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ABSTRACT

With the tremendous increase of publicly avail-
able single-cell RNA-sequencing (scRNA-seq)
datasets, bioinformatics methods based on gene
co-expression network are becoming efficient tools
for analyzing scRNA-seq data, improving cell type
prediction accuracy and in turn facilitating biolog-
ical discovery. However, the current methods are
mainly based on overall co-expression correlation
and overlook co-expression that exists in only a
subset of cells, thus fail to discover certain rare
cell types and sensitive to batch effect. Here, we
developed independent component analysis-based
gene co-expression network inference (ICAnet)
that decomposed scRNA-seq data into a series
of independent gene expression components and
inferred co-expression modules, which improved
cell clustering and rare cell-type discovery. ICAnet
showed efficient performance for cell clustering
and batch integration using scRNA-seq datasets
spanning multiple cells/tissues/donors/library
types. It works stably on datasets produced by
different library construction strategies and with
different sequencing depths and cell numbers. We
demonstrated the capability of ICAnet to discover

rare cell types in multiple independent scRNA-
seq datasets from different sources. Importantly,
the identified modules activated in acute myeloid
leukemia scRNA-seq datasets have the potential to
serve as new diagnostic markers. Thus, ICAnet is
a competitive tool for cell clustering and biological
interpretations of single-cell RNA-seq data analysis.

INTRODUCTION

With recent large-scale collaborative projects such as
Human Cell Atlas, and technological advances such
as droplet-based sequencing (1,2), single-cell RNA-
sequencing (scRNA-seq) has become a useful tool for
understanding cell fate decisions in human organs contain-
ing heterogeneous cell populations. Various bioinformatics
methods have been developed to analyze the increasing
amount of single-cell transcriptome data. Clustering indi-
vidual single cells into biologically relevant sub-populations
is one of the key steps in scRNA-seq analyses (3). How-
ever, it is still challenging to discover and characterize
novel cell types in complex tissues owing to stochastic
gene expression variation from various sources, such as
transcriptional bursting (4), dropout during sequencing
library construction (5), batch effect (6) and other technical
sources.

To fully reveal the heterogeneity of single-cell expression
data, multiple clustering algorithms, such as Seurat (7), SC3
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(8), pcaReduce (9) and SINCERA (10), have been devel-
oped. The shared strategy among these algorithms is to
project data into a lower dimensional space and calculate
cell-cell distances to cluster cells. However, these methods
usually measure cell similarity based on individual genes,
ignoring that pathways and/or gene expression networks
(a set of interacted genes) could also play important func-
tions in cell-state decisions. To overcome such shortcom-
ings, some computational methods integrate gene regula-
tory information to aid cell clustering and functional inter-
pretations of scRNA-seq data. For example, SCENIC (11)
integrates gene co-expression information inferred from a
random forest model and putative transcription factor (TF)
binding sites to facilitate cell-type prediction and biological
interpretation. In contrast to integrating the transcriptional
expression networks, SCORE (12) uses known protein–
protein interaction (PPI) to trim gene co-expression net-
works, resulting in more credible and biologically meaning-
ful networks (12). These network-based single-cell cluster-
ing methods enable more accurate cell-type predictions and
have revealed biological insights into diverse biological pro-
cesses, such as development, immune responses and tumori-
genesis (11,12).

Despite the significant contributions that these network-
based cell-clustering methods have made to the study of
single-cell transcriptomes, a comprehensive understand-
ing of the complex nature of cell heterogeneity in real
tissues/organs is still lacking. Most of the currently used
methods infer gene-expression modules by calculating gene-
gene correlations to reflect co-expression among all cells
(13). However, gene expression regulation is highly context
specific (14–16). Consequently, correlation-based methods
potentially overlook local co-expression effects existing in
only a subset of cells (13,17), which has been supported by
the evidence that different cell types exhibited distinct gene
co-expression structure (18). Therefore, the use of regular
network-based clustering algorithms may lead to the omis-
sion of the gene co-expression patterns of certain cell types.

