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Abstract

The growth of HIV sequence databases resulting from drug resistance testing has motivated efforts 

using phylogenetic methods to assess how HIV spreads1–4. Such inference is potentially both 

powerful and useful for tracking the epidemiology of HIV and allocation of resources to 

prevention campaigns. We recently used simulation and a small number of illustrative cases to 

show that certain phylogenetic patterns are associated with different types of epidemiological 

linkage5; our original approach was later generalized for large NGS datasets and implemented as a 

free computational pipeline6. Previous work has claimed that direction and directness of 

transmission could not be established from phylogeny because one could not be sure there were no 

intervening or missing links involved7–9. Here, we address this issue by investigating phylogenetic 

patterns from 272 previously identified HIV transmission chains with 955 transmission pairs 

representing diverse geography, risk groups, subtypes, and genomic regions. These HIV 

transmissions had known linkage based on epidemiological information such as partner studies, 

mother-to-child transmission, pairs identified by contact tracing, and criminal cases. We show that 

the resulting phylogeny inferred from real HIV genetic sequences indeed reveals distinct patterns 

associated with direct transmission contra transmissions from a common source. Thus, our results 

establish how to interpret phylogenetic trees based on HIV sequences when tracking who-infected-

whom, when, and how genetic information can be used for improved tracking of HIV spread. We 

also investigate limitations that stem from limited sampling and genetic time-trends in the donor 

and recipient HIV populations.
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Phylogenetic analysis of Human Immunodeficiency Virus (HIV) sequences has become a 

popular method to reveal epidemiological patterns relevant to disease tracking as well as 

details about transmission. Epidemiological patterns include the fundamental transmission 

history, which is not possible to directly observe but underlies the observable HIV 

phylogeny. While it is attractive to assume that these are identical, they may in fact be quite 

different10,11. The main reason for the discrepancy between HIV phylogeny and 

transmission history is because HIV quickly diversifies in a host. The existence of a highly 

diverse HIV population also raises the question of how many variants that may be 

transmitted.

A highly diverse founding population i) makes it harder for the immune system to fight HIV 

and accelerates the time to AIDS12–15, ii) increases the probability of transmitting drug-

resistant variants and developing future resistance16, iii) reduces the efficacy of 

immunological-based prevention technologies17, and iv) obscures epidemiological 

relationships10,18.

Transmission moves some limited number of viral particles from the donor’s population to a 

recipient19–22. As HIV within-patient diversity can build up many-years-worth of genetic 

variation, transmission of even a few particles can represent a highly diverse founding 

population. Diversity then continues to accumulate23, and as the adaptive immune system 

activates, the diversification rate increases as HIV escapes this evolving pressure24. Cohort 

studies of acutely infected persons have used early patterns of diversification to argue that 

the majority of HIV infections start with a single virus strain, while 20–40% start with more 

than one HIV strain22,25,26. Other studies have investigated individual transmission pairs, or 

small transmission chains27,28, showing that a bottleneck at transmission clearly occurs. 

However, because these studies either only investigated recipient HIV populations or 

relatively few donor-recipient pairs, they could not study the donor-recipient phylogenetic 

patterns generally.

Recently, several mathematical modeling studies have investigated population bottlenecks 

during transmission. To augment sequence data, some methods have inferred transmission 

histories using other data or made strong assumptions5,29–31. Together, these studies showed 

that transmission leaves characteristic and detectable signals in phylogenetic trees that can 

elucidate direction, directness, and diversity of the founding population. While such patterns 

were investigated in a few real transmission cases, the lack of a large-scale analysis of real 

donor-recipient transmission cases, describing many different epidemiological scenarios, has 

left researchers skeptical whether general patterns are discernable or not.

