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Abstract

The structure and activity of enzymes are influenced by pH value of their surroundings. Although many enzymes work well
in the pH range from 6 to 8, some specific enzymes have good efficiencies only in acidic (pH,5) or alkaline (pH.9) solution.
Studies have demonstrated that the activities of enzymes correlate with their primary sequences. It is crucial to judge
enzyme adaptation to acidic or alkaline environment from its amino acid sequence in molecular mechanism clarification and
the design of high efficient enzymes. In this study, we developed a sequence-based method to discriminate acidic enzymes
from alkaline enzymes. The analysis of variance was used to choose the optimized discriminating features derived from g-
gap dipeptide compositions. And support vector machine was utilized to establish the prediction model. In the rigorous
jackknife cross-validation, the overall accuracy of 96.7% was achieved. The method can correctly predict 96.3% acidic and
97.1% alkaline enzymes. Through the comparison between the proposed method and previous methods, it is demonstrated
that the proposed method is more accurate. On the basis of this proposed method, we have built an online web-server
called AcalPred which can be freely accessed from the website (http://lin.uestc.edu.cn/server/AcalPred). We believe that the
AcalPred will become a powerful tool to study enzyme adaptation to acidic or alkaline environment.
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Introduction

An enzyme is able to multiply the speed of a chemical reaction

by lowering the activation energy of participant molecules without

any physical or chemical change. Due to high selectivity and

catalytic efficiency, enzymes have been widely used in industry,

medicine and environment management. Improving catalytic

efficiency of enzymes has become the most important task of

enzyme engineering. Although rational design and directional

evolution can make the designed enzymes work better, environ-

mental conditions also influence their activities. Solubility,

temperature and pH value significantly influence enzyme activity

[1]. Protein solubility is the basic condition in most biochemical

experiments [2]. Enzyme activity increases with temperature rise

because the heat enhances the kinetic energy of both substrates

and enzymes, which results in more contact between them [3].

Catalytic efficiency is also largely influenced by pH value of their

surroundings as the charge of amino acids varies with pH value

[4]. In general, an enzyme has an optimum pH. Although most

enzymes remain high activity in the pH range between 6 and 8,

some specific enzymes work well only in extremely acidic (i.e. pH

,5.0) or alkaline (i.e. pH .9.0) conditions. Some acidic and

alkaline enzymes derived from acidophiles and alkaliphiles make

these organisms survive in high acidic or alkaline conditions [5].

These enzymes also have great potentials in industrial applications.

Thus, determination of the favorable pH value of an enzyme is

important in academic study and industrial application.

Although the optimized environmental conditions can be

obtained by the biochemical experimental approaches, the wet

experimental technique is time-consuming and high-cost. Hence,

it is highly desirable to develop theoretical methods for predicting

appropriate environment of enzymes. The properties in primary

sequences of enzymes correlate with their surrounding factors

[2,6,7]. According to the correlation, machine learning methods

have been proposed to predict soluble proteins [8–10] and

thermophilic proteins [3,11–16] with the information derived from

primary sequence. However, few successful cases were reported to

predict acidic and alkaline enzymes based on their sequences

because it was difficult to collect enough sequence and structure

information about acidic and alkaline enzymes [6]. The growing

experimental-confirmed proteins in recent years provide a chance

to establish bioinformatics methods for accurate discriminating

acidic enzymes from alkaline enzymes. Acidic and alkaline

enzymes have some particular amino acids [17]. Based on these

findings, Zhang et al. [6] presented a random forest model to

distinguish acidic enzymes from alkaline enzymes by using

sequence and structure information. The model can achieve the

overall accuracy of 90.7% in the 10-fold cross-validation.

However, the accuracy is still far from satisfaction. Besides, some

high homologous sequences in their benchmark datasets result in

the overestimation of accuracy. Furthermore, they did not provide

a web server so that their method cannot be easily used to obtain

desired data by the experimental scientists. Recently, Fan et al.
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[18] built a free web server called Pred-enzyme to predict acidic

and alkaline enzymes. The predictor can achieve an overall

accuracy of 94.01% in 10-fold cross-validation. However, their

predictor needs gene ontology (GO) information. Our statistical

results show that most of proteins have no GO information

(,50%). If a query protein has not been annotated in GO

database and no homologous can be found in GO database, the

prediction with the model is not available.