Matrix decomposition methods, like principal compo-
nent analysis (PCA), non-negative matrix factorization
(NMF) and singular value decomposition, provide com-
plementary strategies for gene co-expression module detec-
tion (13). Because it does not require genes within a mod-
ule to be co-expressed in all the samples, matrix decom-
position methods capture local co-expressions and provide
low-dimensional representations of data in terms of ‘com-
ponents’ that are usually linearly uncorrelated (19,20). Of
note, this linear de-correlation does not mean every compo-
nent is independent at higher dimensions, which may result
in the failure to map components to independent biological
processes, thereby hampering the correct understanding of
activated modules or pathways in different single-cell clus-
ters (21).

Here, we introduced the concept of independent compo-
nent analysis (ICA) to single-cell clustering and network
analysis. ICA has been extensively applied to gene expres-
sion data since the age of microarray (22,23). ICA has
also been used to predict gene co-expression modules in
bulk RNA-seq data analysis (18,23,24). ICA models the
expression level of each gene in a given sample as a lin-
ear weighted sum of several independent components, and

thus, decomposes expression matrix into a number of in-
dependent components, each termed an ‘expression pro-
gram’ (21). Genes with the greatest projected values in a
component are those most strongly correlated with the pro-
cesses associated with this component (25). The statistically
independent nature of ICA makes it more informative in
gene function discovery (22,25), superior to other methods,
like weighted gene correlation network analysis, PCA and
NMF (13,18,21,26,27). Therefore, using ICA to infer gene
co-expression modules in single-cell transcriptome analysis
has the following advantages: (i) ICA can uncover essential
data structure through its linear representation of the statis-
tically independent components; (ii) ICA is more beneficial
for predicting gene co-expression module(s) associated with
rare cell type(s) owing to its ability to capture local gene
co-expression structure; and (iii) ICA can detect consen-
sus expression patterns across scRNA-seq datasets through
clustering independent components (expression programs)
from datasets of diverse origins, including their library con-
struction strategies, sequencing platforms, laboratories or
individuals, and other possible affecting factors (25,28).
These ICA properties are beneficial for identifying more bi-
ologically meaningful modules and integrative analysis of
scRNA-seq datasets from diverse sources.

ICA has mainly been used for dimensionality reduction
or trajectory inference in scRNA-seq analysis (29); how-
ever, it has not been used to infer functional gene mod-
ules. Most previous works did not consider the distribu-
tion of gene attribute values in the context of gene inter-
action networks (such as PPI and TF-gene network), con-
sequently, they failed to improve expression module pre-
diction by integrating known gene network information. A
current network-based single-cell clustering algorithm has
been highly successful by integrating TF-regulon network
into scRNA-seq analysis (11), but other types of molecular
networks have rarely been utilized. SCORE firstly incorpo-
rated PPI and gene-gene correlation coefficients to single-
cell clustering analysis (12), however, its performance relies
heavily on the quality (such as gene coverage) of the scRNA-
seq dataset (12). Therefore, an efficient scRNA-seq analy-
sis tool incorporating both ICA and PPI information will
aid the functional gene-module prediction and improve cell
clustering in single-cell transcriptome study.

In this study, we developed a computational method
called ICAnet (independent components analysis-based
network inference) to decipher functionally relevant gene
co-expression modules for improving the performance of
single-cell clustering and batch-effect correction in scRNA-
seq data analysis. ICAnet used ICA to infer shared and spe-
cific expression patterns across different batches, and it also
incorporated PPI network or TF-gene regulatory network
to detect ‘activated’ sub-networks (or modules) across di-
verse datasets, resulting in a better cell-clustering perfor-
mance compared with other algorithms. ICAnet is the first
tool integrating ICA with PPI information in cell cluster-
ing and gene interaction module predictions from scRNA-
seq data. ICAnet also has the ability to perform batch-
effect correction, which is helpful in integrating scRNA-seq
data from different sources. The accuracy, scalability, ro-
bustness and reproducibility of ICAnet were also validated
using several public high-quality single-cell datasets. More
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intriguingly, ICAnet has the capacity to find novel rare cell
types that have not been revealed by previous computa-
tional methods.

