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Introduction
In body area signal processing systems, one of the challenges is 
elimination of unwanted signals from a mixture of sources that 
is called filtering. The techniques for removal of undesired sig-
nals are commonly using a linear signal decomposition. The 
method is to present the data in a new space whereas the 
desired signal is filtered out from other signals in the original 
signal projected onto different basis vectors or functions.1 By 
retaining the basis describing the desired signal and deleting 
the rest, signal decomposition is performed.

Body area sensing systems specifically designed for motion 
capture of walking or gait are measuring human body kine-
matic variables which are the angles of pelvis, hip, knee, ankle, 
and foot in the X, Y, and Z axes. Such measured signals which 
are considered as vectors in time domain for each joint in the 
direction of the 3 axes are prone to undesired components due 
to different reasons from varying sensor wearing sessions, 
inadvertent changes in position of sensors, different walking 
pattern, and speed, etc.2 Therefore, there is need for removal 
of undesired components in the captured signals which could 
be considered and addressed from signal decomposition 
perspective.

Signal decomposition techniques are categorized into a 
priori and adaptive ones. It is dependent on the approach that 
the basis vectors or functions are determined. In a priori 
approaches the basis are defined independent of the signal, 
such as finite impulse response (FIR) and infinite impulse 
response (IIR) filters. The approach is frequency-based utiliz-
ing Discrete Fourier Transform (DFT).3 Such signal decom-
position techniques are not used when there is overlap between 

characteristic frequencies of the undesired signal and the 
desired signal. To tackle this challenge adaptive frameworks for 
determining basis vectors or functions have been introduced.2 
The basis vectors are calculated from the statistical properties 
of the data through adaptive approaches including ICA 
(Independent Component Analysis), PCA (Principal 
Component Analysis), and SVF (Singular Value Filter) based 
signal decomposition methods.

The signal decomposition basic principles can be described 
by initially considering the signal, joint angle in this study, 
which is represented as a row vector x (dim 1 × N) for each 
joint angle over the measurement time denoted by N samples. 
The signals need to be decomposed into a weighted sum of 
orthonormal basis,

 x v=
=
∑
n

N

n nc
1

 (1)

where cn are the coefficients for each N orthonormal basis vn. 
The inner product between the orthonormal basis vector and 
the observed signal are represented as coefficients cn =  x v. n′ 
where vn ′ is the conjugate transpose of vn. Any set of mutually 
orthonormal vectors are the basis represented in (2).
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For linear transformation, the mutually orthonormal basis vn 
are formulated either through a priori or adaptive approaches 
from the observed signal. In adaptive methods, the basis 
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vectors or functions are formed adaptively based on a series 
of polynomials.

A general linear filtering technique for discrete time  
system is represented through a matrix formulation,  
y = Ax whereas x = [ , , , ]x x x N0 1 1( ) ( ) … −( ) T is input, 
y = [ , , , ]y y y T0 1 1( ) ( ) … −( )N  is the output of transform  
and A which is transform matrix has N × N dimension.  
Each element of the matrix is represented by a n k,( ) whereas n 
is the element in the rows and k is the element in columns. 
Therefore, the transform’s output vector element, y n( ) , are 
represented as (3).

 y n a n k x k n N
k

N

( ) = ( ) ( ) = … −
=

−

∑
0

1

0 1, , , ,  (3)

By selecting the first M coefficient and rejecting the rest, y , as 
represented in (4) the filtered signal, x, is reconstructed from 
x = A−1

y as the process is demonstrated in Figure 1.

 y n a n k x k n M
k

M

( ) = ( ) ( ) = … −
=

−

∑
0

1

0 1, , , ,  (4)

The signals could have different characteristics such as 
being deterministic or random, orthogonal, orthonormal, or 
independent. A signal is called deterministic if there is no 
uncertainty about its values at any time which means it can be 
represented by a mathematical formula as a function of time. A 
signal is non-deterministic or random if there is uncertainty 
about its values at some time while being random in nature and 
are modeled in probabilistic terms. As the aim in this paper is 
to address random components in the signal, there is need to 
consider the statistical properties of signals and processes. 
Stationary process is a procuress that the unconditional joint 
probability distribution does not change over time; otherwise, 
the process is non-stationary. Signals are represented as vectors 
whereas vector space is considered as a set of vectors or func-
tions { }vn  spanning a vector space if any element of that space 
can be represented as a linear combination of elements of that 
set x v=

=∑ cn nn

N

1
 therefore, vn{ } is a basis set if the cn is unique. 

Vectors are orthogonal if the inner product of vectors is zero: 
n m n m≠ < >=, ,v v 0 whereas they are orthonormal if the vec-
tors are orthogonal with unit length: n m n m= < >=, ,v v 1; a 
space which has orthonormal basis is a type of Hilbert space 
where x x v v= < >

=∑ , n nn

N

1
. In terms of independence, given 

a set of vectors v i i k{ } = …1 2, , , , if there would be a set of 
ci i k{ } = …1 2, , ,  (excluding c c1 2 0= =…= ) such that 
c c ck k1 1 2 2 0v v v+ +…+ = , then the set of vectors is called line-
arly dependent. If there is none, they are considered independ-
ent in a linear manner.

Having introduced the signal decomposition process, the 
principles of filtering and signal decomposition techniques 
including a priori and adaptive approaches along with a func-
tional one are explored considering critical evaluation of them 
in Section 2. The approach is validated for a case study in a 
body area sensing scenario for motion signals which are angles 
of joints to investigate the applicability of the techniques 
within that context in Section 3. In Section 4, results are pre-
sented, compared, and analyzed which validates the applicabil-
ity of the approach for the case study. The paper will be 
concluded in Section 5 summarizing the findings and the 
validity of used techniques.

