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Abstract: Obesity is a complex disease caused by an excessive amount of body fat. Obesity is a
medical problem and represents an important risk factor for the development of serious diseases
such as insulin resistance, type 2 diabetes, cardiovascular disease, and some types of cancer. Not to be
overlooked are the psychological issues that, in obese subjects, turn into very serious pathologies, such
as depression, phobias, anxiety, and lack of self-esteem. In addition to modifying one’s lifestyle, the
reduction of body mass can be promoted by different natural compounds such as essential oils (EOs).
EOs are mixtures of aromatic substances produced by many plants, particularly in medicinal and
aromatic ones. They are odorous and volatile and contain a mixture of terpenes, alcohols, aldehydes,
ketones, and esters. Thanks to the characteristics of the various chemical components present in them,
EOs are used in the food, cosmetic, and pharmaceutical fields. Indeed, it has been shown that EOs
possess great antibiotic, anti-inflammatory, and antitumor powers. Emerging results also demonstrate
the anti-obesity effects of EOs. We have examined the main data obtained in experimental studies
and, in this review, we summarize the effect of EOs in obesity and obesity-related metabolic diseases.

Keywords: obesity; metabolic syndrome; essential oils

1. Introduction

Obesity is a condition characterized by an excessive accumulation of body fat resulting
from genetic, psychological, and socio-environmental factors that leads to an imbalance
between calorie intake and energy expenditure in favor to the former [1–4]. As established
by the World Health Organization (WHO), the term “obesity” is used when the value
of the Body Mass Index (BMI, calculated by dividing the weight expressed in kilograms
by the square of the height expressed in meters) is greater than 30 [5]. Obesity is one of
the main problems concerning public health due to its constant increase, particularly in
Western countries [6]. Obesity is, in fact, a known risk factor for serious chronic diseases
such as type 2 diabetes, cardiovascular and respiratory diseases, tumors, and psychological
disorders [1]. According to the data made public by WHO, worldwide obesity has nearly
tripled since 1975. In 2016, more than 1.9 billion adults, 18 years and older, were overweight,
of which over 650 million were obese. A worrying fact is that 38 million children under
the age of 5 and over 340 million children and adolescents aged 5–19 were overweight
or obese.

Recent studies, performed both with in vivo and in vitro systems, show that essential
oils (EOs) exert a broad-spectrum therapeutic potential against obesity and its related-
diseases [7,8].

The purpose of this review is to summarize the effects of EOs in reducing/preventing
obesity or in obesity-related diseases, such as metabolic syndrome (Figure 1). We will also
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highlight the effect of EOs on the microbiota, considering that the dysbiosis can contribute
to a pathological state associated with obesity [9–11].

Figure 1. Schematic representation of effects of EOs in reducing/preventing obesity and in obesity-related diseases.

2. Essential Oils (EOs)

Essential oils (EOs) are present in flower petals, exocarp, resin, tree bark, and the roots
of aromatic and medicinal plants. Known also as “essences”, they are characterized by
the presence of volatile substances at room temperature, which can give them different
smells and fragrances. It is no coincidence, therefore, that EOs are also known as “volatile
oils” and that their components are defined as “aromatic” (hence the term aromatic plants).
The synthesis and accumulation of these essences takes place within different secretory
structures in the various plant families such as secretory cavities in Myrtaceae and Rutaceae,
glandular trichomes in Lamiaceae, and resin ducts in Asteraceae and Apiaceae [12].

EOs are a heterogeneous blend of numerous chemical compounds produced by the
secondary metabolism of plants and are often responsible for the distinctive odors of
plants. They play an important role in the protection of plants thanks to their antibac-
terial, antiviral, antifungal, and insecticidal action and can also act as an attraction to-
wards pollen insects to favor the dispersion of seeds and pollen. EOs typically consist of
20–60 different compounds of which two or three represent 20–70% of the essence while
the others are present only in traces [13]. The main components of EOs are monoterpenes
and sesquiterpenes; they also contain, in a minor extent, aromatic compounds derived
from phenylpropane. All components have a low molecular weight and for this reason
they are liquid at room temperature [14]. Monoterpenes can be linear or cyclic compounds
through redox reactions, and monoterpenes can generate other compounds with functional
groups typical of alcohols, aldehydes, ketones, esters, and ethers [13].

Even sesquiterpenes can be distinguished into linear and cyclical ones and can un-
dergo redox reactions generating functional groups. Aromatic compounds derived from
phenylpropane may be present to a lesser extent in EOs [15].

Among the main bioactive components of EOs we can find:

– Carvacrol (2-methyl-5-[1-methylethyl] phenol), which is the main product of numer-
ous aromatic plants including Origanum, Thymus, Satureja, and Thymbra. Several
studies show that carvacrol has antimicrobial, anti-fungal, anti-inflammatory, antioxi-
dant, and antiproliferative activities [16].
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– Limonene, which is the main constituent of EOs extracted from Citrus, but is also
present in the resin of conifers, particularly Pinaceae. It has anti-inflammatory, antiox-
idant, and anticancer properties. It is commonly used as a natural food flavoring [17].

– Trans-anethole (trans-1-methoxy-4-propenyl-benzene), which is the main component
of EOs extracted from more than 20 species including fennel, anise, and star anise. It
can have anti-inflammatory, anticancer and antidiabetic effects. It is used as a natural
food flavoring [18].

– Cinnamaldehyde (trans-cinnamic aldehyde), which is known to be the main com-
ponent of cinnamon flavor. Several studies have highlighted the anti-inflammatory
activity of this aldehyde; moreover, it has the following properties: anti-infective
(antibacterial, antifungal, antiviral), antiseptic, mucolytic and expectorant, analgesic,
and anti-edematous. It is commonly used as a natural food flavoring [19].

EOs are obtained by the steam distillation, hydrodistillation, dry distillation, or
cold pressing of plant organs [14]. The classic method of extraction is based on current-
distillation of steam. Essences can be extracted from fruits (e.g., citrus) by cold pressing
the exocarps of the fruit [15]. A variant of steam distillation is hydrodistillation, in which
the plant material is immersed in water that is heated to a boil. It is generated in this case
by a stream of steam that carries the essential oil into the condenser and then into the
decanting system. More modern methods involve the use of microwaves and fluids such
as supercritical carbon dioxide, which is in an intermediate stage between gaseous and
liquid and has a high solvating capacity [20].