MATERIALS AND METHODS

ICAnet overview

ICAnet is a module-based single-cell RNA-seq analysis
tool, designed for integration, clustering and network anal-
ysis. This tool integrates gene expression information and
high-quality PPI network in a novel way to precisely recover
the landscape of single-cell expression atlas. ICAnet con-
sists of three main steps: (i) Gene expression matrix prepro-
cessing and decomposition; (ii) Cross-batch expression pro-
grams clustering; and (iii) Walk-trap-based activated ‘sub-
network’ (module) identification. The details of these major
steps are described as below.

Gene expression matrix preprocessing and decomposition

Gene expression normalization. ICAnet requires single-
cell gene expression matrices as input, which are then
normalized through a standard pre-processing step (log-
normalization for all gene expression matrices using the size
factor 10 000 per cell, log2CP10K). Users can also specify
other types of gene expression quantification (e.g. TPM or
RSEM) and normalization methods (e.g. SCTransfrom) be-
fore running the subsequent core steps of ICAnet.

Denoising gene expression matrix. In each dataset used for
integration or clustering, ICAnet aimed to identify biolog-
ical signals from gene expression matrices and to identify
shared expression patterns. For different batches of datasets
with different levels of data sparsity, the variability of the
data sparsity will adversely affect comparisons of expres-
sion programs across different datasets, because part of data
variation (signal) is driven by the data sparsity, not the ac-
tual biological signal (30). To diminish interference from
data sparsity, ICAnet implemented two alternative strate-
gies: (i) Computing top K variable genes for each batch ac-
cording to the coefficient of variation for each gene, taking
the intersection set of all sets of variable genes as the filtered
gene set, and using their corresponding expression profile
to perform ICAnet; (ii) Using a recently developed Python
module (named randomly) based on random matrix theory
to denoise the dataset (30), which works very efficiently in
eliminating single-cell sparsity-driven signals (30). We used
it to denoise the dataset at first to prevent the influence
of data sparsity on the matrix decomposition of ICAnet.
In this study, we only applied the denoising preprocessing
step to the pancreatic islet scRNA-seq datasets to improve
the batch effect correction performance of ICAnet, because
these datasets were generated from different library types
and each dataset had different degrees of data sparsity.

Biological signal extraction via independent component anal-
ysis. To identify the biological signals (expression pro-
grams) in the dataset, we used ICA to decompose gene ex-
pression matrices into gene expression programs. The num-
ber of expression programs is a very important parame-
ter in ICAnet, thus we proposed an unsupervised method

based on random matrix theory (31,32) to determine this
parameter (see Supplementary Notes, Section 1 in the Sup-
plementary Materials). Each dataset was centered before
performing ICA for matrix decomposition. Two different
implementations of ICA can be utilized by ICAnet. The
first implementation is the joint approximate diagnaliza-
tion of eigenmatrices (JADE) (33). The major advantage of
JADE over other implementation solutions is that it is based
on matrix computations involving matrix diagonalization,
resulting in non-stochastic components. Other algorithms
(e.g. FastICA) rely on an optimization procedure (e.g. start-
ing points and optimization paths) (34), therefore, may yield
variable results. The second implementation is based on the
R package MineICA (25), which uses the same strategy as
Icasso, to alleviate the stochastic problem when running
FastICA (35) through iterative component clustering. In
this study, we used JADE-based ICA to decompose gene
expression matrices into independent components (source
matrix), and the gene weights (importance) of each compo-
nent have unit variance and zero means.

Cross-batch expression programs grouping

Grouping expression programs across batches to find shared
biological signals. One key feature of ICAnet is the group-
ing of independent components (or expression programs)
across different datasets/batches. First, ICA was performed
independently on each dataset/batch. Then, the indepen-
dent components computed from two (or more) single-cell
datasets were compared by computing Pearson’s correla-
tion coefficient between corresponding gene weights of se-
lected genes (projection value > 2.5 standard deviations in
the identified component). After grouping of the compo-
nents from different datasets/batches, Partitioning Around
Medoids (PAM) algorithm (36) with the average silhou-
ette width was used to estimate the optimal number of ex-
pression patterns. Finally, the medoids were chosen as the
‘basal programs’ shared across batches for further network
weighting.

