of immuno
modulatory antibodies targeting these receptors gener-
ally induces insufficient TNFRSF clustering and many  
require additional third-order avidity binding through 
FcγRs, in particular FcγRIIB, on immune effector cells 
to engage in agonist activity149–151. Pioneering work by 
Ashkenazi, Presta and colleagues demonstrated that 
avidity engineering by increasing valency using tandem 
Fab repeats can enhance the forward signalling activ-
ity of antibodies targeting the TNFRSF DR5 (ref.152). 
Previous efforts to develop TNFRSF-targeting anti-
bodies have yielded limited clinical success, possibly 
owing to insufficient FcγR-mediated crosslinking and 
in some cases adverse events or toxicity153,154. Interest in  
targeting TNFRSF has revived building upon the 
use of high-valency formats that allow for superior 
crosslinking and signalling independent of third-order 
avidity interactions with Fc receptors. At present, four 
valency-increased TNFR-targeting molecules have 
entered early-stage clinical trials, including IGM-8444 
(IGM Biosciences), a pentameric IgM-based antibody 
construct targeting DR5 (NCT04553692); INBRX-109 
(Inhibrx), a tetravalent format containing multiple 
ligand binding domains fused to an Fc domain target-
ing DR5 (NCT03715933, NCT04950075); and hexava-
lent formats INBRX-106 (Inhibrx, NCT04198766) and 
ABBV-621 (AbbVie, NCT03082209), targeting OX40 
and TRAIL, respectively.

Further approaches to enhance TNFRSF activation 
independently of FcγR crosslinking include the use of 
Fc fusions with six TNFRSF-binding domains, fusion 
to trimeric C-propeptide of α1(I) collagen, IgM, and 
tetravalent biparatopic targeting concepts155–158 (Fig. 4b, 
left). The hexavalent receptor agonist (HERA) technol-
ogy makes use of single-chain trimeric tumour necrosis 
factor superfamily (TNFSF) ligand domains fused to a 
silenced IgG1-derived Fc domain to enhance hyperclus-
tering of CD40, glucocorticoid-induced TNFRSF-related 
protein (GITR) and CD27 and boost antigen-specific 
T cell responses159–161. Likewise, combined multivalent 
and multi-epitopic engagement of DR5 and OX40 using 
various tetravalent (2 + 2) biparatopic antibody formats 
has been shown to induce agonistic signalling without 
the need for additional crosslinking through FcγR158.

Although tuning avidity through increasing valency 
represents a promising approach towards enhanced 
TNFRSF agonism, for some targets activity must be 
balanced with safety. For example, high-dose agonis-
tic CD40 antibody treatment is generally associated 
with adverse clinical events, such as cytokine release 

syndrome and hepatotoxicity162,163. Studies using mul-
tiple CD40-targeting antibodies and ligands have 
demonstrated markedly different biological responses 
between molecules with distinct binding orientations 
and valency164. The epitope of CD40 agonistic antibod-
ies is of crucial importance as simultaneous binding of 
antibodies and the natural trivalent ligand may result 
in hyperclustering and uncontrolled overstimulation165. 
Furthermore, extensive FcγR crosslinking may increase  
Fc-domain-driven side effects such as unwanted 
depletion of CD40-expressing immune cell popu
lations or overstimulation of the immune response by 
FcγR-expressing cells. Indeed, the latter was recapitulated 
in mouse models in which CD40 antibody-mediated 
hepatic toxicity was abrogated by blocking macrophage 
activation with antibodies targeting colony-stimulating 
factor 1 receptor (CSF1R)162. Another example of unex-
pected toxicity was observed in a phase I study with 
TAS 266, a tetravalent agonistic nanobody against DR5 
in which hepatotoxicity was linked to the presence of 
pre-existing anti-drug antibodies potentially medi-
ating hypercrosslinking166. All together, these studies 
demonstrate the importance of careful design and rig-
orous preclinical investigation for avidity-engineered 
biotherapeutic agonists.