Background of Filtering and Signal Decomposition 
Techniques
To reduce undesired components in the signals captured from 
body area sensing systems, a series of signal decomposition 
techniques are explored which are critically reviewed in this 
Section. The signals are specifically angles of joints for the pur-
pose of gait analysis whereas applying the techniques is for the 
purpose of finding characteristic features that represent the 
main patterns of motion. By eliminating the undesired compo-
nents there would be reduced variability in signals of body area 
sensing systems. When considering the applicability of on-
body sensing systems for motion capture, there are challenges 
related to wearer’s comfort. The systems are sensitive to sensors 
positioning which need uncomfortable tight-fitting attach-
ments and experts for placement/set-up.4,5 Using such signal 
decomposition techniques helps wider adaptation of motion 
capture systems with less sensitivity to accurate sensor posi-
tioning; therefore, more portable body area sensing system. 
Signal decomposition techniques are categorized into a priori 
and adaptive ones depending on the approach that the basis 
vectors or functions are determined. In a priori approaches the 
basis are defined independent of the signal, whereas for the 
adaptive ones the basis vectors or functions are derived from 
statistical properties of the data through adaptive approaches 
which are critically reviewed in this Section.

Figure 1. Signal decomposition-based filtering technique process.
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A priori signal decomposition

The most common a priori filtering approach, where the basis 
are independent of the data, is Discrete Fourier transform-
based filter whereas the basis for different frequencies are a set 
of complex exponentials. Such filters have been commonly 
used in signal decomposition literature.6 The frequency 
response of a filter is described by parameters such as stop 
band, pass band and cut-off frequencies. In the stopband, the 
deviation from zero needs to be small while all the frequencies 
need to be passed unchanged in the passband whereas the rip-
ples need be minimized. The passband cut-off frequency and 
the stopband cut-off frequency need to be as close as possible 
in order to have an ideal filter response. Two key methods of 
signal separation in the a priori category as discussed in follow-
ing section are Finite impulse response (FIR) and infinite 
impulse response (IIR) filters.

FIR filters have finite duration impulse response and also 
are called non-recursive filters or convolutional filters. From 
the time domain viewpoint, these filters are sometimes called 
moving average filter whereas the impulse response is finite. A 
( )K th−1  order FIR filter output are represented as (5) with 
input vector size N, and filter order K−1, whereas the output 
samples number is N+K−1. The frequency response for such 
filters is H H0

2ω ω( ) = ( )| | , the Fourier transform of the 
impulse response of h(n) is represented by H ω( ). FIR filters 
can be categorized as linear phase and minimum phase filters.

 y n h k x n k h n k x k
k

k

k n K

n

( ) = ( ) −( ) = −( ) ( )
=

−

= − +
∑ ∑

0

1

1

.  (5)

The linear phase FIR filter frequency response is written as 
(6) where G ω( ) is a real function and k1 and k2 are constants.

 H G e j k kω ω ω( ) = ( ) +( )1 2  (6)

If a signal x(n) only consists frequencies in the passband, the 
filtered signal spectrum is Y X e j k kω ω ω( ) ≈ ( ) +( )1 2 . It would be 
equivalent of a constant phase shift in frequency domain, and 
a time delay of the input signal in the time domain whereas 
the signal is not distorted. If the impulse response of the filter 
is symmetrical, a FIR filter with real coefficients has linear 
phase. The symmetrical constraint on the impulse response is 
considered for linear phase filters whereas the required order 
to obtain a specified amplitude response is reduced with no 
phase constraints. If in filter design process, the amplitude 
response is the major concern, filters with different phase 
responses and optimum amplitude response can be designed. 
Among such filters the one with all its zeros inside unit circle 
is the minimum phase filter which has the smallest time delay. 
In addition, the partial energy E n h k

k

n( ) =
=∑ | |( ) 2

0
 of the 

impulse response is maximized leading to the most asymmet-
ric impulse response.

A Kth-order Infinite Impulse Response (IIR) filter is pre-
sented by equation (7) where each output sample depends on 
present and past input samples in addition to the past output 
samples.

 y n a y n k b x n k
k

K

k
k

K

k( ) = − −( ) + −
= =
∑ ∑

1 0

( )  (7)

The filter’s impulse response will not fade due to the recursive 
part, and it is the cause that they are named IIR filters. 
Considering the steady-state magnitude response characteris-
tics, many techniques are used for design such as Butterworth, 
Chebyshev type I and II, and Elliptic filters. For filter design 
there is a compromise between transient time and magnitude 
response. As discussed, a FIR filter can have linear phase mean-
ing that there would be a constant group delay because of the 
filter unit-pulse response symmetry. Causal IIR filters due to 
the infinite duration of unit-pulse response cannot be symmet-
ric; therefore, IIR filter cannot have exactly linear phase. To 
design filter with sharp transitions between frequency bands or 
large attenuation are required in the stop band, the required 
filter length N increases. When constant delay for all frequen-
cies is not required, FIR filters are used. The minimum phase 
FIR filters are good alternative when the group delay is not 
important. With the same number of coefficients, a sharper 
transition between band edges is present for IIR filter than a 
FIR filter. In terms of realization, IIR filter is much more dif-
ficult than the direct, non-recursive FIR filter due to the recur-
sive structure. Considering similar magnitude characteristics, 
an IIR filter has fewer coefficients than a FIR filter so less 
memory is required to store the coefficients which is an advan-
tage over FIR.6