Activated ‘sub-network’ (module) identification

Construction of weighted PPI networks with basal programs
shared across batches. In the following step, we com-
bined PPI networks and expression programs to integrate
their information. The PPI networks were obtained from
the STRING database, a common and widely used PPI
database (37). In this analysis, we used a threshold of a com-
bined interaction score >600 to filter interactions, which is
also a commonly used criterion for obtaining credible PPI
networks (12,38).

Those genes that significantly contribute to each expres-
sion program have been defined previously as the ‘activated
genes’, which are identified using a weight threshold of three
or four standard deviations from the mean. Here, we con-
structed weighted PPI network to produce activated sub-
networks (or modules), wherein the edge-weight density is
significantly greater than the rest of the network. We used
the same weight scheme that used previously in computa-
tional epigenome model research (39). Specifically, for each
component, the absolute weight value of each gene was de-
termined and defined as ICA statistic (IC Ag). Assuming



e54 Nucleic Acids Research, 2021, Vol. 49, No. 9 PAGE 4 OF 21

genes g and h are connected in the PPI, we assigned the edge
weight as the average of the individual node (or gene) statis-
tics, i.e. wgh = 1

2 (IC Ag + IC Ah). To avoid prohibitive com-
putational expenditures, we only assigned the edge weights
to the edges with endpoint ICA statistics that passed the
weight threshold and zero was assigned to other edges. The
weight threshold can be manually adjusted, and in this anal-
ysis, we set it as 2.5 standard deviations from the mean.

Random walk trapping to identify sub-networks in weighted
PPIs. To rapidly and robustly identify dense connected
and activated sub-networks, we used the random walk ap-
proach (40) to decipher all the possible sub-networks (mod-
ules). We performed random walks of different lengths us-
ing our ICA statistics-weighted PPI networks and detected
modules by applying walk-trap algorithm on each ran-
dom walk-based distance matrix. All the detected modules
greater than three were saved and pooled together as mod-
ule sets. We then applied the AUCell algorithm to the raw
single-cell datasets to construct activated module–cell ma-
trix that calculates the enrichment of each module in each
cell as an area under the recovery curve (AUC) across the
expression value-based rankings of all or some of the genes.
The cell–module activity is summarized in a matrix (termed
as module activity matrix) wherein columns represent single
cells and rows represent the predicted modules.

Evaluation of clustering performance

Adjusted Rand Index (ARI). When cell labels and batch
information are available, the ARI can be used to calculate
the similarity between the ICAnet clustering result and the
known cell or batch labels (see Supplementary Notes, Sec-
tion 2 in the Supplementary Materials).

We calculated the batch and cell-type ARIs for all the
tested methods to evaluate their batch-effect correction per-
formance. In addition, a combined F1 score was obtained
for each batch correction method by computing the har-
monic mean of the ARI score, as follows:

F1ARI = 2ARIcell type (1 − ARIbatch)
1 − ARIbatch + ARIcell type

.

Inverse Simpson’s Index (LISI). We used a score metric,
named as LISI, to measure local diversity based on local
neighborhood distribution (See Supplementary Notes, Sec-
tion 2 in the Supplementary Materials). This index repre-
sents the expected number of cells that need to be sampled
before neighboring cells are drawn from the same batch.
The greater the score, the stronger the local batch ID (iL-
ISI) or cell type (cLISI) heterogeneity is.