In order to evaluate general phylogenetic patterns associated with different modes of HIV 

transmission, we divided the transmission pairs into known direct or common source 

transmissions. With HIV DNA sequence samples from hosts A and B, direct transmission 

corresponds to when A infected B and common source when an unsampled host X infected 

both A and B. For each such A-B pair, we then reconstructed the joint HIV phylogeny using 

30,000 Bayesian posterior phylogenies per pair to take into account phylogenetic 

reconstruction uncertainty and classified the resulting HIV phylogenies into paraphyletic-

polyphyletic or polyphyletic-polyphyletic (PP), paraphyletic-monophyletic (PM), or 
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monophyletic-monophyletic (MM) patterns (Figure 1). To infer the phylogenetic topology, 

outgroup rooting with specific HIV subtype reference sequences was superior to other 

rooting methods (see Methods). 71.3% of all datasets had a properly defined outgroup 

(>95% posterior support for root monophyly). The 28.7% that did not, identified 1) datasets 

with too little power to reconstruct meaningful phylogenies (27.7% had <10% posterior 

support), typically with too short genomic sequences, and 2) less frequently (1%), datasets 

with patients that unlikely had infected each other.

Analyzing the 681 pairs of known direct or common source transmission that had a proper 

phylogenetic root, we observed that most such pairs presented a clear phylogenetic pattern 

(638 of 681 pairs had >95% support for their phylogenetic class). We found that PP and PM 

trees were associated with direct transmission, while MM trees typically indicated 

transmission from a common source (p=1.8×10−14, z-test of logistic regression) (Figure 2). 

Overall, 52% of direct transmissions resulted in a detected PP tree, and 37% PM and 11% 

MM, while 76% of common source transmissions resulted in a MM tree. There was no trend 

in inferred phylogenetic class across the genome. Because we had too few known 

transmission chains with three serially infected patients, we could not investigate indirect 

transmission situations (where an intervening link exists between the sampled donor and 

recipient). Such cases with adequate clonal data are unfortunately extremely rare in the 

literature. From previous theoretical work, however, we expect PP trees to indicate direct 

transmission while PM can only indicate direction of transmission5.

Stratified on transmission risk group, in 167 mother-to-child transmission (MTCT) pairs PP 

trees dominated (66%), followed by PM (26%) and MM (8%). Thus, this shows that, 

contrary to previous claims, MTCT most often results in transmission of >1 phylogenetic 

lineage. A recent study by Kumar et al, using new and independent data, also found that 

multiple transmitted variants is more common in MTCT than previously thought32. For 

men-who-have-sex-with-men (MSM), 27 direct transmissions resulted in either PP or PM 

trees at approximately equal frequency, while 83 heterosexual (HET) direct transmissions 

showed more PM than PP in direct transmissions (61 and 19%, respectively). Since the risk 

of transmission is higher in MSM than in HET33, the transmission of more founders in 

MSM, leading to a PP tree, is in agreement with the sexual transmission mode; and previous 

results have suggested that MSM often are infected with more variants than HET34. We 

found similar results in male-to-female and female-to-male transmissions, i.e., mostly PM 

trees (Supplementary Figure 1). MM trees dominated in 121 HET common source 

transmissions (89%), while the MSM common source situation had too few cases to give a 

clear picture (3 cases). Other types of transmission risks (34 cases), including nosocomial 

and unknown risk factors, typically showed PP in both direct transmission and common 

source. The ‘other’ risk group is shown for completeness, but should be interpreted case by 

case as the epidemiological situations are typically unusual and different from each other.

While the overall phylogenetic class was strongly associated with transmission mode, there 

were also cases where the overall pattern did not hold, e.g., 33 out of 292 (11%) direct 

transmissions resulted in a MM tree (Figure 2A). The reason for observing MM trees in 

direct transmissions is explained by two mechanisms, 1) loss of phylogenetic lineages over 

time, and 2) limited sampling of clonal DNA sequences. Figure 3 shows first principle trends 
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of how PP or PM trees decay into MM over time as well as with inadequate sampling. The 

root host-label should ideally indicate the original HIV population from where the 

recipient’s HIV population was drawn during transmission. Hence, with an adequate sample 

taken before critical lineage loss has occurred, the donor is identified by the root host-label, 

as seen in the PP tree in Figure 3. With time, the older lineages die (due to the stochastic 

birth-death process and amplified by selective mechanisms from, e.g., antiviral drug 

treatment and immune surveillance). Note also that when lineages are lost or unsampled it is 

possible in both PP and PM trees that the root label is incongruent with the original 

population, i.e., it suggests that the recipient’s population is older than that of the donor. 