3. Adipose Tissue and Obesity

The adipose tissue (AT) is a heterogeneous tissue composed by adipocytes and non-
adipocyte cellular components including inflammatory cells (macrophages), immune cells,
and fibroblasts. Mainly two types of adipose tissue exist in mammals: the white adipose
tissue (WAT) and the brown adipose tissue (BAT). WAT stores energy as triacylglycerols
(TGs), while BAT is involved in the maintenance of body temperature by promoting ther-
mogenesis [21]. Especially after birth and in the prepubertal period, adipose tissue grows
mainly due to an increase in the number of adipocytes (hyperplasia). The proliferation rate
of adipocytes decreases during adolescence and remains stable during adulthood, when
the adipose tissue initially expands with an increase in the size of adipocytes (hypertrophy).
During periods of positive energy balance, such as overeating or a sedentary lifestyle, the
expansion of adipose tissue can be achieved by hyperplasia and/ or hypertrophy, leading
to obesity [22,23].

WAT is more abundant and is found in subcutaneous tissue (panniculus adipose),
in the empty viscera of the abdominal cavity or mediastinum, and in different muscle
groups [24]. White adipocytes contain a single lipid droplet that in mature cell is so large
that it displaces the nucleus and remaining cytoplasm to the cell periphery. In humans,
WAT has an energy reserve function, synthesizing and storing TGs [25]. TGs accumulate
in adipose tissue in “lipid droplets” (LDs), outside of which is perilipin, a protein that
regulates their organization and inhibits lipolysis [26]. At least five perilipin classes have
been identified encoded by mRNA splice variants of a single gene [27]. Other roles of
the WAT are to act as a thermal insulator (subcutaneous adipose panniculus); act as a
mechanical shock absorber in areas particularly subject to pressure; and allow muscle
bundles to slide over each other without compromising their functional integrity. Notably,
WAT is also an endocrine organ which produces biologically active substances called
adipokines, including leptin, adiponectin, complement components, plasminogen activator
inhibitor-1 (PAI-1), proteins of the renin-angiotensin system, resistin, and pro- and anti-
inflammatory cytokines [28–30]. Adipokines, especially those produced by visceral WAT,
seem to represent the biochemical link between obesity, inflammation, and metabolic
syndrome. In fact, the WAT present in muscle tissue is capable of secreting free fatty acids
(FFAs), interleukin 6 (IL-6), and tumor necrosis factor α (TNFα). These factors, released at
high levels by an hypertrophic WAT, play a role in the development of insulin resistance and
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type 2 diabetes [31]. Moreover, WAT associated with the heart muscle secretes numerous
cytokines resulting in local inflammatory events that can contribute to the development of
atherosclerosis and hypertension [32,33].

The adipocytes that make up the BAT are smaller than those found in the WAT.
They contain many small LDs and numerous and large mitochondria (from which the
coloring derives). BAT is highly represented in infants and progressively decreases with
age, remaining metabolically active. It is generally localized in the interscapular region, in
the axillary, along the great blood vessels, and around the kidney and adrenal gland [34].
The function of BAT is to produce heat (thermogenesis) [35], due to the presence in the
mitochondria of the uncoupling protein-1 (UCP-1), or thermogenin, which allows the
generation of heat through the oxidation of fatty acids (FAs) [36]. It is interesting to note
that the metabolic activity of BAT is inversely correlated with the body fat mass index [34].
Indeed, the activation of BAT by the repeated exposure to cold increases thermogenesis
and reduces fat mass, suggesting that the activation of this process in humans can reduce
obesity [35,37].

A third type of adipocytes, called beige, has been recently discovered, located within
the WAT especially at the subcutaneous level. Beige adipocytes arise from white adipocytes
under a process known as browning [38]. The beige adipocytes biogenesis in WAT can
be promoted by different signals such as cold, exercise, and adrenergic receptors. Beige
adipocytes have features midway between white and brown. Similarly to brown adipocytes,
beige cells also possess numerous LDs and mitochondria that express UCP-1 and are
capable of activating thermogenesis [39–41]. Precisely for these intermediate characteristics,
it has been defined as beige [38].

3.1. Regulation of Lipogenesis and Lipolysis

The accumulation of fat in AT is determined by the balance between the synthesis of
TGs (lipogenesis) and their hydrolysis (lipolysis). The balance between the accumulation
and mobilization of TGs in AT is mainly under the control of numerous hormones, tissue
innervation, and blood flow.

The lipostatic theory explains the relative constancy of body weight based on a
negative feedback mechanism that inhibits food intake and increases energy consumption
when body weight exceeds a certain value [42]. The inhibition is consequently removed
when the body mass returns below this threshold. The hormones mainly involved in this
regulation are leptin and ghrelin, which modulate the activity of neurons in the arcuate
nucleus of the hypothalamus involved in the control of appetite [43]. In particular, the
hypothalamus plays a central role in the regulation of food intake by means of the activity
of the orexigenic (appetite-stimulating) neuropeptide Y (NPY) and agouti-related peptide
(AgRP)-expressing AgRP/NPY neurons and the anorexigenic (appetite-suppressing) pro-
opiomelanocortin (POMC)-expressing POMC neurons [44]. POMC neurons produce two
different peptides involved in eating behavior, β-endorphins and melanocortins. The
most important melanocortin is the α-melanocyte stimulating hormone (α-MSH), a potent
appetite inhibitor [45].

Leptin is synthesized and secreted by adipose tissue in proportion to its mass. Once
in circulation, leptin reaches the arcuate nucleus of the hypothalamus where it finds its
JAK/STAT type receptors, mainly on two neuronal populations: NPY/AgRP neurons
and POMC neurons. By inhibiting the former, and activating the latter, leptin is able to
reduce the sense of hunger, decrease appetite, and increase basal metabolism. In particular,
when fat mass decreases, plasma leptin levels fall: appetite is stimulated and energy
expenditure is suppressed until the fat mass is restored. When fat mass increases, leptin
levels increase and suppress appetite until weight is lost: the greater the fat mass, the
greater its synthesis [46–48].