To overcome these disadvantages, we developed an effective

method to discriminate acidic enzymes from alkaline enzymes

based on their sequence information alone. A feature selection

technique was used to pick out a number of informative features.

On the basis of these features, the support vector machine (SVM)

was performed to establish prediction model. Jackknife cross-

validation was used to evaluate the performance of the proposed

method. Prediction results demonstrate that the proposed method

is reliable. Based on this method, a free online server called

AcalPred was built to provide a useful tool for basic academic

study and industrial application of acidic and alkaline enzymes.

Materials and Methods

Benchmark Dataset
The original dataset used in this study was obtained from Zhang

et al. [6] who extracted the protein annotation information and

sequences from enzyme database BRENDA [19] at http://www.

brenda-enzymes.info/. In this dataset, only the acidic enzymes

with optimal pH below 5.0 and alkaline enzymes with optimal pH

above 9.0 were selected. Enzymes with sequence length less than

100 amino acids have been removed. This original dataset

contains 105 acidic enzymes and 111 alkaline enzymes. It is well

known that high similarity data can lead to erroneous estimation of

the performance of the methods. To reduce homologous bias and

redundancy, the program PISCES [20] was used to remove those

enzymes that have more than 25% pairwise sequence identity to

any other. Finally, the benchmark dataset contains 54 acidic

enzymes and 68 alkaline enzymes. The 122 enzymes can be freely

downloaded from our website (http://lin.uestc.edu.cn/server/

AcalPred/data).

The g-gap Dipeptide Composition
In pattern recognition, one of the key points is to generate a set

of informative parameters. It has become a challenge in protein

prediction to formulate proteins with an effective mathematical

expression for truly reflecting the intrinsic properties of proteins. In

the past two decades, various sequence parameters such as amino

acid composition (AAC) [3], pseudo amino acid composition

(PseAAC) [18] and position-specific scoring matrix (PSSM) [18]

have been successfully employed to predict protein structure and

function. Because the proximate dipeptide compositions can be

used to describe the correlation between two proximate residues,

they have been widely applied in protein prediction [21,22].

However, the intrinsic properties of protein sequences may be

deposited in higher tier correlation of residues because of the

hydrogen bonding in secondary structure [23,24]. Thus, we

extended the proximate dipeptide composition to the g-gap

dipeptide composition which can be used to describe the

correlation between two residues.

Suppose a protein sequence P with L amino acid residues as

follows:

P~R1R2R3R4R5:::RL{3RL{2RL{1RL ð1Þ

where R1 represents the amino acid residue at the sequence

position 1, R2 represents the amino acid residue at position 2 and

so on. For each g of the g-gap dipeptide, the feature vector of the

protein sequence contains 20620 = 400 components and can be

formulated as:

P~ f
g

1 ,f
g

2 , � � � ,f g
l , � � � ,f g

400

� �T ð2Þ

where the symbol T denotes the transposition of the vector; f
g

l

denotes the frequency of the l-th g-gap dipeptide and is defined

as:

f
g

l ~n
g
l=
X400

l~1
n

g
l~n

g
l=(L{g) ð3Þ

where n
g
l denotes the number of the l-th g-gap dipeptide. g = 0

indicates the correlation of two proximate residues; g = 1 describes

the correlation between two residues with one residue interval;

g = 2 indicates the correlation between two residues with the

interval of two residues and so forth.

Feature Selection Technique
Generally, the high dimension vector in feature set would cause

the following three problems [25]: one is over-fitting which results

in low generalization ability and overestimation of prediction

model; another is information redundancy or noise which results

in bad prediction accuracy and error description of intrinsic

properties; the other is dimension disaster which results in a

handicap for the computation or increase of computational time.

To overcome these advantages and improve the prediction

quality, it is necessary to pick out informative parameters with

feature selection techniques to gain deeper insights into the

intrinsic properties of protein sequences. Obviously, the best

feature combination can be surely achieved by examining the

performance of all kinds of feature sets. However, the computation

time is so long that we cannot complete it. For economizing run-

time and computational resource, a wise strategy is to use

algorithm to find the optimal features.