This type of incongruence is uncommon in PM trees (8% of PM sets had >90% posterior 

probability of incongruence, 88% had >90% congruence, and about 4% were uncertain), 

while rather common in PP trees (24% of PP sets had >90% posterior probability of 

incongruence, 30% had >90% congruence, and 46% were uncertain) (Figure 4AB). The 

larger uncertainty in root host-label reconstruction among PP trees reflects the theoretical 

expectation that PP trees may have an equivocal root state, like MM trees always do (Figure 

3). Hence, while a PP tree indicates direct transmission, it may not be possible to deduce the 

donor from a simple root label reconstruction due to loss of lineages over time and 

inadequate sampling. For accurate donor identification, additional epidemiological data such 

as exact sampling time, potential transmission times, and individually adjusted population 

growth parameters can aid the proper donor inference35.

It is important to point out that this study investigated previously observed transmission 

pairs where the exact epidemiological relationship is known. The relationship between 

phylogenetic topology, root label, and the nature of the epidemiologic linkage can be 

population specific. Using a Bayesian framework we can say

Pr D|Gθ =
Pr Gθ|D Pr D

Pr Gθ|D Pr D + Pr Gθ|D Pr D
,

where Gθ is the phylogenetic topology and root label obtained under the observed 

conditions, θ (e.g. the sampling times, sequencing technology, and within-host population 

dynamics), D is direct transmission, and D is not direct transmission. In this paper we 

examined Pr Gθ|D  and Pr Gθ|D  under the observed (sampling times) and unobserved 

(within-host dynamics) aspects of θ for a large population of transmission pairs. However, 

the probability of direct transmission in a specific case should not be taken as the proportion 

of direct transmission in the population of PP trees in our study. This is due to the fact that 

the case-specific aspects of a given case contained in θ may not be well represented in our 

study. Given that unobservable aspects of each host, such as the within-host evolutionary 

history, can strongly influence the topology and root label for a fixed sampling scheme, extra 

care in the form of extensive simulations needs to be taken when attempting to make a 

principled claim about Pr D|Gθ  in a specific case35.

Conditional on observing a PP tree in one genomic region, only 62% of the examined 

datasets displayed a PP tree in another genomic region (and 28% were PM and 10% MM) 
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(Figure 4C). Furthermore, as time proceeds from the time of infection in the recipient, fewer 

and fewer polyphyletic clades are observed in the recipient (Figure 4E). Finally, more 

sequences investigated typically revealed more clades in the recipient (Figure 4D). Together, 

this shows that the donor and recipient HIV populations often are under-sampled. Thus, our 

results demonstrate that transmissions with true PP trees, and therefore transmission of 

multiple founders, are more common than previously thought.

The number of HIV clades in the recipient can be interpreted as the minimum number of 

lineages that were transmitted. We found that with increased number of sequences sampled 

from the donor and recipient the number of identified transmitted lineages increased 

(Supplementary Figure 2A). Across all direct transmissions, therefore, both the frequency of 

PP trees and the number of transmitted founders is likely underestimated. Among detected 

PP trees, the observed median and mean number of founders was 8.3 and 11.5, respectively, 

with the distribution significantly skewed towards more founders (Supplementary Figure 

2B). These numbers appear high, especially when transmission upon exposure is 

uncommon33, mainly due to very few infectious virions in a transmission volume of bodily 

fluid36,37; where one would expect most transmissions resulting in one and rarely two or 

more founders. While this might be true in many of our HET transmissions, the overall high 

number of founders in PP trees suggests that many PP trees may be the result from multiple 

transmission contacts rather than a single transmission of multiple lineages35. It is possible 

that the number of apparent founders could be inflated by within-recipient recombination of 

a small number of diverse ancestors. However, even in the case of recombination inflating 

the apparent number of transmitted founders, the true founding population must be highly 

diverse. Conversely, if recombination occurs outside the examined genomic region, it may 

hide ancestral lineages that were transmitted by effectively causing lineage death in the 

partial genomic sequence. For our results presented here, however, recombination cannot 

falsely generate PP trees from cases where only one lineage was truly transmitted. This 

means that the phylogenetic patterns determined here are robust to recombination.