Obese subjects, although they have a high level of leptin in blood, exhibit leptin
resistance which can be caused by (i) disorders of its transport across the blood brain
barrier (BBB); (ii) the inhibition of leptin due to binding to circulating proteins, includ-
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ing plasma-soluble LepRb and C-reactive protein; (iii) changes to its receptor; and (iv)
the overexpression of pro-inflammatory cytokines (e.g., SOCS3, PTP1B) inhibiting leptin
signaling [49–53].

Ghrelin is a proteic hormone produced mainly by P/D1 cells lying at the bottom
of the human stomach; is also expressed by the ε-cells of the pancreas and in an area
of hypothalamus, namely, the arcuate nucleus. Ghrelin is a well-known hormone that
stimulates food intake in a dose-dependent manner [54]. Blood levels of ghrelin increase
before meals and decrease about an hour after food intake. It is therefore considered the
complementary of the leptin hormone. Ghrelin increases appetite by stimulating the need
for nutrition that is driven by metabolic needs but also by stimulating the need for nutrition
induced by reward, memory, and motivated eating behavior, leading to deregulated weight
gain and obesity [55]. Ghrelin receptors have the typical structure of G protein coupled
receptors and are expressed by NPY neurons in the arcuate nucleus and the ventromedial
hypothalamus. Ghrelin acts by activating NPY/AgRP neurons which, by releasing GABA
into the synapse and inhibiting POMC (anorexigenic) neurons, prevent the production of
α-MSH by the POMC neurons [56].

During a period of fasting, according to the energy needs of the organism, lipolysis is
induced with the aim of releasing FFAs into circulation. The activation of lipolysis mainly
depends on the action of hormone-sensitive lipase (HSL), an enzyme that hydrolyzes
TGs releasing FFAs and glycerol [57]. FFAs are used by most tissues under conditions
of prolonged hypoglycemia. The main lipolytic hormonal stimuli included leptin, cate-
cholamines, glucagon, growth hormones (GH), cortisol, and thyroid-stimulating hormones
(TSH) [58,59]. The activity of the enzyme is determined by its phosphorylation and the
hormones that influence the lipolysis act by regulating this state. In particular, the phos-
phorylation and activation of HSL is induced by the cAMP-dependent protein kinase A
(PKA) [60] and the AMP-activated protein kinase (AMPK) [61,62]. The most important
anti-lipolytic hormone is insulin, whose action negatively regulates the phosphorylated
state of HLS [63].

During a period of great energetic availability, the lipogenesis process is activated
in AT. Lipogenesis in AT involves the re-esterification of FFAs derived by the hydrolysis
of TGs endowed in lipoproteins VLDL and chylomicrons as well as de novo lipogenesis
(DNL). The first process is regulated by the activity of the lipoprotein lipase (LPL), which
acts by hydrolyzing the TGs of the lipoproteins, releasing FFAs and monoacylglycerols
in adypocites [57]. After meals, insulin favors the expression of LPL in the vascular
endothelium [64].

DNL is a highly regulated process in which carbohydrates from the circulation are con-
verted into fatty acids which are then used to synthesize TGs or other lipid molecules [65].
Dysregulation of the DNL contributes to diseases such as obesity, type 2 diabetes, and
cardiovascular diseases. The main transcription factor that regulates DNL at the adipose-
tissue level is the carbohydrate response element binding protein nuclear transcription
factor (ChREBP) [66,67], which is phosphorylated and inactivated by PKA and AMPK
in conditions of energetic need. Other factors promoting DNL are the sterol regulatory
element binding protein (SREBP) -1, liver X receptor (LXR) and polyunsaturated fatty
acids [65,68,69].

3.2. Metabolic Syndrome (MS)

In recent years, obesity seems to have been classified among the main factors favoring
the previously called Syndrome X, then Insulin Resistance Syndrome, and, more recently,
metabolic syndrome (MS). Currently, the syndrome has been renamed “multimetabolic”
because it encompasses a wide variety of pathophysiological problems including insulin
resistance, altered glucose metabolism or diabetes mellitus, hypertriglyceridemia, and
high levels of LDL cholesterol and low levels of HDL cholesterol, a condition that favors
the onset of atherosclerotic plaques and arterial hypertension. MS is accompanied by a
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prothrombotic, inflammatory state and is associated with non-alcoholic fatty liver disease
(NAFLD) [70–72].

The MS, according to the definition proposed by the WHO and then partially modified
by the European Group for the Study of Insulin Resistance (EGIR), is characterized by
insulin resistance, defined by the presence of hyperinsulinemia and high fasting blood
glucose levels of at least 110 mg/dL, and the presence of at least two of the following criteria:
(i) abdominal obesity defined on the basis of two definitions: according to the original WHO
definition, it is a hip-waist ratio >0.90 or a BMI ≥30 kg/m2; according to the modification
made by EGIR, it is instead the waist circumference ≥94 cm; (ii) dyslipidemia with serum
triglycerides ≥150 mg/dL (≥1.70 mmol/L) or with HDL cholesterol ≤40 mg/dL (man) or
≤50 mg/dL (woman); and (iii) blood pressure >140/90 mmHg [73].

In a subject with MS, the excess energy is deposited in the form of TGs in existing
adipocytes, causing significant hypertrophy; this determines the dysfunction of these
adipocytes which carry out endocrine and immunological responses [74].