Adaptive signal decomposition

The reviewed filtering techniques in previous part fail to 
achieve a signal separation when there is overlap in the fre-
quencies of the undesired signal and the desired signal. 
Moreover, the signals may change through space and time; 
therefore, adaptive approaches for finding out the basis func-
tions are proposed in the literature. Common adaptive signal 
decomposition techniques for defining basis functions are 
Independent Component Analysis, ICA, Principal Component 
Analysis, PCA, and Singular Value Filter, SVF, which are used 
in blind source separation (BSS) as well. BSS is an approach for 
retrieving unseen signals or sources from mixtures of the sig-
nals. For separating the sources, no prior information about the 
signals or their combination is available. Instead, the technique 
considers that different physical processes have signals with 
predictable relationships; therefore, specific statistical relation-
ships between the sources.7 Such techniques are widely used 
due to the need for no prior information about the signals. The 
ability of these filtering techniques in signal decomposition is 
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dependent on source signals statistics. One of the techniques 
for this purpose is known as PCA whereas assumes orthogo-
nality of the source signals6 while the other one which is known 
as ICA assumes independence and non-Gaussian-distribution 
of the source signals.8 The filtering is achieved by selecting the 
corresponding source signals’ orthogonal or independent basis, 
adaptively. To remove the signal of interest, the input signal is 
“projected onto the complement of the predicted signal sub-
space while to keep the signal of interest and separate it from 
the other signals, the input signal is projected onto the basis 
selected to span the desired signal subspace.”9

Independent component analysis. In this section, it is explained 
how the independent component analysis, ICA, based filtering 
techniques decompose undesired sources of variation from the 
signal of interest through transforming them linearly into the 
ICA component axes and then maximizing the entropy of the 
data. In addition, the principal component analysis, PCA, 
based filters are explored whereas the basis are orthogonal 
directions of greatest variance in the data calculated adaptively 
from the covariance properties of the data while ICA compo-
nents could be non-orthogonal. It is discussed that how the 
singular value filter, SVF is different from the other adaptive 
techniques by considering a weighting function that calculates 
filter coefficients from the data in the singular value domain, 
adaptively.

Independent component analysis is a linear transformation 
with statistical independent components that captures the fun-
damental structure of the data in the observed signal. Therefore, 
finding a linear demonstration of non-Gaussian data. It is based 
on the assumption that the sources are uncorrelated and mutu-
ally independent. If the original source signals are statistically 
independent and non-Gaussian ICA can reach to an excellent 
signal separation in comparison to PCA.6 If the source signals 
are not independent, the technique may not contribute substan-
tial superiority over PCA.10 To estimate the mixing coefficients, 
aij, based on the information of their independence, ICA can be 
used leading to separation of the original source signals s t1( ), 
. . ., s tn ( ) from their mixtures x t1( ) , . . ., x tn ( ) where parame-
ters aij  are mixing coefficients as equation (8).

 x a s a s a s jj j j jn n= + +…+1 1 2 2 for all  (8)

The assumption is that each mixture x j , and each inde-
pendent component sk, are random variable. The model is pre-
sented by x, a random vector with elements are the mixtures 
x t1( ), . . ., x tn ( ), and s which is a random vector with elements 
s t1( ), . . ., s tn ( ) and by the matrix A with elements aij . The mix-
ing is mathematically modeled as x = As using a vector-matrix 
representation whereas ai  is the column of matrix A which is 
modeled as (9).

 x a=
=
∑
i

n

i i
1

s  (9)

For estimating the mixing matrix, A, it is assumed that the 
components si are independent from statistical perspective and 
the independent components’ distributions are non-Gaussian. 
By finding out the matrix A, its inverse, W, can be calculated; 
therefore, the independent components are obtained from 
s = Wx. By using the technique sources of variation can be sepa-
rated, so in filtering application the unwanted source of varia-
tion can be removed from the signal.

The meaning of independence can be summarized as fol-
lowing. “Variables” y1 and y2 are independent if information 
on the value of y1 does not give any information on the value of 
y2, and vice versa whereas for ICA this is the case with the 
variables s1 and s2.”8 Random variables y1 and y2 are independ-
ent if and only if the joint probability density function is fac-
torized p y y p y p y1 2 1 2, .( ) = ( ) ( )  This definition is applied to 
any number n of random variables; whereas the joint density 
will be a product of n terms. For independent random varia-
bles, the expectancy of h1 and h2 functions will be 
E h y h y1 1 2 2( ) ( )}{  = E h y E h y1 1 2 2( ) ( )}{ }{ . A weaker form of 
independence is uncorrelatedness whereas 2 random variables 
y1 and y2 are uncorrelated, if E y y1 2}{ -E y E y1 2 0}{ }{ = . If the 
variables are independent, they are uncorrelated while uncor-
relatedness does not imply independence.8

“Because independence denotes uncorrelatedness, many 
ICA methods always give uncorrelated estimates of the inde-
pendent components that reduces the number of free parame-
ters and shortens the problem. The important constraint in 
ICA is that the independent components must be non-Gauss-
ian for ICA to be possible. In the Gaussian case the density is 
completely symmetric which means it does not contain any 
information on the directions of the columns of the mixing 
matrix A that is the reason for not being able to estimate A. 
Without non-Gaussianity the estimation of the mixing matrix 
is not possible.”8

Based on Central Limit Theorem under certain conditions 
summation of a number of independent random variables 
would have a Gaussian distribution under certain conditions. 
In ICA, there is the assumption that there is a mixture of inde-
pendent components, and the components have identical dis-
tributions; therefore, the estimation of one of the independent 
components involves a linear combination of the xi  which is 
represented by y = w xT  = ∑iw xi i  whereas vector w  is the one 
to be find out. The linear combination would be equivalent of 
one of the independent components, if w would be one of the 
rows of the independent components. If w were one of the rows 
of the inverse of A, this linear combination would actually be 
equivalent of one of the independent components.9

A variable change is considered to determine the estimator 
giving an approximation for the transform which defines 
z A w= T . Therefore, y = = =w x w As z sT T T  whereas the 
variable y is linear combination of si , with zi  as weights. 
Because y would be summation of a number of independent 
random variables its probability distribution would have a more 
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Gaussian distribution than any of the original variables, than 
any of the si  and will be least Gaussian when equals to one of 
the si .10

Based on information theory, ICA mixing matrix would be 
estimated through minimization of mutual information. The 
mutual information I between m (scalar) random variables, yi, 
i = 1, . . ., m is defined as (10) where as H  is the entropy, the 
degree of information that an observable variable provides. The 
entropy is larger when in the data there is more element of 
randomness, unpredictable and unstructured features.