There has been a steady increase of studies detail-
ing the engineering and clinical translation of naturally 
multivalent immunoglobulin isotypes such as IgM and 
IgA, despite being more challenging to develop than 
IgGs owing to their more complex multichain archi-
tectures, more extensive and heterogeneous glycosyla-
tion patterns and shorter in vivo half-lives38,167,168. In a 
unique ocular application, Agard and colleagues used 
the multivalent nature of IgM to effectively agonize the 
tyrosine-protein kinase receptor TIE2; this application 
capitalized on the large size of IgM to reduce vitreal 
clearance, which was shown to be inversely proportional 
to the molecule’s hydrodynamic radius169.

Tuning avidity through oligomerization
The ability of IgGs to self-assemble into ordered oli-
gomers on antigenic surfaces through Fc–Fc interac-
tions can be exploited in therapeutic applications and 
the design and development of IgG antibodies with 
standard architecture is more straightforward than 
that of pre-assembled antibody multimers. De Jong 
and colleagues reported a novel HexaBody technology 
platform that uses specific single-point mutations in the 
Fc domain to enhance target-dependent self-assembly 
of IgG molecules into hexameric complexes on cell 
surfaces170 (Fig. 4b, right). In a mutational screening 
approach, they identified two conserved glutamic acid 
residues in the Fc region of IgG — E345 and E430 — for 
which the substitution of any other amino acid enhanced 
IgG hexamer formation and complement activation for 
a wide range of cell surface targets. Sopp et al. demon-
strated that self-assembly dependent on target binding 
can also be facilitated by extending IgG1 antibodies 
with the µ-tailpiece mentioned above, but in which the 
carboxyl-terminal cysteine is mutated to a serine to pre-
vent covalent hexamerization171. By systematically deplet-
ing individual complement components, Taylor et al. 
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showed that antibodies containing hexamer-enhancing 
mutations require a reduced presence of membrane 
attack complex-forming complement components 
to promote CDC compared to the non-mutated par-
ent antibodies172. As discussed previously, on-target 
self-assembly of hexamerization-enhanced antibodies on 
antigenic surfaces generates an increased density of IgG 
hexamers72, which therefore probably results in a lower 
complement activation threshold than regular IgGs.

Enhancement of antibody clustering by promot-
ing self-assembly may also have particular applica-
tions in amplifying ‘designed’ antibody functions such 
as agonistic receptor signalling. The introduction of 
hexamerization-enhancing mutations in antibodies tar-
geting DR5 has proved to be an effective agonist strategy 
for inducing tumour cell death; recently, a novel anti-
body mixture of two non-competing, DR5-targeting 
antibodies containing an E430G hexamer-enhancing 
mutation was shown to improve DR5 signalling and 
tumour cell death independently of FcγR crosslink-
ing in a wide range of tumour types173. Intermolecular 
Fc–Fc interactions between the two IgG molecules were 
essential for DR5 agonistic activity and binding of com-
plement component C1q reportedly contributed to the 
potency observed in vitro and in vivo, potentially result-
ing from stabilizing IgG hexamers through third-order 
avidity binding. Combining multi-epitope targeting with 
enhanced hexamerization is being explored in clinical 
trials, for example a biparatopic molecule GEN3009 
(Genmab/AbbVie) targeting CD37 in haematologic 
malignancies (NCT04358458)106. A phase I study using 
a hexamerization-enhanced antibody mixture GEN1029 
(Genmab) targeting DR5 on solid tumours was recently 
terminated (NCT03576131)173.

Besides targeting TRAIL receptors on tumour cells, 
efforts have been directed towards targeting TNFRSF 
on immune cells — such as OX40 receptor, CD27, 
CD40, CD137 and GITR — using agonist antibodies 
to stimulate T cell proliferation and cytotoxic activity. 
Tuning the avidity of such antibodies has shown prom-
ise in improving their functional effects. For OX40, 
hexamerization-enhancing Fc mutations in antibodies 
were reported to increase their agonistic activity174,175.