Owing to the development of probability and statistics, some

techniques such as principal component analysis (PCA) [26],

minimal-redundancy-maximal-relevance (mRMR) [27] and diffu-

sion maps [28] have been presented in sequence analysis and

prediction. This study proposed a statistics-based algorithm called

the analysis of variance (ANOVA) to score each of the features.

The principle of ANOVA is to calculate the ratio (F value) of

features between groups and within groups for measuring feature

variances [21]. Then the F value (F(l)) of the l-th g-gap dipeptide

in benchmark dataset is defined by:

F (l)~
s2

B(l)

s2
W (l)

ð4Þ

where s2
B(l) and s2

W (l) are the sample variance between groups

(also called Means Square Between, MSB) and sample variance

within groups (also called Mean Square Within, MSW), respec-

tively. They are given by:

s2
B(l)~SSB(l)=dfB ð5Þ

s2
W (l)~SSW (l)=dfW ð6Þ
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where dfB~K{1 and dfW ~M{K are degrees of freedom for

MSB and MSW, respectively. K and M represent the number of

groups and total number of samples, respectively. SSB(l) and

SSW (l) are the sums of squares of the l-th feature between groups

and within groups, respectively, which can be calculated by:

SS2
B(l)~

XK

i~1
mi

Pmi
j~1 f

g
l (i,j)

mi

{

PK
i~1

Pmi
j~1 f

g
l (i,j)PK

i~1 mi

 !2

ð7Þ

SS2
W (l)~

XK

i~1

Xmi

j~1
f

g
l (i,j){

PK
i~1

Pmi
j~1 f

g
l (i,j)PK

i~1 mi

 !2

ð8Þ

where f
g

l (i,j) denotes the frequency of the l-th g-gap dipeptide of

the j-th sample in the i-th group. The mi denotes the number of

samples in the i-th group. Thus we have M~
PK

i~1 mi:

The F(l) value in Eq.(4) reveals the correlation between the l-th

feature and the group variables. The F(l) will become large as the

MSB becomes increasingly larger than the MSW. In the absence

of differences between groups, the F(l) will be near to 1. In other

words, the features with a larger F(l) indicate that it is a more

highly relevant one for the target to be predicted. Hence, the

features can be initially ranked according to F value in Eq.(4).

Subsequently, the incremental feature selection (IFS) is used to

determine the optimal number of features. The IFS procedure

includes the following steps: starting with one feature with the

highest score in the feature set, adding the second feature with the

second high score, adding the third feature with the third high

score and repeating this process until all candidate features are

added. Thus, for each gap g, there are 400 feature subsets

consisted of 400 ranked g-gap dipeptides. Thus, the t-th feature

subset is composed of t ranked g-gap dipeptides and can be

expressed as:

P
g
t ~ f

g
1 ,f

g
2 , � � � ,f g

t

� �T
1ƒtƒ400, g§0 ð9Þ

For 400 feature sets, the prediction accuracy was examined on

the benchmark dataset by using jackknife cross-validation. Then

we obtained the IFS curve in a 2D Cartesian coordinate system

with index t as its abscissa (or X-coordinate) and the overall

accuracy as its ordinate (or Y-coordinate). When the g was selected

from 0 to g0, there are g0 IFS curves. With the peaks (or maximum

accuracies) of these curves and comparison results of these

accuracies, the optimal feature subset with parameters t0 and g0

can be obtained and expressed as:

P
g0
t0

~ f
g0

1 ,f
g0

2 , � � � ,f g0
t0

h iT

ð10Þ

which can provide the maximum accuracy. Then the high-

dimensional data can be projected into a low-dimensional space.

The final classifier model was built by the optimal feature subset.

Support Vector Machine
Support vector machine (SVM), as a powerful machine learning

method, has been widely and successfully applied in protein

bioinformatics [29–31]. The basic idea of SVM is to map data of

samples into a high dimensional Hilbert space and use kernel

function to seek a decision boundary that is able to separate two

training data. The decision boundary is a hyperplane which can

maximize the margin between the two sets in the feature vector

space [32].