As previously mentioned, the mobilization of fat from adipocytes takes place by
the hydrolysis of TGs deposited in the adipocytes and their subsequent release into the
circulation of the hydrolysis products, e.g., FFAs or non-esterified fatty acids (NEFA). It
has been observed that the visceral adipose tissue (VAT) of obese subjects is particularly
sensitive to adrenergic stimulus mediated by the β3-receptor, which causes a marked
lipolytic response [75–77]. In addition to the increased activity of the β3-adrenergic recep-
tors, the increased lipolysis of visceral adipocytes depends on the reduced activity of the
α2-adrenergic (antilipolytic receptors). The consequence of all of this is that in the portal
circulation of obese subjects, there is a high release of FFAs in the bloodstream. It should
be noted that VAT, the most pathogenic adipose tissue, is less susceptible to browning than
subcutaneous adipose tissue (SAT) [78]. An anti-lipolytic action is given by insulin, whose
receptors are poorly represented in the VAT. The insulin receptor is part of the large family
of “tyrosine kinase” receptors, which is endowed with autocalatic kinase activity [79]; once
the receptor is bound by insulin, it phosphorylates strategic tyrosine residues, resulting
in the recall of a bank protein called insulin receptor substrate 1–4 (IRS 1–4), an activa-
tor of many protein-kinases that acts as a “system signal” [80]. In the obese subject, the
mechanisms that regulate the activity of the insulin receptor are severely altered by factors
that trigger the “switching off” reactions by the dephosphorylation of the receptor. In
addition, phosphorylation on serine residues of IRS by serine/threonine kinases in obese
subjects are responsible for insulin resistance [79,81]. Among the factors promoting insulin
resistance are the high levels of circulating FFAs and the hypersecretion of cytokines as
TNF-α [81,82]. In addition to inducing insulin resistance, circulating FFAs can activate
pro-inflammatory pathways. In fact, it has been shown that (i) an excessive deposition of
adipose tissue, especially in the visceral district, is characterized by an increased expression
and release of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and
interleukin 6 (IL-6) and (ii) this excess of adipose tissue activates inflammatory signaling
pathways as a result of the cellular dysregulation of homeostatic pathways, such as the
stress response of the endoplasmic reticulum [83,84]. Furthermore, the release of FFA from
these large adipocytes is able to activate the signaling of the Toll-like receptor (TLR) and,
downstream, the Janus N-terminal kinase (JNK) and nuclear factor kB (NF-kB), signaling
pathways in resident macrophages and inducing through these pathways a decisive change
towards a classic pro-inflammatory phenotype. A direct consequence of this event is the
increased production of cytokines, including IL-6 and TNFα, which interferes with the
normal transmission of the insulin signaling favoring the onset of type 2 diabetes and
further propagating the state of chronic inflammation [85,86].

4. Anti-Obesity Effect of EOs

Recent studies have shown that essential oils (EOs), thanks to their constituents,
promote the reduction of fat mass and exert anti-obesity effects. It is important to note that
EOs can exert these effects both when taken with the diet or inhaled [7,8,87].
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In this section are described the main effects induced by EOs in reducing the metabolic
effects that lead to obesity. We will first discuss the effects of EOs that act by inhalation. The
volatile compounds present in EOs interact with specific olfactory receptors, stimulating
the central nervous system (CNS) to regulate energy metabolism, regulating the balance
between lipolysis and lipogenesis, through the regulation of appetite [88,89]. These effects
are induced through the activation of the sympathetic and parasympathetic nervous
systems and the release of hormones such as leptin and insulin [90,91].

Studies conducted in rats and mice have shown that olfactory stimulation with the
scent of grapefruit EOs (Citrus paradisi, Pranarôm International, Belgium, GFO) increases
the activity of the sympathetic nerves that innervate both white and brown adipose tissue,
the adrenal glands and kidneys. This causes an increase in lipolysis, thermogenesis (with
the consumption of fatty acids in the BAT), reduces appetite, and, consequently, body
weight [88,92]. In addition, the GFO decreases the activity of the gastric vagal nerve [92,93].
Shen et al. [88] found that GFO, and in particular the limonene component, performs
this effect through a histaminergic response. The participation of the complex histamine
system in the regulation of body weight acts by mediating an action on dietary behaviors
by activating the H3 receptors (presynaptic) to induce satiety [94] and collaborating with
thyroid hormones in improving hyperlipidemia and its associated cardiovascular risk [95].

Furthermore, the inhalation of GFO decreases the activity of the vagal gastric nerve,
reducing digestion and the absorption of nutrients with a possible decrease of appetite [88].

A similar effect was evidenced by the inhalation of citronella EOs (COE). In particular,
Batubara et al. [96], using Sprague Dawley adult male rats as an experimental model,
showed that the inhalation of COE extracted from Cymbopogon nardus L (Poaceae) Indone-
sian increased the activity of the sympathetic nervous system, decreasing the sense of
appetite and consequently the body weight. The effect was mediated in particular by
β-citronellol.

Particular interesting research have been performed with Patchouli EOs (PEO), a plant
belonging to the lamiaceae family (Pogostemon cablin Benth), that have attracted the interest
of many researchers for its anti-inflammatory, antiviral, antioxidant, and wound-repair
properties [97,98]. Studies performed on male Sprague Dawley rats kept on a diet of
high fat content (HFD) for 12 weeks demonstrated that the inhalation of PEO leads to a
reduction in weight and serum leptin levels as well as decreases food intake [99]. The
authors hypothesized that the reduction in leptin is due to a decrease in leptin resistance.
The main components of PEO are citronellol, a volatile compound that fights obesity
by reducing food intake, patchouli alcohol, α-patchoulene, and β-patchoulene, which
stimulates the hypothalamus and regulate leptin levels [96,99].

In the pharmaceutical, food, and cosmetic fields, EOs extracted from oregano (EOO)
are widely used. In fact, EOO, thanks to the presence of terpenes (both mono and sesquiter-
penes), prove to possess great biological activity [100]. Among the main components of
EOO, carvacrol, thymol, terpinen-4-ol, and linalool are of particular interest, which are
present in different quantities depending on the species of oregano used (for example,
H. patens, L. grandis, O acutidens, and O vulgare) [100–102]. Notably, several studies have
highlighted the anti-obesity potential of oregano and, in particular, of the species with the
highest carvacrol content. For example, it has been observed that carvacrol reduces lipid
accumulation during adipogenic differentiation in human Wharton’s gelatin-derived mes-
enchymal stem cells (WJMSC) and murine 3T3-L1 cell lines. The effects seems to be ascribed
to the modulation of genes linked to adipogenesis, such as transcription-factor ChREBP [16].
Moreover, it has been shown that carvacrol also reduces hypercholesterolemia and inflam-
mation found in obese subjects. Cho et al. [103] demonstrated that carvacrol inhibits the
expression of proteins associated with adipogenesis, such as SREBP-1, LXR, leptin, and
LPL in male C57BL/6N mice.

In vitro studies have shown that EOO, particularly the extract from Origanum vulgare,
inhibits lipogenesis in the human stomach cancer cell line (AGS). The authors highlighted
that treatment with EOO reduces the expression of proteins involved in the biosynthesis
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of fatty acids and cholesterol, such as 3-hydroxy-3-methylglutaryl-coenzyme A reductase
(HMGCR) and ACC [104].