Tuning binding towards complement and FcγRs
Fc domains are being engineered to enhance their bind-
ing affinity for immune effector molecules with the 
aim to decrease an activation threshold by increasing 
target occupancy at lower antibody densities or anti-
body immune complex concentrations, or by extend-
ing interaction times (owing to a decreased off-rate). 
The Fc regions of IgG subclasses differ in their affin-
ity for C1q and their potency to activate complement 
(Box 2), and reshuffling of segments from different IgG 
subclasses has therefore proved to be a successful engi-
neering strategy for increasing binding176–179. Several 
groups have enhanced C1q binding affinity and CDC by 
mutating amino acid positions in the Fc region, includ-
ing amino acids at positions S267, H268, S324, K326, 
E333 (refs.180–184) (Fig. 4c, left). The affinity increase for 
C1q must be carefully tailored to retain a proper activa-
tion threshold in order to avoid unattended complement 

activation in the absence of avidity binding to antigen. 
In a comparison of affinity and avidity engineering, 
Tammen et al. demonstrated that complement-mediated 
tumour cell lysis was enhanced more effectively with 
mutations that enhanced on-target IgG hexamerization 
compared to mutations that enhanced monomeric IgG 
affinity for C1q, particularly against cells with low EGFR 
expression levels96.

Extensive mutational analyses have identified amino 
acid positions in the IgG Fc region that differentially 
affect binding to distinct FcγRs and that can be modi-
fied to enhance ADCC or ADCP activity185–187. S239D/
I332E amino acid substitutions in the Fc domain of anti-
bodies targeting EGFR, CD52 and CD20 were shown to 
enhance FcγRIIIA/FcγRIIB affinity and increase ADCC 
and ADCP185 (Fig. 4c, right). Glycoengineering the Fc 
region for reduced fucose content can also enhance effec-
tor function by improving binding to FcγRIIIA. Next to 
improving classical FcγR-mediated effector functions, 
enhancement of FcγR binding interactions may be used 
to increase the agonistic activity of immunomodulatory 
antibodies. For example, enhancing FcγR affinity using 
S267E/L328F or E233D/G237D/H268D/P271G/A330R 
Fc mutations was reported to increase the antitumour 
activity of DR5 and OX40 antibodies149,175,188–190. Further, 
selective enhancement of antibody binding to FcγRIIB 
has been leveraged to inhibit BCR-mediated B cell acti-
vation and suppress humoral immunity188,191, as well as 
enhance the clearance of immune complexes192.

At present, seven active clinical programs apply Fc 
engineering to amplify FcγR-mediated effector func-
tions (Table 1). The combination of two Fc-domain 
single-point mutations (S239D/I332E) enhances ADCC 
and ADCP of antibodies targeting the envelope spike 
on HIV-1 and CD19 on B tumour cells. Tafasitamab, 
an antibody targeting the latter, was recently approved 
for treatment of relapsed/refractory diffuse large B cell 
lymphoma (DLBCL) in combination with lenalido-
mide. Margetuximab, an anti-HER2 antibody Fc engi-
neered with the mutations L235V/F243L/R292P/Y300L/
P396L, was recently approved for HER2-positive breast 
cancer193,194 (Fig. 4c, right). Glycoengineering for effector 
function enhancement has met with clinical success in 
five approved afucosylated antibody products, includ-
ing mogamulizumab (cutaneous T cell lymphoma)195,196, 
obinutuzumab (chronic lymphocytic leukaemia and 
follicular lymphoma)197, benralizumab (asthma)198,199, 
the cocktail of atoltivimab, maftivimab and odesivimab 
(Zaire Ebola virus infection)127 and the bispecific antibody 
amivantamab (lung cancer)135,200 (Fig. 4c, right).