In this study, the software LibSVM designed by Lin’s lab was

used to implement SVM [33]. In this software, four kinds of kernel

functions of linear function, polynomial function, sigmoid function

and radial basis function (RBF), can be used to perform prediction.

Empirical studies have demonstrated that the RBF outperforms

the other three kinds of kernel functions in nonlinear classification.

Thus the RBF kernel function was used in the current work. The

regularization parameter C and the kernel width parameter c were

optimized via an optimization procedure according to a grid

search approach. In grid research, the search spaces for parameter

C and c are from 215 to 225 and from 225 to 2215 with the steps of

221 and 2, respectively. The jackknife cross-validation was

adopted in this search.

Performance Assessment
The predictive capability and reliability of the method is

estimated by four parameters: sensitivity (Sn), specificity (Sp),

correlation coefficient (CC) and overall accuracy (Ac) that are

defined as follows:

Sn~TP=(TPzFN) ð11Þ

Sp~TN=(TNzFP) ð12Þ

CC~
(TP|TN){(FP|FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)|(TNzFN)|(TPzFN)|(TNzFP)
p ð13Þ

Ac~(TPzTN)=(TPzTNzFPzFN) ð14Þ

where TP denotes the numbers of the correctly recognized alkaline

enzymes; FN denotes the numbers of the alkaline enzymes

recognized as acidic enzymes; FP denotes the numbers of the

acidic enzymes recognized as alkaline enzymes; TN denotes the

numbers of correctly recognized acidic enzymes.

Results and Discussion

In statistical prediction, the following three cross-validation

methods are often used to evaluate the performance of a predictor:

independent dataset test, subsampling (K-fold cross validation)

test, and jackknife test [34,35]. Among the three cross-validation

methods, the jackknife test is the least arbitrary and the most

objective because it can yield a unique result for a given

benchmark dataset, and hence has been increasingly used by

investigators to examine the quality of various predictors.

Accordingly, we adopted the jackknife cross-validation in this

study to examine the anticipated success rates of the predictor.

Predictive Accuracy
The correlation between two arbitrary amino acids with a

distance of g amino acids can be reflected by the frequencies of the

g-gap dipeptides (Eq.(3)). For each gap g, we must find out the best

feature subset which can achieve the best result. Here, taking 2-

gap dipeptides as an example, we show the way to achieve the

anticipated result. At first, the 400 2-gap dipeptides were ranked

according to their F values as defined by Eq. (4). The ranked 2-gap

dipeptide with a higher F value suggests that it is a more highly

A Prediction Tool of Acidic and Alkaline Enzymes
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relevant one for the discrimination between acidic and alkaline

enzymes. Subsequently, based on the ranked 2-gap dipeptides, we

can build 400 individual predictors for the 400 sub-feature sets by

adding the ranked 2-gap dipeptides one by one from higher to

lower ranks. It is well known that the sub-feature sets with high F

value can give more reliable information for classification.

However, the number of the selected features is too small to

afford enough information, which results in the poor prediction

accuracy. For example, the 30th predictor can only produce the

overall accuracy of 89.3% in jackknife test. On the contrary, the

high dimension sub-feature sets contain enough information.

However, the reduction of cluster-tolerant capacity of prediction

model will lead to a bad prediction in cross-validation. An example

is that the jackknife cross-validated accuracy of 400th predictor is

only 82.0%. Therefore, the third step is to investigate the

prediction performance for each of the 400 predictors with

jackknife cross-validation and then plot the IFS curve. According

to the IFS curve shown in Fig. 1, the overall accuracy reached its

peak (Ac = 96.7%) when the top ranked 62 2-gap dipeptides were

used. These dipeptides have the F score more than 6.39 (P-

value,0.0128). The successful prediction rates were 96.3% and

97.1% for acidic and alkaline enzymes, respectively.

It is necessary to investigate whether other g-gap sub-feature sets

can obtain higher accuracies or not. We changed the g from 0 to

10 and repeated the feature selection process to find the maximum

accuracy of each g-gap dipeptides. For the convenience of

observation and comparison, eleven IFS curves (g varying from

0 to 10) were plotted in Fig. 1. These results indicate that the sub-

feature set with parameters t0 = 62 and g0 = 2 is the best one

among the 4400 (400611) optimized feature sets. The area under

receiver operating characteristic (ROC) curve (AUC) achieves

0.956 in the jackknife cross-validation.