The results we present in this study, i.e. that phylogenetic patterns are strongly associated 

with direct versus common source transmission, support theoretical predictions and justify 

the foundation of recent bioinformatics applications6. On the smaller, pair-wise who-

infected-whom level, the strong association between the type of epidemiological linkage and 

phylogenetic topology opens up possibilities of probabilistic inference of transmission 

direction using simulations to test alternative scenarios35.

METHODS

Linked transmission datasets

The LANL HIV database collects and annotates all published HIV sequences39. From that 

database, we retrieved all sequence data from all known HIV “clusters”, i.e. groups of 2 or 

more patients that have known transmission histories, annotated form the beginning of the 

recorded HIV research era up until April 2017. The inclusion criteria were: 1) Two or more 

patients per cluster; 2) 5 or more sequences per genomic region per patient, where the 

sequences within one genomic region had a start HXB2 coordinate within 80 nucleotides of 

each other. Besides DNA sequences and a unique patient database code, we collected, when 
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available, the following data: 1) HIV subtype; 2) risk group; 3) sex; 4) time of infection; 5) 

time of seroconversion; 6) Fiebig stage; and 7) time of sampling. After alignment and initial 

quality control, this resulted in 272 transmission cluster sequence sets, where 227 (83%) 

were 2-patient clusters, 19 were 3-patient clusters, 4 4-patient, 4 5-patient, and 9 ≥6-patient 

clusters. Decomposing these data into epidemiologically linked pairs yielded 955 direct or 

common source transmission pair sequence sets. 187 (69%) clusters had one genomic region 

sequenced, while others had 2–13 regions sequenced and some had near full genomes 

sequenced; the most commonly sequenced genomic region was env (Supplementary Figure 

3). One cluster was HIV-2, and among HIV-1 clusters subtypes B and C dominated (together 

74%), followed by CRF01, D, A1, and G, as well as several recombinants 01/B, 06/A1, 

CRF07, CRF14, A1/A2, C/D, unclassified (“U”), and group O sequences. 47% of the 

clusters were mother-to-child transmission (MTCT), 24% heterosexual transmission (HET), 

18% men-who-have-sex-with-men transmission (MSM), and the rest had blood transfusion, 

mixed or unknown transmission risks. In about 35% we had some information on time of 

infection, and in all cases we had time of sampling (often by year, sometimes month and full 

date).

Phylogenetic reconstruction

Phylogenetic trees were reconstructed with MrBayes 3.2.638 using a GTR+I+Gamma 

substitution model40. The tree topology and branch length priors were both unconstrained 

(uniform tree prior and non-clock model). We ran 2 chains with 30 million Markov Chain 

Monte Carlo (MCMC) generations each, sampled every 1000 generations, and discarded the 

first 50% of the sampled trees as burn-in. Each cluster was thus described by a posterior 

distribution of 30,000 trees per genomic region.

To assess how rooting affects the phylogenetic reconstruction, different alignments were 

generated for each genomic region per cluster: 1) alignments with only cluster sequences, 2) 

alignments with HXB2 included, and 3) alignments with matching subtype reference 

sequences included41. Each such set was aligned using MAFFT v7.305b42 with the L-INS-i 

method. We also applied three types of reductions per alignment: 1) none, where all gaps 

and sequences were included, 2) global gapstripping, where all alignment columns with ≥1 

gap were removed, and 3) global gapstripping followed by removal of non-unique sequences 

per patient. Depending on if and which reference sequences that were included in each 

genomic region, gapstripping had effects on exactly how many genomic alignments we 

obtained per cluster. For instance, because the four subtype C reference sequences had gaps 

in the LTR region, 13 LTR sets were lost due to gapstripping.