The EOs extracted from sweet orange (Citrus sinensis, L; SOEO) have anti-obesity
effects, highlighted with in vivo and in vitro experimental models. In particular it has been
observed that SOEO, administered in microcapsules in obese SD rats, induces weight loss
that is accompanied by a decreased expression of the receptor-γ activated by peroxisome
proliferators (PPARγ) and ACC, which favors the lipogenesis of the subcutaneous adipose
tissue as well as the up-regulation of UCP2, HSL, and carnitine palmitoyltransferase I,
which favors the entry of fatty acids into the mitochondrion so that they are initiated for
beta-oxidation [105]. Probably this ability is given by the presence of D-limonene, which
has been demonstrated to inhibit adipocyte differentiation in adipocytes deriving from
3T3-L1 [106].

It has been shown that members of the transient receptor potential (TRP) superfamily
have numerous biological functions, and TRP channels have become potential drug targets
for a variety of pathophysiological conditions including obesity. Among the TRP channels,
recent studies highlight in particular the role of the transient vanilloid receptor type 1
(TRPV1), the transient potential of the ankyrin receptor 1 (TRPA1), and the transient
potential cation channel subfamily M (melastatin) member 8 (TRPM8) in the regulation
of metabolism and energy homeostasis [107,108]. Many EOs, for example those extracted
from bitter orange (Citrus aurantiuum L) and Spearmint (Mentha spicata), contain chemical
compounds such as cinnamaldehyde, eugenol, and 1,8-cineole that, by stimulating these
receptors, increase energy expenditure and thermogenesis and also reduce the sense of
appetite and release of ghrelin [109–112].

OEs extracted from the leaves of cinnamon (Cinnamomum osmophloeum ct. linalool
CiEO), a chemotype present in Taiwan, has a potential anti-obesity effect, probably de-
termined by the constituent S—(+)—linalool [113,114]. Recent studies have shown that
treatment with CiEO results in six-week-old male ICR mice weight loss and decreased
blood triglyceride levels in male mice. Furthermore, treatment with CiEO inhibits lipid
accumulation in 3T3-L1 adipocytes [113].

One strategy to reduce fat mass in the obese patient is to convert white adipocytes
into brown-like adipocytes (beige or brite fat), a process called browning, which has
the purpose of increasing energy expenditure by activating thermogenesis [115]. In fact,
in beige adipocytes, as well as in brown ones, there is a greater expression of UCP1
which favors the production of heat as a form of energy thanks to the decoupling of the
transport chain of electrons in the process of oxidative phosphorylation [116,117]. The
EOs, thanks to their chemical components, can promote browning. The trans-anethole
(trans-1-methoxy-4-propenyl-benzene) (TA) present in the EOs of various plants (eg fennel,
anise, and star anise) has been shown to have anti-obesity properties favoring browning.
Kang et al. [18] showed that the TA treatment of C57BL/6 mice induces the expression
of beige adipocyte specific genes such as Ppargc1a, Prdm16, Ucp1, Cd137, Cited1, Tbx1,
and Tmem26. Furthermore, TA showed thermogenic activity by increasing mitochondrial
biogenesis in white adipocytes and activating brown adipocytes. In the experiments
conducted, they also showed that TA reduces adipogenesis and lipogenesis and increases
lipolysis and the oxidation of fats. The authors found that TA induces browning in 3T3-L1
adipocytes through the activation of the β3-adrenergic receptor and sirtuin1 (SIRT1). SIRT1
promotes the increase in the expression levels of proteins involved in lipid metabolism
(UCP1, PRDM16, PGC-1a, AMPK, and pAMPK).

5. Effect of EOs on Metabolic Syndrome (MS) and Related Pathologies

Considering that obesity is among the conditions that can predispose one to the onset
of metabolic syndrome (MS), EOs, due to their anti-obesity proprieties, can counteract
its development.

Ginger (Zingiber officinale, Roscoe Zingiberaceae) is a medicinal plant used in the
food field and as a natural remedy for the treatment of various gastrointestinal diseases
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(such as nausea, vomiting, and diarrhea) and for the treatment of cardiovascular diseases
including arthritis, rheumatism, and muscle discomfort. The beneficial properties of gin-
ger have been found in the root, where aromatic and pungent components, including
essential oil and oleoresins, are present [118]. Ginger EOs (GiEO) are a mixture of monoter-
penic and sesquiterpenic compounds that include zingiberene, β-bisabolene, γ-cadinene,
β-sesquiphellandrene, neral, and geranial. Ginger oleoresin is a mixture of gingerols and
shogaols, among which [6]-gingerol is a major pungent compound. Recent studies have
shown that ginger has beneficial effects against metabolic disorders [119].

Studies conducted on male C57BL/6J mice subjected to a HFD have shown that
the daily intake of GiEO has an anti-hyperlipedemic effect by reducing the serum levels
of FFA, cholesterol, and triglycerides. Moreover, it was demondstrate that GiEO has
antioxidant abilities and reduces inflammatory response in mouse livers, thus protecting
steatohepatitis, a problem related to MS. These effects can be explained by the fact that GiEO
induces a decrease in the levels of SREBP-1c, ACC, fatty acid synthase (FAS), HMGCR,
and cytochrome P450 2E1 (CYP2E1). The observed effect is more evident if citral is added
to the diet in addition to GiEO. Additionally, ginger extract has been shown to inhibit
macrophage activation induced by LPS through the suppression of pro-inflammatory
cytokines TNF-α [120,121].

EOs of Salvia officinalis L. (SEO) have been shown to have hypoglycemic and anti-
obesity effects. In fact, the oral administration of SEO in male Wistar mice induced by
alloxan has been shown to inhibit α-amylase and lipase and reduce glycemia and the
level of glycogen stored in the liver. Furthermore, treatment with SEO has been shown to
preserve hepatic functions, lowering the serum levels of AST, ALT, and LDH and renal
activities, restoring serum concentrations of creatinine and uric acid [122,123]. It has also
been shown that SEO can be useful as a dietary supplement in the prevention of type 2
diabetes mellitus by lowering the plasma glucose of individuals at risk [124].