 I y y y H y H ym ii

m
1 2 1
, , , ( ) ( ).…( ) = −

=∑  (10)

Entropy H is defined for a discrete random variable Y as (11), 
where the ai are the possible values of Y.

 H Y P Y a P Y ai ii
( ) log ( )= − =( ) =∑  (11)

A measure of the dependence between random variables is 
mutual information that is correspondent to the divergence 
between the joint density f(y) and the product of its marginal 
densities. If and only if the variables are statistically independ-
ent, the entropy is nonnegative, and zero. Therefore, mutual 
information considers the whole dependence structure of the 
variables, and not only the covariance which is considered in 
PCA and related methods. Non-Gaussianity measure which is 
called negentropy is obtained by defining differential entropy. 
Negentropy J is defined as J y H y H y( ) = ( ) −gauss ( ) where 
ygauss is a Gaussian random variable of the same covariance 
matrix as y. In this method, the ICA of a random vector x is 
defined as an invertible transformation, where the matrix W is 
determined such that the mutual information of the trans-
formed components si is minimized.11

In multivariate data analysis, finding a smaller number of 
less redundant variable is the aim, therefore, giving a represen-
tation of the original set as possible which is called source sepa-
ration. However, in PCA and the related Karhunen-Loeve 
transform the redundancy is measured by correlation between 
data, in comparison to the ICA with a stronger independence 
feature with less emphasize on the number of variables. 
However, in PCA there would, less complexity due to the use 
of correlation as second order statistics.

Principle component analysis. Decomposing data into its orthog-
onal basis, the Karhunen–Loeve (KL) transform is used speci-
fying the autocorrelation matrix’s eigenvalues and the relevant 
orthonormal eigenvectors.12 PCA could be useful for filtering 
such as the one in Negishi,13 but its capability for adaptive 
regression filtering is restricted. The orthogonal bases of PCA 
indicates that they are uncorrelated but it does not necessarily 
mean the statistical independence. “Orthogonal basis are inde-
pendent only if they are Gaussian or otherwise distributed ran-
dom variables for which the second and higher order moments 
are zero.”6 Orthogonal basis are not necessarily mutually 

statistically independent which means there could be multiple 
independent sources potentially to be projected onto the same 
orthogonal basis leading to a source separation which is 
incomplete.

For PCA transform, there is no assumption on the vector’s 
probability density whereas the first and second order statistics 
is estimated.6 Assuming the random vector x with n elements 
with samples x x1( ) … ( ), , T , initially the vector x is centered 
by subtracting its means. The redundancy induced by correla-
tions is removed when x is linearly transformed to another vec-
tor y with m elements, where m < n. The PCA transformation 
is achieved by either variance maximization or by minimum 
mean-square error compression, MSE.

Variance maximization approach is about a linear combina-
tion is considered where as y1 = ωk kk

n
x11=∑ = ωω1

T x of the ele-
ments x1 , . . ., xn of the vector x, the ω11, . . ., ωn1 are scalar 
coefficients of an n-dimensional vector ωω1  and ωω1

T  represents 
the transpose of ωω1 . The factor y1  is called the first PC of x, if 
the variance of y1  is maximally large. Since the variance 
depends on both the norm and orientation of the weight vector 
ωω1  and increases without limits as the norm increases, it causes 
the constraint that the norm of ωω1  is constant and equal to 1, 
practically. Thus, looking for a weight vector ωω1  that maxi-
mizes the PCA criterion

 
J yPCA T T T

T
1 1 1

2
1

2
1 1

1 1

ωω ωω ωω ωω

ωω ωω
( ) = = =

=

 E E E
such thatx

{ } { } { }( )x x
C

x
||| || 1ωω1 = .

     (12)

The ωω1  norm is defined as ||ωω1 ||= ( )ωω ωω1 1
2T  which is 

Euclidean norm. The matrix Cx  is the n× n covariance matrix 
of x given for the zero mean vector x by the correlation matrix 
Cx  = E{x xT }. The solution to the PCA problem is given in 
terms of the unit length eigenvectors e1 , . . ., en of the matrix 
Cx  based on the linear algebra. The ordering of the eigenvec-
tors is such that the corresponding eigenvalues λ1 , . . ., λ1n  
satisfy λ11⩾ . . . ⩾ λ1n . The solution for the maximization 
problem is ωωk k= e . Another approach to compute the basis is 
eigenvalue decomposition on the autocorrelation matrix,

 R X X V V= =′ ′ΛΛ  (13)

where the matrix ΛΛ  is a diagonal matrix with the kth element 
is the kth eigenvalue. Eigenvalues are positive and real which 
are usually arranged in descending value order. For each eigen-
value, there is an associated eigenvector, which is contained in 
the columns of V corresponding to the PCA basis. The kth 
eigenvalue is proportional to the amount of variance accounted 
for by the kth eigenvector λk = Xv k

, 2
. Instead of eigenvalue 

decomposition, there is another approach to perform a singular 
value decomposition (SVD) without computing the autocor-
relation matrix. The SVD of X  = U ∑V′ is where columns of 
U are the singular vectors corresponding to the eigenvectors of 
XX′ and ∑ is a diagonal matrix of singular values σ k  with sin-
gular values arranged in descending value order.6
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MSE approach defines compression of x as PCA as weighted 
sums of the element x with maximal variance whereas the 
weights need to be normalized. In this approach, m orthonor-
mal basis are selected that are spanning an m-dimensional sub-
space to minimize the MSE between x and its projection on 
the subspace that is represented by (14).