Phylogenetic measures

For each phylogenetic tree we measured a set of statistics that we have previously shown 

both theoretically5 and empirically35 to be related to the direction, directness, and frequency 

of transmission between transmission pairs. First, each tree was classified as paraphyletic-

polyphyletic (PP), paraphyletic-monophyletic (PM), or monophyletic-monophyletic (MM)5. 

Here, paraphyly indicates the ancestral population to the joint sample from two 

epidemiologically linked patients. Computer code for the phylogenetic classification will be 

made available upon request. Either polyphyly or monophyly of one patient’s sample in 
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combination with paraphyly of the other patient’s sample thus indicates that the sequences in 

the sample are descendants from the paraphyletic population (Figure 1). We argued in 

previous work that MM trees are most strongly observed when patient pairs were infected by 

a common source, PM trees are associated with direct or indirect transmission, and PP trees 

are strongly associated with direct transmission. Here, we classified each transmission pair 

into PP, PM, or MM categories if greater than 95% of the MrBayes posterior trees fell into 

one of the three possible categories. Pairs that did not have 95% of the trees in one 

topological class were not considered in the analysis.

Second, we calculated the maximum credibility cluster (MCC) set for each transmission 

pair. For each tree in the posterior sample of trees we counted the frequency of all possible 

monophyletic clusters. We defined the MCC as the set of clusters that occur the most 

frequently in the posterior distribution of trees and account for each tip in the phylogenetic 

tree. The number of clusters in the MCC can be interpreted as the minimum number of 

transmitted lineages in direct transmission cases.

Quality of HIV phylogenetic data for transmission reconstruction

To classify the reconstructed HIV phylogenies into the topological classes that have 

theoretically been associated with transmission linkage5, i.e., PP, PM, or MM trees, we 

found that correct rooting is essential. Thus, midpoint rooting, i.e., identifying the start of 

the donor-recipient HIV phylogeny halfway along the longest tip-to-tip path, was inferior to 

outgroup rooting, where the start of the donor-recipient tree is identified by an unrelated 

reference (Figure 1). In particular, PM trees that would identify donor-to-recipient 

transmission direction were often rendered MM using midpoint rooting, with the loss of 

transmission direction signal. For the two outgroup rootings we tested, using subtype 

specific reference sequences was superior to universally using HXB2, i.e., rooting with 

subtype references gave phylogenies that better reflected the known transmission direction. 

For instance, subtype-specific rooting rendered trees PM that were MM with HXB2 for non-

subtype B data. Thus, the reported results are based on using appropriate subtype reference 

sequences as outgroup.

The use of a rooting outgroup also gave us the ability to ask whether any of the outgroup 

(subtype reference) sequences phylogenetically mingled with the patient sequences studied. 

Thus, we tested whether the outgroup reference sequences formed a monophyletic clade 

(Figure 1 shows 3 examples). Phylogenies that identified donor-recipient pairs where data 

was either too weak to reconstruct epidemiological linkage or that linkage was unsupported 

(<95% posterior support) were omitted from further analyses. We also annotated them as 

“linkage not supported” in the LANL HIV database to avoid future erroneous conclusions 

about HIV transmission.

No subjective sequence exclusions were done on a case by case level, thus potential outliner 

sequences would be included in the analyses. Such outliers, if they existed, may have caused 

non-robust rooting or poor topological signal, and thus such sets would be removed by these 

quality control procedures.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Real examples of PP, PM, and MM trees.
The PP tree comes from a MTCT transmission, the PM tree from a known HET discordant 

couple transmission, and the MM tree from a HET common source transmission (two 

recipients from the same known donor source). Each tree shown was randomly selected 

from 30,000 Bayesian posterior phylogenies per epidemiological pair after burn-in, 

reconstructed with MrBayes38, where the topological class had >95% posterior support. The 