Notably, SEO also has anti-tumor and antioxidant activities [125–128]. Furthermore,
SEO treatment in hyperlipidemic mice on a high-fat diet reduced body weight gain, hy-
perlipidemia, and hypercholesterolemia and reduced the production of reactive oxygen
species. The results of this research highlighted the beneficial effects of SEO in the man-
agement of these disorders without inducing side effects such as headache, constipation,
and muscle pain. The results obtained show that SEO is more effective than simvastatin in
improving the lipid profile and antioxidant activity, which could be due to the inhibition of
dietary fat absorption and the regulation of fecal excretion [128].

Cumin EOs (CEO) is derived from Cuminum cyminum, a plant belonging to the Apiaceae
family. In traditional medicine, CEO is used for its digestive and calming properties,
and it has also been demonstrated to have anticancer properties. The main components
present in CEOs are Cuminaldehyde (or 4-Isopropil Benzaldhyde), γ-terpinin, α-Sabinin,
α a-Flandrene, and α -Kadinin. A study conducted in patients with type 2 diabetes
found that consuming CEO causes a significant reduction in fasting blood glucose (FBS),
glycosylated hemoglobin (HbA1c), and serum levels of insulin, adiponectin, and TNFα.
These effects lead to a reduction in the inflammatory state [129]. Cuminaldehyde, which
has an inhibitory effect on α-glycosidase and aldose reductase, two enzymes involved in
carbohydrate metabolism, could give the anti-diabetic properties of the CEO. Furthermore,
it was shown that in prediabetic patients, consuming CEO improved anthropometric
indices (BMI and waist circumference (WC)), total serum cholesterol, and other markers of
the lipid profile (LDL and HDL), especially in women, and contrasts insulin resistance. The
authors, supported by the results obtained, conclude that CEO can be used as an adjuvant
therapy for the metabolic state in pre-diabetics [130,131].

In general, it was demonstrated that the oral administration of cumin extract reduces
the systolic blood pressure in hypertensive rats [132], but it also has beneficial effects
on weight loss, hyperglycemia, and dyslipidemia in different diseases such as obesity,
dyslipidemia, and type 2 diabetes [131,133].
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Mosbah et al. pointed out that the essential oil of Rhaponticum acaule (L) DC (R. acaule;
RaEO) consists of components with powerful antioxidant effects that can be used for
therapeutic purposes. In particular, enzymatic kinetic studies have shown that RaEO has
an inhibitory role against alpha glucosidase, xanthine oxidase, and pancreatic lipase. The
inhibition of alpha glucosidase is one of the strategies used in diabetic patients [134].

In subjects with MS, there is hypertriglyceridemia and a high concentration of LDL
cholesterol in the circulation [135]. Studies reported in literature show that Melissa officinalis
EOs (MOEO) lowers plasma TG and cholesterol levels. In particular, it has been shown that
in APOE2 transgenic mice and in lipid-loaded HepG2 cells, treatment with 400 and 800
mg/L of MOEO reduces the synthesis of fatty acids and cholesterol as a consequence of a
decrease in the expression of factors related to their synthesis, such as SREBP-1c, ACC1,
FAS, and SREBP-2 [136].

Yen et al. [137] evaluated the effect of twenty-nine commercial EOs (purchased at
the Twain market) and, among them, three different MOEOs (distributed by companies)
on the activity of metabolizing glucose (an in vitro antidiabetic screening model) and
accumulating lipids on 3T3-L1 adipocytes. The authors found that MOEOE considerably
increases glucose consumption and inhibits the accumulation of lipids in cells. This last
effect was also induced by the EOs of peppermint, lavender, bergamot, cypress, niaouli
nerolidol, rose geranium, and revensara. MOEO also determines the activation of AMPK,
which favors the consumption of glucose, with the consequent inactivation of ACC, which
inhibits the accumulation of lipids in adipocytes [137].

Talpur et al. evaluated the antidiabetic and antihypertensive potentials of three
different formulations of EOs: EO1 (pumpkin seed oil, extra virgin olive oil, oregano,
cinnamon, fenugreek, cumin, and fennel), EO2 (pumpkin seed oil, extra virgin olive oil,
oregano, cinnamon, fenugreek, cumin, blueberry, allspice, and ginger), and EO3 (pumpkin
seed oil, extra virgin olive oil, oregano, cinnamon, fenugreek, cumin, and blueberry). The
evaluation of the effects of the three compositions of EOs was conducted on Zucker fatty
rats (ZFR), a model of obesity and insulin resistance, and on spontaneously hypertensive
rats (SHR), a model of genetic hypertension. The experiments conducted showed that all
three combinations of EOs, and in particular EO3, lower blood glucose levels and systolic
blood pressure in both ZFRs and SHRs [138].

The effects highlighted suggest that EOs may increase insulin sensitivity. In fact, many
studies show that the EOs of fenugreek and cinnamon possess antidiabetic properties; in
particular, the EOs of fenugreek block the absorption of glucose while cinnamon mimics
the action of insulin [139–142].

Mitochondria in adipose tissue produce large amounts of ROS, their dysfunction
causing increased oxidative stress and inflammation which may be the link between
obesity and associated cardiovascular and metabolic complications [143].

EOs extract from Campomanesia phaea (O.Berg) Landru (CpEO) leaves have been shown
to exert antioxidant and anti-inflammatory effects. In particular, it has been demonstrated
that treatment with CpEO decreases the production of proinflammatory mediators (IL-6 and
TNF-α), NO, and O2

− induced by LPS in RAW 264.7 macrophages. Such anti-inflammatory
effects can be explained by the inhibition of the NF-kB signaling pathway [144]. In addition,
the polyphenols of the fruit of Campomanesia phaea (O. Berg.) have a therapeutic action
that improves the complications associated with obesity, such as inflammation, hepatic
steatosis, hyperglycemia, glucose intolerance, and insulin resistance, by the activation of
Akt and AMPK [145].

Studies conducted on the EOs of garlic (GEO) and its main organosulfur component
(diallyl disulfide, DADS) highlighted their great anti-inflammatory power. Treatment with
GEO reduced the release of pro-inflammatory cytokines in the livers of C57BL/6 mice
accompanied by a high antioxidant capacity through the inhibition of cytochrome P450
2E1 expression. Treatment with GEO decreased the development of non-alcoholic fatty
liver disease (NAFLD), anti-obesity, and antihyperlipidemic effects and also reduced the
body weight of mice. The anti-NAFLD effects of GEO are mediated by the downregulation



Int. J. Mol. Sci. 2021, 22, 11832 11 of 21

of SREBP-1c and ACC and by the activation of PPARα, which induces hepatic lipolysis.
Similar effects have been highlighted by treating mice with DADS, which suggests that
this is an active chemical component that gives GEO anti-inflammatory and anti-obesity
properties [146].