 J EMSE
PCA

i

m

i
T

i= −












=
∑{ ( ) }|| ||

1

2x ωω ωωx  (14)

Due to orthogonally of the vectors ωωi , this criterion can be 
further written as

 
J EMSE
PCA

i
T

ij

m

j
T

= { }− 










−=

=∑x x

C C

2

1

2

E ( )

( )

ωω ωω

ωω ωω trace x x jjj

m
.

=∑ 1

 (15)

Assuming orthonormality condition on the ωωi  for PC ortho-
normal basis, the subspace spans by the m first eigenvectors e1, 
. . ., em  of Cx  derived from (16). The variance of the PCs is 
calculated by the eigenvalues of Cx .

 E y E d m m
T T

m m
T

x m m{ } { } .2 = = =e x e e C ex  (16)

Singular Value Decomposition is another technique 
whereas weights to the basis of PCA decomposition to 
achieve filtering output is considered.14 In this approach, the 
filter coefficients are function of the data singular value spec-
trum. In reviewed PCA-based filtering techniques in previous 
sections, weightings are restricted to 0 and 1 which means 
each basis function is either deleted or kept. However, based 
on statistical properties of the signal a weighting function is 
considered.15 The filter coefficients will cause consistent and 
better filtering results because of eliminating undesired signal 
components with blocking of artifacts caused by strict thresh-
olding. After decomposing the signal along a new set of PCA 
basis, filtering is addressed by allocating weights to each of 
the basis as (17).

 y v=
=
∑
k

N

k
1

ω γk k  (17)

where y is the output signal of the filter with the same dimen-
sions as x. The filter coefficients, ωk , are adaptively calculated 
as a function of the singular value spectrum as stated in equa-
tion 18.

 ω ω
αk k e

= ( ) = −
+∑ − ∑−

1
1

1 ( )ττ  (18)

In this equation, ττ and α  are weighting function parameters 
determining the cut-off threshold and weighting function 
smoothing, respectively. The diagonal matrix of singular values, 
σ k , are represented “by ∑. As ∝→ 0, ωk ∑( ) flattens, indicating 

that all basis are kept at the same level and no filtering is obtained. 
At the other limit as ∝→∞ , filtering is reached through strict 
thresholding where ωk ∑( ) are binary meaning that basis func-
tions are deleted if the associated singular values have a ∑ value 
above threshold ττ  and kept if ∑ is below the threshold.”14

Functional component analysis. Representing PCs by functions 
rather than vectors will lead to Functional Principal Compo-
nent Analysis, fPCA. By observing the entire waveform data, 
this tool will be able to recognize more detailed pattern differ-
ences.16 PCs provide indications for identifying potentially 
important differences in the curves. Smoothness is the core to 
this approach whereas in time domain the nearby values are 
linked and not differ largely. fPCA is a useful tool for analyzing 
data providing a recognition mean for the main source of vari-
ability of a set of curves.

Within linear transformations, which are computationally 
easier among multivariate statistical transforms, the use of 
functional techniques could provide additional understanding 
into differences in data by considering the data as functions 
maintains all the information contained in the raw data. A set 
of functional building blocks are used ∅k , k K= …1 2, , , , 
called basis functions combined linearly to fit a function to 
raw data y as equation (19) called basis function expansion of 
function x(t).

 x t c
k

K

k k( ) = ∅
=
∑

1
 (19)

Parameters ck are the coefficients of the expansion. The 
maximum number of PCs in the multivariate case is the num-
ber of variables, whereas in fPCA the number of eigenfunc-
tions is equal to the minimum of K and N, where K is the 
number of basis functions, and N is the number of variables.16 
Coefficients ck are computed through 2 strategies which are 
smoothing by regression analysis and smoothing by roughness 
penalties. Smoothness is achieved by defining the data fitting 
as the minimization of the sum of squared errors which is rep-
resented in (20).

 y x t tj j j j j j= ( ) + = ( ) + = +ε ∅ ε ∅ εc c′ ′t ( )  (20)

The raw data vector, y, comprises the n values to be fitted, 
vector εε contains the corresponding true residual values, and n 
by K matrix ∅  contains the basis function values ∅ k jt( ) . 
Then there is y c= +∅ εε. The least-square estimate of the 
coefficient vector c is shown in (21).

 c y = −( )∅ ∅ ∅′ ′1  (21)

There is no particular limitation on the number of variables 
N to fit the functions into. The number of basis functions K 
must be less than or equal to the number of sampled data 
points, n. An accurate representation of sampled data is 
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achieved when K = n in selecting the coefficients ck  in reaching 
x t yj j( ) =  for each j. A better fit to the data is provided by a 
larger K however the smaller values the less computation is 
required.16 The next stage is calculation of the variance-covar-
iance function, v s t( , )  defined as (22).

 v s t N y s y t
i

N

i i,( ) = ( ) ( )− ∑1  (22)

The functional eigenequation is

 ∫ ( ) ( ) = ( )v s t t dt s, ,ξ ρξ  (23)

where ρ  is eigenvalue and ξ s( ) is an eigenfunction of the var-
iance-covariance function.16 The eigenfunction s called the 
principal component weight function, ξ1( )s  is calculated by 
(24).