To measure the data from mixed batches, we calculated
the value of the Area Under the Cumulative Distribution
Function Curve (AUCDF). For the lowest batch or cell type
mixing after integration, most of the iLISI or cLISI values
is close to the beginning value of the iLISI or cLISI dis-
tribution (close to 1); therefore, the AUCDF value tends
to be large. For the ideal batch (or cell type) mixing af-
ter integration, most of the iLISI or cLISI value is close
to the end of the distribution (close to the number of the
batches/cell types); therefore, the AUCDF value tends to

be small. We calculated the AUCDF using the following for-
mulae:

AUCDFcLI SI =
∫ ncell type

1
CDFcLI SI (x) dx,

AUCDFi LI SI =
∫ nbatch

1
CDFi LI SI (x) dx.

The AUCDF of the iLISI distribution with a good in-
tegration tends to be small and the AUCDF of the cLISI
distribution with a good integration tends to be large. Also,
a metric considering batch mixing and cell-type purification
on all cells simultaneously is required; therefore, we defined
the F1 score based on LISI for each batch-effect correction
method by computing the harmonic mean of AUCDF as
follows:

F1LI SI = 2AUCDFcLI SI (1 − AUCDFi LI SI )
1 − AUCDFcLI SI + AUCDFcLI SI

.

Clustering methods for cell states identification

For the cell states identification benchmark task, several
methods were systemically compared. Before running clus-
tering methods, we used count per million to derive a nor-
malized count matrix. For t-Distributed Stochastic Neigh-
bor Embedding (t-SNE)+k-means, pcaReduce and SC3,
we used a log-transformed dataset and adjusted the num-
ber of clusters to optimize the clustering performance,
which was evaluated by the ARIcell type. For SINCERA,
we used z-score normalized data for the clustering anal-
ysis, and we also adjusted the number of expected clus-
ters to optimize the ARIcell type values. For Seurat, we used
the Seurat packages and processed related datasets in ac-
cordance with the tutorial (https://satijalab.org/seurat/v3.
2/pbmc3k tutorial.html). We then performed cell cluster-
ing multiple times using Louvain clustering with multi-level
refinement algorithms on a shared-nearest-neighbor-based
cell graph, during which we adjusted the parameter resolu-
tion for the maximal ARIcell type. Three module-based clus-
tering methods, SCENIC, SCORE and ICAnet, were com-
pared in this study. All these methods quantified module ac-
tivity based on AUCell. We ran each method and used the
same aucMaxRank parameters to derive a module-based
activity matrix.

For each clustering method, we used two variable gene
selection criteria: the Top 5000 genes with the largest coef-
ficient of variation, and the whole gene set. We then per-
formed the above variable gene selection steps separately to
select the criterion that produced the best clustering per-
formance. For each test dataset, we re-analyzed the iden-
tifying novel rare cell types using Louvain clustering with
a multilevel refinement algorithm (7) on a shared-nearest-
neighbor-based cell graph derived from the module activity
matrix to infer cell expression state.

Clustering methods for multi-batch datasets integration

In benchmarking different multi-batch integration meth-
ods, we used Louvain clustering with multilevel refinement
algorithms on a shared-nearest-neighbor-based cell graph

https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html
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for each method, and adjusted the resolution parameter to
obtain the optimal ARIcell type value. We then calculated cor-
responding LISI, iLISI and ARIbatch values. Additionally,
for methods that correct batch effects on the Uniform Man-
ifold Approximation (UMAP) space but not on the gene ex-
pression or PCA space in our study [e.g. BBKNN(41)], we
applied Hierarchical DBSCAN + UMAP to cluster cells,
and adjusted the parameters minPts to optimize the cell-
clustering performance for comparisons.

Identification of cell type-specific activated modules

To identify activated modules for each cell type, we first
identified cell type-associated modules using a receiver op-
erating characteristic (ROC) curve analysis (7). For each
gene, we evaluated a classifier that was built on that mod-
ule alone, to distinguish a specific group of cells from other
cells. An AUC value close to 1 indicates that this module is
more specifically expressed in a specific cell group. We im-
plemented the above analysis using the FindMarker func-
tion provided by Seurat (7), with AUC > 0.75 as a thresh-
old to call cell type-associated modules. Then, among the
cell type-associated modules, continuous module activity
was converted into binary values using AUCell (11) and
the Spearman’s correlation coefficient between each cell
type and the binarized module were calculated. The mod-
ules with Spearman’s coefficient < 0.3 were filtered out.
Finally, the resulting modules with statistical significances
greater than the threshold (P-value < 0.05, see Supplemen-
tary Notes, Section 5 in the Supplementary Materials) were
selected and defined as cell type-specific activated modules.