Recently, Ravetch and colleagues have demonstrated 
that antibodies Fc-engineered for selective enhancement 
to FcγRIIA186 can increase dendritic cell maturation and 
induce protective CD8+ T cell antiviral response201.

Conclusions and future perspectives
Antibody function relies on complex interactions 
between antibodies, their targets and their associa-
tion with effector molecules and cells of the immune 
system. There is considerable evidence demonstrating 
the crucial role of avidity in natural antibody biology, 
from antibody affinity maturation early in the immune 
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response to effector function activation after target 
engagement. Specific interactions between antibody 
and antigen, which we have termed zero-order avidity 
binding, can vary from highly transient (fast off-rate) 
to long lasting (slow off-rate). Next, avidity interactions 
critically contribute to antibody biology by increasing 
the strength of binding until a threshold is reached that 
triggers functional activity. We distinguish first-order 
avidity (bivalent Fab–antigen binding), second-order 
avidity (simultaneous Fab–antigen and Fab–Fab or 
Fc–Fc interactions) and third-order avidity (interactions 
between the immune complex and effector molecule). 
All levels of avidity binding can be potentiated by the 
polyclonality of antibody responses targeting multiple 
epitopes. Although the threshold at which antibody 
avidity interactions translate into an effective functional 
response varies between effector mechanisms, avidity 
binding can be viewed as a checkpoint before response 
amplification that in large part determines the efficacy 
of the functional response. Understanding the key 
determinants that shape antibody functional response 
kinetics, including the balance of multiple levels of 
antibody avidity interactions and response regulators, 
is therefore crucial in mastering antibody mechanisms 
of action and designing more effective antibody-based 
therapeutics.

The single-agent use of monoclonal antibodies for 
therapy is in many ways contrary to antibody function 
as established in natural biology. In traditional drug 
development, single-agent safety and activity is usually 
required for a drug to be registered and drug combina-
tions are typically only sought following first registration, 
often using empirical approaches. However, in the body, a 
combinatorial, polyclonal response is the starting point of  
the immune response to an antigen. An appreciation  
of this paradox has steadily grown, and antibody-based 
therapeutics have evolved from canonical monoclonal 
antibodies towards more complex antibody architectures 
and formats in an effort to enhance functional activity 

and cocktails are being rationally designed and assessed 
in combination in clinical trials.

Novel formats are emerging that leverage antibody 
avidity interactions to boost classical effector functions 
and novel or ‘designed’ mechanisms. These formats 
feature avidity improvements, including multiplicities 
of binding specificities, increased valency, enhanced 
Fab–Fab or Fc–Fc interactions or enhanced interac-
tions between Fc and the effector molecule. Using this 
concept, distinct avidity engineering approaches may 
be combined to achieve incremental avidity effects. For 
example, multi-epitope or multivalent formats can be 
combined with self-assembling technologies, which 
may be further enhanced by effector molecules. We 
believe that multi-agent approaches will be a major 
player in the future of antibody therapy, either in the 
form of bispecific/multispecific antibodies with obligate 
functions or designer polyclonal antibodies. There is a 
strong argument for greater efforts towards the rational 
design of antibody cocktails in response to the grow-
ing list of therapeutic antibodies entering or under-
going clinical development. Notably, forward-looking 
antibody discovery approaches that perform unbiased 
screening of antibody libraries in their final format will 
be critical to identifying optimal multispecific anti-
bodies or antibody combinations. Similarly, thoughtful 
antibody design, together with advances in engineer-
ing capabilities and improvements in preclinical char-
acterization, will enable avidity-optimized molecular 
formats that better achieve tuned potency to balance 
maximal functional activity with minimizing the risks 
for adverse events. Collectively, recent novel insights 
into antibody effector biology together with current 
antibody design efforts that extend our capabilities 
beyond the classic monoclonal format are paving the 
way for novel transformative biotherapeutics that can 
positively affect patient lives.
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