To provide an overall view, the distribution for the F values of

the 400 2-gap dipeptides and their roles for the prediction model

were given in Fig. 2. The features in blue boxes were positively

correlated with acidic enzymes, while those in red boxes were

positively correlated with alkaline enzymes. As shown in Fig.2, Arg

(R), Leu (L) and Ile (I) are preferred in acidic enzymes and Asp (D),

Tyr (Y), Ser (S) and Thr (T) are preferred in alkaline enzymes. The

Arg is a basic amino acid with the largest Isoelectric point (10.76)

among 20 types of amino acids, whereas the Asp is an acidic

amino acid with the smallest Isoelectric point (2.98) among 20

types of amino acids. The pH environment has a major effect on

ionic binding, which is essential for enzyme activation and

chemical reactions. The Arg d-guanido moiety can provide more

surface area for charged interactions and more easily maintains

ion pairs and a net positive charge at elevated pH [36]. Therefore,

the reason that acidic or alkaline enzymes contain many basic or

acidic amino acids is that they need such specific residues to

neutralize with extremely acidic (pH ,5.0) or alkaline (pH .9.0)

surroundings for executing enzymes’ activities.

For demonstrating the prediction capability of the proposed

model, we built an independent dataset which contained 20 acidic

and 20 alkaline enzymes. These sequences derived from BRENDA

[19] can be freely downloaded from our website. The sequence

identity between training benchmark dataset and independent set

is less 40%. Our model can correctly identify the 19 acidic and 20

alkaline enzymes. Furthermore, we investigated the accuracy of

our method on another independent constructed by Fan et al.

[18]. Results showed that 17 acidic and 16 alkaline enzymes could

be correctly predicted when optimized cutoff was selected.

Comparison with Other Methods
To further demonstrate the performance of the proposed

method, it is necessary to compare it with other existing methods.

However, it is not objective and strictly to directly compare the

results due to different benchmark datasets. Therefore, we

repeated the process of feature selection and prediction on the

original dataset (105 acidic and 111 alkaline enzymes). It should be

noted that the results reported by Zhang et al. [6] and Fan et al.

[18] were derived by 10-fold cross-validation test. As elucidated by

Chou [35], their test can not provide unique result. For the current

case, the benchmark data set contains 105 acidic and 111 alkaline

enzymes. According to the Equations 28 and 29 in [35,37], if one

tenth samples are selected from each of the two subsets for

conducting the 10-fold cross-validation, the number of possible

combinations will be more than 1029, which is too large to be

completed. Therefore, in previous studies [6,18], one of 1029

possible combinations is randomly picked out to perform the 10-

fold cross-validation. To make the comparison between our

method and their methods with the same test method, we also

randomly picked one of the possible combinations from the same

Figure 1. A plot to show the IFS procedure. When the top 62 2-
gap dipeptides were used to perform prediction, the overall success
rate reached its peak of 96.7%.
doi:10.1371/journal.pone.0075726.g001

Figure 2. A chromaticity diagram for the F values of 400 2-gap
dipeptides. The blue boxes were positively correlated with acidic
enzymes, while the red boxes were positively correlated with alkaline
enzymes.
doi:10.1371/journal.pone.0075726.g002
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benchmark data set to perform the 10-fold cross-validation test

and the compared results were recorded in Table 1.

According to Table 1, when the top 81 1-gap dipeptides are

used, our method can achieve the maximum accuracy of 94.4%

with the AUC of 0.975 in 10-fold cross-validation, which is higher

than the maximum accuracy obtained with other methods.

Although the Sp obtained by our method is not the best, the Sn,

CC and Ac are dramatically better than those of other methods,

suggesting that the proposed method outperforms other published

methods.