Stability and robustness evaluation of three module-based
clustering algorithms

To test the stability of three module-based clustering algo-
rithms [ICAnet, SCENIC (11) and SCORE (12)], we per-
formed two different tests: (i) down-sampling the datasets
with varied cell numbers (2000, 1000, 500 and 100); and
(ii) simulation of low-sequencing depth by reducing the ex-
pression level to one-fifth of the original. We used the same
down-sampling and gene expression simulation procedures
for all the three tested methods, and the tSNE+DBSCAN
clustering algorithm was performed to evaluate the newly
predicted clusters. Finally, we calculated the ARI between
the labels of identified clusters and previously annotated
cell-type labels. In the clustering step, we ran DBSCAN
multiple times, during which we altered the parameter ep-
silon in the range of 1.0–4.0 and minPts in the range of 1–50
to determine a maximal ARI.

Module recovery analysis

Both SCORE and ICAnet intend to infer heavy sub-
networks (modules) with average weight density values sig-
nificantly larger than the rest of the network. The only
difference is that SCORE defines the weights using gene
co-expression coefficients, while ICAnet is based on ‘ICA
statistics’. A well-inferred sub-network needs to be pre-
served or consistent across different datasets from the same
tissue. We used the Monte Carlo randomization algorithm

to measure the reproducibility of the oligodendrocytes-
associated modules. First, we used the dataset by Zeiel
et al. (42) to infer ‘SCORE’ and ‘ICAnet’ modules. Based
on the module activity level, a cell type-association mod-
ule for each cell type was first identified. Furthermore,
we used the dataset by Marques et al. (43) to create new
SCORE- and ICAnet-weight PPI networks, and tested
whether the oligodendrocyte-associated module inferred
from the dataset by Zeiel et al. could be reproduced in the
dataset by Marques et al. (43). To compare the two algo-
rithms, we assumed that they were based on the identical
PPI topology. Therefore, we reassigned zero-weighted raw
PPI edges with the smallest positive non-zero values (typ-
ically this value is close to zero, i.e. 0.001). Then, we per-
muted (1000 permutations) the edge weights around the net-
work and recomputed modularities for the previously in-
ferred oligodendrocytes-associated modules. Here, we de-
fined modularity as the average weight of the modules. Fi-
nally, we computed the empirical module recovery score for
each inferred oligodendrocytes associated module as fol-
lows:

ModuleRecoveryScore

= num
(
Modularitypermutation > Modularityinferred

)
100

.

For the ICAnet-weighted PPI network, a K number of
different weighted PPI networks were determined. An over
estimation of the number of weighted PPI networks results
in some false positives during module recovery; therefore,
we only computed the first independent component and cre-
ated corresponding weighted PPI networks for the down-
stream analysis.

Label-association analysis using graph signal processing

To identify which is the novel cell type (or state) among
our cell-type labeling results, the intrinsic ‘label associa-
tion’ between our cell-type annotations and those defined
by the original author need to be determined. Inspired by
a recently proposed signal-enhancing model (44), we used
graph signal smoothing to transform the binary ‘cell-type
label signal’ into a continuous ‘cell-type label signal’ to en-
hance label association.

For each cell type (denoted as i), we initialized a binary
vector Xi defined as follows:

(Xi )k =
{

1 if cell k is a member of cell type i
0 if cell k is not a member of cell type i

To recover the latent continuous signal from the raw la-
bel, we used Laplacian regularization combined with the L2
norm loss function to reconstruct the signal, as follows:

y = argminz ‖x − z‖2
2 + βzT Lz,

where L represents the Laplacian matrix of the cell–cell ad-
jacency graph. We used a k-nearest neighbor graph with k =
30 to calculate the Laplacian matrix. The analytic solution
for the above optimization issue is as follows:

y = (I + βL)−1 x.