detected recipient lineages are labelled with an asterisk. HIV taxa from two 

epidemiologically linked hosts are in red or blue, respectively. In PP and PM trees the 

donor’s population is red. Subtype references are in grey. The subtype references correctly 

root the donor-recipient tree. In PP and PM trees the donor HIV population is paraphyletic, 

encompassing the recipient’s HIV population. In a PP tree, the recipient’s HIV population is 

polyphyletic, in this example with 4 detected clades. In a PM tree, there is only 1 detected 

clade in the recipient and thus this recipient’s population is monophyletic. In a MM tree both 

patients’ HIV populations are monophyletic.
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Figure 2. Association of phylogenetic topology and transmission mode.
a, Transmission mode (direct or common source transmission) conditional on topological 

class (MM, PM, PP) [left panel], and conversely topological class conditional on 

transmission mode [right panel]. The bars summarize our observations from all transmission 

risk groups, subtypes, and genomic regions when it was known that transmissions were 

direct or from a common source, and with good phylogenetic reconstruction (subtype 

outgroup monophyly at >95% posterior support, and topological support also at >95%; 

N=438 datasets). b, Topological class conditional on transmission mode per risk group. 

HET, heterosexual transmission; MSM, male homosexual transmission; MTCT, mother to 

child transmission; OTHER, all other and mixed risk transmissions. Notice different scales.
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Figure 3. Principal decay of paraphyletic signal.
If one patient (red) infects another (blue), virus in the blue patient should ideally be a subset 

of the red population, i.e., the red HIV population will be paraphyletic to the blue 

population. This can be manifested as a PP tree when >1 lineage is transmitted, or a PM tree 

if only 1 lineage is transmitted (or, theoretically, in a rare instance the oldest lineage in red is 

transmitted and then dies in red, which would form a MM tree). If a PP tree resulted from 

the transmission, both lineage death and inadequate sampling could result in a PM tree at 

time of sampling. Depending which lineage(s) that dies or were not sampled, the observed 

PM tree could have a host root-label that is incongruent with the true ancestral population 

(when lineage d2 is not sampled, resulting in blue inferred at root node). Theoretically, 

under a neutral model, it should be less likely that the sampled PM tree is incongruent, see 

Figure 4A for an empirical examination and confirmation of this prediction. Eventually, after 

longer time resulting in more lineage death or a more limited sample (both older lineages, r2 

and d2, are unsampled), the tree becomes a MM topology, the absorbing topological state in 

this phylogenetic system. The MM topology does not allow for an unambiguous root host-

label reconstruction, i.e., it cannot infer who the donor was (white node). Starting from a 

true PM transmission, it should again be more likely that the root host-label in such a tree is 

congruent with the true ancestral population, also examined and confirmed in Figure 4A.
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Figure 4. Analyses of the empirical posterior probability of observing the known donor as the 
root host-label, and PP signal over genomic region, in response to number of sequenced clones, 
and time since infection.
a, Distribution of the donor host-label posterior support of PM and b, PP trees in known 

direct transmission pairs. Only trees with PM or PP topology posterior support >95%, 

respectively, were examined (N=262 transmission pairs). Bars represent bins every 5% from 

0 (incongruent host-label inferred at root) to 1 (congruent host-label at root). These two 

distributions are very different (p<10−15, two-sided, two-sample Kolmogorov-Smirnov test). 

c, Conditional on observing a PP tree in one genomic region, the pie chart shows the fraction 
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of the detected topological class in another genomic region for transmission pairs that were 

sequenced in >1 genomic region (N=39 datasets). d, Across all transmission pairs with PP 

trees (PP posterior probability >95%; N=229), the number of observed clades in the 

recipient grew linearly as more sequences were analyzed from the donor-recipient pairs 

(R2=0.44, p<10−15, log-log linear regression with two-sided t test). e, As time proceeds from 

the time of transmission, lineages are lost in the recipient (and donor). Times are based on 

known time of infection or seroconversion of the recipient (N=231 datasets). The dashed line 

shows the linear trend (p=0.050, linear regression with two-sided t test).
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