We noticed that Zhang et al. [6] and Fan et al. [18] also

achieved encouraging results. Zhang’s [6] proposed to use

secondary structure amino acid composition as inputting param-

eters. This kind of information derived from software Predator

program. It should be noted that the accuracy of Predator

program was only about 75%. If the secondary structure of a

protein chain is not correctly predicted, it will provide wrong

information for further acidic/alkaline enzyme description. This is

the possible reason that the Zhang’s models can not obtain higher

accuracies with the predicted secondary structural feature. The

parameter sets of Fan et al. [18] model include average chemical

shift (acACS) information, Go information and evolutionary

(PSSM) information. In fact, their novel feature acACS can only

achieve the overall accuracy of 85.7%. Go and PSSM information

play an important role in their model construction. It is well

known that some proteins don’t have the Go annotation. We

investigated the number of proteins in Uniprot and found that less

than 50% proteins have GO information. Thus, their model can

not provide any information for the protein that has not been

annotated in GO database. Moreover, the PSSM information also

has shortcomings. The generation of PSSM of a protein depends

largely on the searching dataset. If no homologous sequence is

found in the searching dataset, the PSSM will not give exact

description, thus leading to wrong prediction. With primary

sequence information, our model can obtain such high accuracy,

suggesting that the proposed model is more neat free and efficient.

Web-Server Guide
For the convenience of the vast majority of experimental

scientists, we built a free web server called AcalPred to

discriminate acidic enzymes from alkaline enzymes. Below, let us

give a step-by-step guide on how to use the AcalPred web server.

Then experimental scientists may get the desired results without

the complicated mathematic equations. The detailed steps are

provided as follows:

Step 1. Open the web server at http://lin.uestc.edu.cn/

server/AcalPred and you will see the homepage of AcalPred on

your computer screen, as shown in Fig. 3. Click on the Read Me

button to see a brief introduction about the predictor and the

caveat. Users may click on the Data button to download the

training set and test set. By clicking on the Citation button, users

may find the relevant papers on the detailed development and

algorithm of AcalPred.

Step 2. Input or copy/paste the query protein sequence that

you want to predict into the input text area at the center of Fig. 3.

The input sequence should be in the FASTA format. A sequence

in FASTA format consists of a single initial line beginning with a

greater-than symbol (‘.’) in the first column, followed by lines of

sequence data. The words right after the ‘.’ symbol in the single

initial line are optional and only used for the purpose of

identification and description. All lines should be no longer than

120 characters and usually do not exceed 80 characters. The

sequence ends if another line starting with a ‘.’, which indicates

the start of another sequence. Example sequences in FASTA

format can be seen by clicking on the Example button right above

the input box.

Step 3. Click on the Submit button to see the predicted result.

The probabilities belonging to two classes will be given in the

second and third columns. The first column gives the prediction

type with prediction probability is above 0.5. For example, if you

use the query protein sequences in the Example window as the

input, after clicking the Submit button, you will see the following

contexts on your screen: the outcome for the first query sample is

‘acidic enzyme’ because the prediction probabilities of acidic

enzyme and alkaline enzyme are respectively 0.903627 and

0.096373; the outcome for the second query sample is ‘alkaline

enzyme’ because the prediction probabilities of acidic enzyme and

alkaline enzyme are 0.074938 and 0.925062, respectively.

Conclusion

In this work, we developed a promising method to discriminate

acidic enzymes from alkaline enzymes. The ANOVA-based

feature selection technique was utilized to optimize dipeptide

compositions for improving the prediction capability of model. An

overall accuracy of 96% was achieved, demonstrating that the

proposed model is a powerful tool for the study of enzymes in the

adaptation to acidic or alkaline environment. For the convenience

of experimental scientists, a free web server AcalPred was built to

Table 1. Comparing the performance of the proposed
method with other existing methods.

Sn(%) Sp(%) CC Ac(%) AUC(%)

Our method 94.6 94.3 0.89 94.4 0.975

Zhang’s method 88.6 92.8 0.82 90.7 0.958

Fan’s method 92.4 95.5 0.88 94.0 0.961

doi:10.1371/journal.pone.0075726.t001

Figure 3. A semi-screenshot to show the top page of the
AcalPred web-server. Its website address is at http://lin.uestc.edu.cn/
server/AcalPred.
doi:10.1371/journal.pone.0075726.g003
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implement the prediction. A friendly guide was given to describe

the way to use the AcalPred web server. We believe that the

predictor will be helpful for wet lab scientists who focus on enzyme

activity.
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