Hyperglycemia, present in the diabetic or prediabetic subject, causes chronic inflam-
mation and contributes to an increase in the production of reactive oxygen species (ROS),
which in turn is responsible for vascular dysfunction [147].

Zataria multiflora (Shirazi thyme) is a medicinal plant belonging to the Lamiaceae
family with antioxidant and anticancer properties [148,149]. The EOs extracted from
Zataria multiflora (ZMEO), whose main components are phenolic monoterpenoids (thymol
and carvacrol), monoterpenes (para-cymene and gamma-terpinene), alcoholic monoter-
penoids (linalool), sesquiterpenes (caryophyllene and cadinene), and sesquiterpenoids
(spatulenol), have a high antioxidant power that can be used in the antioxidant therapy
of diabetes [149]. Aminizadeh et al. evaluated the ZMEO effects, administered via den-
drosome, against oxidative stress induced by hyperglycemia in the hematopoietic cell line
of mouse macrophages (J774 A.1). Studies have shown that ZMEO reduces the levels of
oxidative stress markers such as NOX, Nrf2, NF-kB, and the levels of intracellular hydrogen
peroxide while increasing the expression and activity of superoxide dismutase (SOD) and
catalase, thereby reducing the lipid oxidation, oxidation, and glycation of proteins [150].

6. Effect of EOs on Microbiota

It is interesting to highlight the effect of EOs on the microbiota, which play an impor-
tant role in predisposing and promoting the onset of obesity.

The intestinal microbiota is a microbial community of the enteric tract, consisting
mainly of bacteria as well as yeasts, parasites, and viruses [151]. The intestinal microbiota
must be considered a real organ that communicates with the host. It plays different roles in
host health by preserving an intestinal barrier against hexogen microbes, stimulating the
immune system, metabolizing dietary nutrients and drugs, and synthesizing vitamins and
bioactive molecules [152,153]. Furthermore, the components of the microbiota may enter
the circulation and be transported to various organs (brain, liver, pancreas, adipose tissue,
etc.) affecting their functionality [152].

The composition of the gut microbiota is strongly influenced by different factors
such as the microbial species acquired at birth, host genetics, immunological factors,
antibiotic usage, and health status. However, diet is considered among the most crucial
factors affecting microbiota composition [151,154]. A gut microbiota in a eubiotic status
is characterized by a preponderance of potentially beneficial species belonging mainly to
the two bacterial phylum Firmicutes and Bacteroides, while potentially pathogenic species,
such as those belonging to the phyla Proteobacteria (Enterobacteriaceae), are present but in a
very low percentage. A change in the ratio between “good bacteria” and “bad bacteria” is
referred to as dysbiosis, with consequences in host health.

Emerging evidence suggests a causal link between microbial dysbiosis and obesity [11].
Studies conducted in both mice and humans have shown a change in the composition of
the intestinal microbiota in obese subjects, with an increase in Firmicutes and a reduction
in Bacteroidetes [154,155]. This has been correlated with a high fat diet of obese subjects [11].
A change in microbiota composition in obese subjects in turn affect the body’s nutritional
and metabolic balance by modulating its ability to extract energy from dietary foods and
interacting with its glyco–lipid metabolism. The metabolites released by the fermentation of
complex polysaccharides of the diet can increase glucose absorption, stimulate lipogenesis,
and modify the fatty acid composition of adipose tissue and liver, thus favoring fat mass
increase. Furthermore, dysbiosis associated with obese subjects has been reported to alter
the permeability of the intestinal mucosal barrier and immune response, contributing
to a state of chronic systemic inflammation and favoring insulin resistance [9,10]. The
link between the bacteria in our microbiota and weight gain/loss is a quite an active
research field.
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Several recent studies have sustained the value of EOs added to the diet as components
that can affect the composition of the microbiota. It has been shown that the intake of
microcapsules containing EOs of sweet orange (Citrus sinensis L. Osbeck; SOEO) increase the
protection of the gut barrier in obese rats and the reduction of endotoxins, with variation
in the composition of the microbiota by increasing Bifidobacterium. In addition, SOEO
microcapsules promote weight loss in mice [156]. Wang et al. demonstrated that in male
mice the intragastric administration EOs of orange, limonene, linalool, and citral influence
the intestinal microbiota, increasing the quantity of Lactobacillus and significantly reducing
the content of short-chain fatty acids in the cecum and the colon [157].

A high-fat diet increases the levels of both plasma and fecal endotoxins, proinflam-
matory cytokines, the induction of the TLR4, iNOS, and COX-2, and the activation of
NF-κB in the colon and also causes the dysregulation of gut microbiota by increasing the
Firmicutes/Bacteriodetes ratio [158]. Cinnamon EO (CiEO) administration is effective in
preventing inflammation induced by dextran sodium sulfate (DSS) and in modifying gut
microbial dysbiosis. In particular, it promotes the increase of probiotic intestinal bacteria
such as Bacteroidales S24-7, bacteria (Alloprevotella and Lachnospiraceae_NK4A136) that
produce short-chain fatty acids (SCFA) and a decrease in Helicobacter and Bacteroides,
correlated with the increase in TLR4 and TNF-α [159].

Studies conducted by Leong et al. have shown that PEO possesses a prebiotic-like
effect in C57BL/6J mice, (i) restoring the expressions of E-cadherin and N-cadherin, (ii)
increasing the expression of the p-lysozyme and Muc 2 genes, which are important for
the functionality of the intestinal barrier, and (iii) suppressing the expression of pro-
inflammatory cytokines. In addition, the intake of PEO favors the production of SCFA by
increasing bacteria in the intestine, e.g., Anaerostipes butyraticus, Butytivibrio fibrisolvens,
Clostridium jejuense, Eubacterium uniform and Lactobacillus lactis, while reducing the presence
of pathogens such as Sutterella spp., Fusobacterium mortiferum, and Helicobacter spp. [160].