 
Maximize

Subject to
i

if

s ds

∑
∫ ( ) = =

1
2

1
2

1

2
1ξ ξ ,

 (24)

where the PC score f i1  is defined as

 f x dsi i1 1= ( ) ( )∫ξ s s .  (25)

A non-increasing sequence of eigenvalues ρ ρ ρ1 2≥ ≥…≥ k  
can be built step by step by needing each new eigenfunction 
computed to be orthogonal to those computed in the previous 
steps,

 ∫
∫

( ) ( ) = = … −

( ) =

ξ ξ

ξ
j l

l

t t dt j l

t dt

0 1 1

12

, , ,

.
 (26)

Separating signals into deterministic and stochastic compo-
nents, fPCA can be used that is achievable by deducting either 
one or other from the signal and can be considered as filtering 
the noise or the common parts, respectively. The approach is to 
re-present the original data along a new coordinate system 
such that the signal of interest can be decomposed from other 
sources of variation in the original data while projecting the 
signal along different basis. By retaining the basis describing 
the signal of interest and deleting the remaining, the filtering is 
accomplished.2

The signal processing pipeline consists of several stages. 
Data needs to be normalized in the first step to ensure the same 
number of samples. Then transferring the data to the fPCA 
domain by using the fPCA transform and partitioning the data 
into 2 elements, xi

global��� ( )
 and xi

filtered��� ( )
 as shown in equation 

(27).

 
x x x

f
i i

global
i

filtered

n i
n

n

L NE
n

��� ��� ���
= +

= +
=

<∑

( ) ( )

( )( ) (ξ ξt
1

tt) ( )f i
n

n L

NE

= +∑ 1

 (27)

The filter characteristic depends on the data because the sum 
of the major PCs weight functions is given by xi

global��� ( )
and  

number of eigenfunctions, ξn t( ) , defining the global pattern 
affects the filtered pattern as well as the sum of the residual 
components that is shown by xi

filtered��� ( )
. In (27), principal 

component scores are shown by f i
n( ) . The number of eigen-

functions is shown by NE and the number of selected ones is 
shown by L.

After applying fPCA on the data, the main source of varia-
tion in the data is filtered by keeping the components contain-
ing the most amount of variability through the most relevant 
PC function or eigenfunctions and removing the rest from the 
fPCA domain. After this stage, by projecting the data on the 
retained eigenfunctions the data will be returned to the first 
domain. The dominant modes of variation in the data can be 
kept by studying the ratio of the related eigenvalues to the total 
variance while deducting the mean from each observation. 
Consistent features are coherent components generating com-
mon structures and following deterministic rules, while there is 
a degree of randomness or stochasticity in the residual 
components.18

Methodology
The signal decomposition and filtering techniques are explored 
to compensate for the random changes effect in the sensors’ 
positioning in motion data to find characteristic features that 
represent the main patterns of motion. Investigating applica-
bility of the signal decomposition techniques, a series of experi-
ments are designed for a motion capture scenario for the 
purpose of gait analysis whereas the signals are angles of joints 
including pelvis, hip, knee, ankle, and foot in X, Y, and Z direc-
tions. Ten subjects are hired to walk in 10 sessions of sensor 
wearing with feigned changes in sensors positioning.2 An 
appropriate number of subjects are required to be recruited to 
have a valid analysis of motion data. In a similar scenario in the 
literature for gait analysis, 7 subjects are used based on statisti-
cal power analysis17; therefore, in our experiments it is decided 
to recruit 10 subjects, 5 females, and 5 males. A power analysis 
can be used to estimate the minimum sample size required for 
an experiment, given a desired significance level, effect size, and 
statistical power which is the probability of a hypothesis test of 
finding an effect if there is an effect to be found.

Inadvertent changes are emulated in the sensors position for 
each session while following the standard marker set. There are 
several standard marker-sets for placing markers on the human 
body such as Cleveland Clinic, Saflo, Helen Hayes, Codamotion, 
and so forth. The Cleveland Clinic marker set uses a rigid triad 
of markers in a plane parallel to the long axis of the bone to 
capture the motion of the thigh and shank in 3 dimensions. 
The Saflo marker-set consists of a total body marker-set with 
19 retro-reflective markers fixed on specific anatomic land-
marks. The Helen Hayes marker set is a relatively simple set of 
external markers developed for time-efficient video analysis of 
lower extremity kinematics. All the named marker placement 
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protocols are used for clinical gait analysis. For measuring 
bilateral gait, the recommended Codamotion marker-set is 
used which comprises a total of 22 standard markers as shown 
in Figure 2 for the right side of the body. Markers shown in 
parentheses () are optional. The marker set determines ankle 
and knee joint centers and segment coordinate systems by 
means of a marker on a post or wand protruding from the ante-
rior aspect of the thigh and shank, and by single markers placed 
over the lateral aspect of the joint flexion/extension axis.

After installing the sensors on legs and pelvis of the subject 
according to the Codamotion marker-set, the body angles are 
measured. A motion capture system measures the angles of 
joints and provides a stick figure view for the subject under 
experiment as shown in Figure 3. The system is a general-pur-
pose 3-dimensional (3D) motion tracking system called 
Codamotion. The measurement unit contains 3 pre-aligned 
solid-state cameras which track the position of a number of 
active markers, that is, infrared light emitting diodes (LEDs), 
in real-time. Sampling rates are selectable from 1 Hz up to 
200 Hz, dependent on the numbers of markers in use. Each 
scanner unit contains 3 special cameras which detect infrared 
pulses of light emitted by the markers and locate the marker 
positions with very high resolution. The cameras are rigidly 
mounted on the scanner units so that the system can be 
pre-calibrated.

The calibrated system measures the positions of markers 
within a 3D coordinate system that is fixed in relation to the 
scanner unit. The active range of the capturing system is 1.5 to 
5.2 m from the scanners and follows a Gaussian distribution 
function so that optimal visibility occurs at approximately 3 m 
from each scanner. The angular resolution of each camera is 
about 0.002°; this results in a lateral position resolution of 

about 0.05 mm at 3 m distance (horizontally and vertically), 
and a distance resolution of about 0.3 mm. The set-up of the 
motion capture system in the laboratory ensures that all experi-
ments are carried out in this range. The motion capture system 
will generate angles of joints using the measured sensors/mark-
ers positions and the subjects’ body measurements including 
height and weight.

A random number generator with uniform probability dis-
tribution to generate random position displacements is utilized 
for the purpose of inadvertent changes in the position of sen-
sors. The changes are within the radius of 2 cm in each 10 
experiment sessions that the sensors are wore considering the 
random changes. Despite of the precision in sensor placement 
regime, there still exists human error in placing sensors whilst 
following the derived random position obtained from the ran-
dom number generator. However, we do not consider this 
source of error further, believing to be relatively small. Each 
sensor wearing session consists of 6 trials of subjects walking 
from the initial point to an end point of the walkway while the 
motion capture system collects the subject’s motion. The 
Duration of each trial is 5 seconds with 200 Hz sampling rate. 
The walking speed is asked to be as normal as possible whilst 
different sensors perturbations are made across different sen-
sors wearing sessions.

The kinematic variables in the experiments on the human 
subjects are in 3 different Cartesian directions for the angles of 
pelvis, hip, knee, ankle, and foot. To eliminate the effect of 
other sources of variation that are not related to sensors posi-
tioning differences in each sensor wearing session, the kine-
matics variables of each sensor wearing session are averaged 
over the 6 trials. There could be different walking speed, and 
different ways of walking for each subject and could be the 
potential reason for such variabilities. Walking is partitioned 
into cycles whereas each cycle comprises 2 steps whereas a 
subject is asked to walk for a specific time interval and divide 
it into cycles. Each walking cycle is considered as the time 
from initial contact of the heel with the ground to initial con-
tact of the following step. The following right heel contacts 
are used to separate each step which can be determined from 
right heel sensor position in Z direction as shown in Figure 3.

There could be different numbers of samples in each walk-
ing cycle that is challenging in identifying features during 
action sequences. For this purpose, each cycle needs to be nor-
malized, so it is denoted by the same sample number. The data 
is time normalized to convert the time axis from the recorded 
time units to an axis representing the walking cycle from 0% 
to 100%. After time normalization, data standardization is 
performed so that comparing results of different angles with 
each other in terms of percentage of change before and after 
applying the filtering techniques. In this case study results of 
applying fPCA, ICA, PCA, and SVF adaptive filtering tech-
niques and an a priori FFT based filtering mechanism are 
compared.

Figure 2. Position of markers on human body for the experiment setup.6
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Result and Discussion
The effect of applying the filtering techniques (fPCA, PCA, 
ICA, SVF and FFT based) on different angles including pelvis, 
hip, knee, ankle, and foot as the percentage of mean improve-
ment is listed in Tables 1 to 3 for normalized data in 3 different 
directions of the Cartesian Coordinate system, respectively. In 
addition, the right hip angle in the X direction for 10 subjects 
is shown in Figures 4 and 5 before and after applying the tech-
niques. Motion data is averaged over 6 trials of 10 sessions of 
marker wearing for each joint angle on 10 human subjects. We 
can see that for each subject fPCA and PCA schemes are better 
at separating the main variation pattern in the motion data 
than other techniques. The Figures confirm consistency in 

performance of the proposed functional signal separation tech-
nique in compensating for positional uncertainties for all par-
ticipants in the experiment.

Among a priori FFT based filters, Butterworth IIR filter is 
selected as a frequency-based filter which is commonly used as 
a baseline for comparison in literature. A second order low-pass 
digital filter is used with normalized cut-off frequency of 0.1 Hz 
to remove high frequency noise. Normalized cut-off frequencies 
take a variable in range of 0 to 1, where 1 corresponds to the 
Nyquist frequency. Results show that FFT-based filtering tech-
niques perform poorly on the motion data of our experiments, 
as expected. As it is shown the mean change percentage in 
motion data variance before and after applying the technique is 

Figure 3. Stick figure and captured signals from force plate, left heel in Z direction to separate each walking step.

Table 1. Percentage of mean variance change before and after applying the techniques on the joint angles data in X direction.

BODy JOinT AnglES FPCA PCA iCA SVF FFT-BASED

Pelvis X Angle 97.3 97.2 95.4 70.4 21.3

Hip X Angle 95.9 95.7 93.5 71.3 14.1

Knee X Angle 99.1 99.2 68.7 73.1 14.4

Ankle X Angle 84.6 84.9 88.1 58.8 28.0

Foot X Angle 75.8 75.9 95.6 65.9 32.2

Table 2. Percentage of mean variance change before and after applying the techniques on the joint angles data in y direction.