7. Conclusions

In conclusion, thanks to the presence of various chemical constituents, EOs show
various beneficial properties for health (Table 1). Several in vivo and in vitro studies have
shown that they have anti-obesity effects by modulating lipolysis and lipogenesis, stimulat-
ing browning, and varying leptin levels. In addition to these effects, the use of EOs or some
of their chemical constituents such as carvacrol, trans-anethole, or limonene can counteract
the consequences induced by the increases in fat mass in obese patients, such as type 2
diabetes, hypertension, and cardiovascular risks. It should be noted that EOs can influence
the composition of the intestinal microbiome, in favor of Bifidobacterium for example, thus
reducing the physiological risk of metabolic syndrome in overweight subjects.

The studies reported in this review highlight that there are many experimental data
indicating the potential of EOs in the prevention and/or treatment of obesity and related
diseases. These provide a good starting point for investigating the effects of EOs in
clinical studies.

The beneficial effects of EO intake, through diet or inhalation, can be potentiated in a
subject who follows a correct diet and constant physical activity and avoids a sedentary life.
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Table 1. This table shows the main effects of the EOs described in the review with the relative references (↓ decrease effect/factor; ↑ increase effect/factor).

Effect of Essential Oils (Eos) on:

EOs Obesity Metabolic Syndrome and Related
Pathologies Microbiota Model System Ref

Campomanesia EOs (CpEO)
Antioxidant and anti-inflammatory
effects; ↓insulin resistance and
hepatic steatosis

Obese C57BL/6J mice; RAW
264.7 macrophages [145,146]

Cinnamon EOs (CiEO) ↓body weight ↓hyperlipidemia
Probiotic effect;
↓Helicobacter and
Bacteroides

Six-week-old male ICR mice;
APOE2 transgenic mice [113,114,159]

Citronella EOs (COE) ↓appetite and body weight Sprague Dawley adult male
rats [96]

Cumin EOs (CEO) ↓body weight
↓fasting blood glucose, glycosilated
hemoglobin, insulin, inflammation,
hypertension

In vivo models
(diabetic patients);
hypertensive rats

[129–131]

Garlic EOs (GEO) ↑lipolysis ↓NAFLD C57BL/6 mice [146]
Ginger EOs (GiEO) ↓FFA and inflammation Obese mice [120,121]

Grapefruit EOs (GFO) ↑lipolysis and thermogenesis;
↓appetite ↓hyperlipidemia and cardiovascular risk Rats and mice [88,92–95]

Melissa officinalis EOs
MOEO ↓ plasma TG and cholesterol levels APOE2 transgenic mice;

APOE2 transgenic mice [136,137]

Oregano EOs (EOO) ↓adipogenesis ↓hypercholesterolemia and inflammation Cell lines; C57BL/6 mice [16,100–103]

Patchouli Eos (PEO) ↓leptin resistance and
food intake Prebiotic effect Sprague Dawley male rats;

C57BL/6 mice [97–99,160]

Rhaponticum acaule
EOs (RaEO) Antioxidant; antidiabetic Enzyme kinetic studies [134]

Salvia EOs (SEO) ↓body weight ↓hyperglycemia and hyperlipipidemia;
antioxidant effects

Hyperlipidemic mice;
diabetic rats; in vivo models
(diabetic patients)

[122–124,129]

Sweet Orange EOs (SOEO) ↑lipolysis; ↓lipogenesis and
body weight ↓dysplipidemia and hyperglycemia

↑protection of gut barrier;
↑Bifidobacterium and
Lactobacillus;
↓endotoxin

Obese SD rats; mice [105,106,156,157]

Zataria multiflora
EOs (ZMEO) Antioxidant Mouse macrophages

(J774 A.1) [149,150]
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Abbreviations

ACC acetyl-CoenzymeA carboxylase
AgRP agouti-related peptide
AMPK AMP-activated protein kinase
AT adipose tissue
BAT brown adipose tissue
BBB blood brain barrier
BMI Body Mass Index
CEO cumin essential oils
ChREBP carbohydrate response element binding protein nuclear transcription factor
CNS central nervous system
COE citronella essential oils
CiEO cinnamon essential oils
CpEO Campomanesia phaea (O.Berg) Landru essential oils
CYP2E1 cytochrome P450 2E1
DNL de novo lipogenesis
EGIR european group for study of insulin resistance
EOO oregano essential oils
EOs essential oils
FAs fatty acids
FAS fatty acid synthase
FBS fasting blood glucose
FFA free fatty acids
GEO garlic essential oils
GFO grapefruit essential oil
GH growth hormone
GiEO ginger essential oils
HbA1c glycosylated hemoglobin
HFD high fat content
HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A reductase
HSL hormone-sensitive lipase
IL- 6 interleukin 6
IRS 1–4 insulin receptor substrate 1–4
JNK Janus N-terminal kinase
LDs lipid droplets
LPL lipoprotein lipase
LPS lipopolysaccharides
LXR liver X receptors
MAPK mitogen-activated protein kinase
MOEO melissa officinalis essential oils
MS metabolic syndrome
NAFLD non-alcoholic fatty liver disease
NEFA non esterified fatty acids
NF-kB nuclear factor kB
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NPY neuropeptide Y
PAI-1 plasminogen activator inhibitor-1
PEO patchouli essential oils
PKA cAMP-dependent protein kinase A
POMC pro-opiomelanocortin
PPAR γ receptor-γ activated by peroxisome proliferators
RaEo Rhaponticum acaule essential oils
ROS reactive oxygen species
SAT subcutaneous adipose tissue
SCFA short-chain fatty acids
SEO salvia officinalis essential oils
SHR spontaneously hypertensive rats
SIRT1 sirtuin1
SOD superoxide dismutase
SOEO sweet orange essential oils
SREBP sterol regulatory element binding protein
TGs triacylglycerols
TLR toll-like receptor
TNFα tumor necrosis factor α
TRP transient receptor potential
TRPA1 transient potential of the ankyrin receptor 1
TRPM8 transient potential cation channel subfamily M (melastatin) member 8
TRPV1 transient vanilloid receptor type 1
TSH thyroid-stimulating hormone
UCP-1 uncoupling protein-1
VAT visceral fat adipocytes
WAT white adipose tissue
WC waist circumference
WHO world health organization
WJMSC Wharton’s gelatin derived mesenchymal stem cells
ZFR Zucker fatty rats
ZMEO Zataria multiflora essential oils
α-MSH α-melanocyte stimulating hormone
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