BODy JOinT AnglES FPCA PCA iCA SVF FFT-BASED

Pelvis y Angle 74.7 74.6 90.8 58.4 20.2

Hip y Angle 99.2 99.2 89.2 68.7 31.8

Knee y Angle 99.6 99.6 83.0 74.7 14.6

Ankle y Angle 92.0 91.0 84.9 74.9 18.0

Foot y Angle 99.7 99.7 84.0 74.8 10.3
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21.94%. Singular value filtering results show mean variance 
after applying the technique is 68.4 % on average. For ICA 
based filtering results shows the percentages of change before 
and after applying the technique is 86.2%. Although the per-
centage of change is high cases, we see new patterns of variation 
in the signal which shows that independent component analysis 
filtering-based techniques are not applicable to this type of 
data.19 Results of applying the PCA-based filtering techniques 
shows that the technique works properly to reduce random pat-
terns in the data. The percentage of improvement as mean per-
centage change in both PCA and fPCA is 94%. However, 
looking specifically into the angles the minimum variance 
reduction is 88.2% for pelvic angle in Y direction and the maxi-
mum improvement is 99.6% for knee angle in Y direction.

The aim in this study is to separate the main pattern of vari-
ation in the data from residual components in on-body sensing 
systems by using signal separation techniques. Results demon-
strate as random changes in sensors positioning which are 
potentially due to undesired movement of wearable sensors, are 
introduced the motion data variation increases. Before and 
after applying the filtering techniques, improvement is observed 
as a percentage of variance changes in the data. Since FFT 
based filtering projects signals onto frequency components, as 
shown in results Section it cannot separate the main pattern of 
variation in the signal from the random variations, which is in 
the same frequency domain. After applying ICA based tech-
niques, we see some new ripples in the data that are unrelated 
to the motion patterns. As ICA works on non-Gaussian 

Figure 4. Right hip angle in X direction before and after applying fPCA, PCA, iCA, SVF and FFT for Subject 1 (S1), 2(S2), 3(S3), 4(S4), and 5(S5), 

respectively.

Table 3. Percentage of mean variance change before and after applying the techniques on the joint angles data in Z direction.

BODy JOinT AnglES FPCA PCA iCA SVF FFT-BASED

Pelvis Z Angle 96.8 96.4 63.7 48.4 24.6

Hip Z Angle 99.5 99.5 92.3 73.4 27.6

Knee Z Angle 99.2 99.1 88.8 72.4 28.0

Ankle Z Angle 99.3 99.3 87.8 74.3 23.4

Foot Z Angle 94.7 94.7 92.2 66.1 20.0
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distributed data,20 it cannot obtain appropriate results after 
applying this signal separation technique on the captured data.

The variation in data is due to random changes in sensors 
positioning. Randomness in the position of sensors is gener-
ated using a discrete uniform distribution, which has a sym-
metric probability distribution that is causing Gaussian 
distribution of sampled motion data. The SVF-based signal 
separation performs not better than ICA one which is due to 
the fact the dominant mode of variance in the data is reflected 
in the first few principal components. It is evident that the per-
formance of fPCA and PCA is similar in outperforming the 
rest of the reviewed filtering techniques in stochastic separa-
tion of patterns in the data. This can be explained in terms of 
sampling frequency. As the sampling rate is 200 Hz while the 
movement pattern bandwidth is around 10 Hz according to the 
normal walking speed of subjects and movement patterns in 
data, fitting the function into highly sampled data does not 
have significant effect. Therefore, in highly sampled data it 
suggests the use of PCA instead of fPCA as it is easier to per-
form, and it needs less calculations.

In terms of computational complexity of fPCA algorithms, 
we can find the coefficients ck and all smooth values at x t j( )  in 
O log( )n n  operations. This efficiency is possible because of the 
Fast Fourier Transform making it a traditional choice for long 
time series signal decomposition. As the main difference between 
PCA and fPCA based techniques is finding the coefficients and 

smoothing values, the computational complexity of the fPCA 
based technique is 2O n n( )log  operations larger than the PCA 
based technique. We multiplied it by 2 because we first fit the 
function to data and smooth it, next we perform PCA on the 
coefficients and then, after applying the filtering technique 
and transferring the trajectories onto the first domain, we fit 
the function again to the discrete data. If we consider the data 
matrix that we apply PCA on as an n by m matrix (n number 
of samples and m the dimensionality) to compute PCA, we 
need to compute the covariance matrix and then apply SVD to 
it.21 The time complexity of computing the covariance matrix 
is O nm( )log 2( )  and then computing SVD is O m( )3 . Therefore, 
in the procedure of applying the technique for the PCA  
part, the total time complexity is 2(O nmlog 2( )( ) +O m( )3 ).22  
Multiplication by 2 is for a similar reason that we explained in 
previous paragraph. Consequently, for applying the fPCA 
based filtering technique the computational complexity is 
2(O n n O nmlog log( ) + ( )( ) +2 O m( )3 ).

Conclusion
Within the context of on-body sensing systems, digital filters 
and signal decomposition techniques including a priori and 
adaptive ones were studied. A novel way of using functional 
principal component analysis was introduced. In this approach, 
the main variation source in the data is filtered by restoring the 
most dominant principal components and deleting the 

Figure 5. Right hip angle in X direction before and after applying fPCA, PCA, iCA, SVF and FFT for Subject 6 (S6), 7(S7), 8(S8), 9(S9), and 10(S10), 

respectively.
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remaining from the projected domain. The data will be reverted 
to the first domain by projecting the data of the retained eigen-
functions and removing eigenfunctions with less variation. 
However, adding processing complexity to the motion capture 
procedure is the drawback of the approach. A case study on 
body area sensing system for motion capture is presented in 
which the challenge of effect of random changes in sensor 
placement was explored using the filtering techniques. The 
results showed that the proposed fPCA based technique reduces 
variations in the data for average of 94% outperforming the rest 
of the techniques in the case study although it will add compu-
tational complexity. However, by recent advancements in devel-
opment of cheap and small high power processors this problem 
can be addressed. The focus in this paper was on human gait; 
however, future work could be about applying and investigating 
the introduced signal processing approach for other body move-
ments to validate its applicability for such situations.
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