e54 Nucleic Acids Research, 2021, Vol. 49, No. 9 PAGE 6 OF 21

Therefore, the y is the reconstructed continuous signal
vector for cell type i. We applied graph smoothing to each
cell type to derive their continuous signal vector, and cal-
culated the Pearson’s correlation matrix between our anno-
tated cell types and those in the raw cell-type annotations.
β was assigned a value of 0.8 in this step. Furthermore, we
used cor’ = (1+cor)/2 to transform the correlation matrix,
and used 0.6 (Pearson’s correlation coefficient > 0.2) and
the FDR (false discovery rate) < 0.05 as thresholds to iden-
tify significant associations.

Gene set enrichment analysis

We used the software GSEA (version 4.1.0), a Java desk-
top application to assess potential enrichment of specific
gene sets in a ranked list of differentially expressed genes for
each cell type. The curated gene sets are consistent of cancer
stemness/risk associated gene-sets (45) and AML risk-gene
BAALC expression associated gene-set (46).

Survival analysis of acute myeloid leukemia (AML) patient
based on module activity

To measure the activity levels of modules inferred from the
scRNA-seq datasets in bulk RNA expression datasets, we
first used gene set variation analysis (GSVA) (47) to cal-
culate the module activity in each bulk sample. After con-
verting the gene expression matrix into a module activity
matrix, we selected the best subset of modules to predict
survival in the training cohort. We used a linear regression
model named Least Absolute Shrinkage and Selection Op-
erator (LASSO) implemented by the glmnet R package (48).
By enabling a 10-fold cross-validation to fit a Cox regression
model, we were able to identify an optimized set of modules
to predict survival. Owing to the randomness of the LASSO
model, we applied a bootstrapping strategy to score each
module. This procedure generated 100 resampled datasets
from the complete sample sets, with a sample size equal to
80% of the whole samples. LASSO was performed with 10-
fold cross validation to optimize the parameters for module
selection in each resampled dataset. Finally, we scored each
module based on how frequent this module was selected by
the regression model during bootstrapping. On the basis of
the resulting scores, we selected the top-K modules and per-
formed PAM clustering on the samples guided by the se-
lected feature modules to predict patient survival. We used
the Top30 modules as AML patient-associated modules, be-
cause they yielded the most significant patient survival dif-
ference in the training dataset.

RESULTS

The principle and workflow of ICAnet

We introduced ICA (34) into single-cell clustering by de-
composing a gene expression matrix into a number of in-
dependent components. Each component was character-
ized by a co-expression pattern and associated with cer-
tain meaningful biological pathways. Such concept enables
ICAnet to identify shared gene co-expression module(s)
across datasets from different batches (Figure 1A). Differ-

ent batches of scRNA-seq datasets derived from the same
cell type may not have exactly the same gene expression pat-
terns but the key co-expression modules tend to be consis-
tent. ICAnet pairs the same sub-population of cells among
different batches, regardless of their library type, sequenc-
ing platform or other influences. These features of ICAnet
make it perform well in cell clustering and integrative anal-
ysis on scRNA-seq datasets from different batches.

ICAnet takes a matrix of log2-transformed normalized
gene expression value acquired by regular scRNA-seq anal-
ysis methods as input. For scRNA-seq data from multi-
ple batches, ICA was used to decompose the gene expres-
sion matrix of each batch into a number of independent
components. Each component was termed as an ‘expres-
sion program’, which was latently associated with certain
transcriptional regulatory networks. To diminish the noise
across batches (or batch-effect), ICAnet adopted an algo-
rithm called PAM (49) to cluster all independent compo-
nents, and the resulting clusters were defined as ‘basal pro-
grams’ (denoted by its medoid defined by PAM), which
represented gene expression programs shared by (or sim-
ilar among) different batches. However, these ‘basal pro-
grams’ may not necessarily represent real expression pro-
grams, they can also come from technical noise. Genes hav-
ing protein products that interact with each other tend to
have similar functions and co-expression patterns (16). To
determine the genuine co-expression pattern shared among
batches (or the featured expression module characterizing
a give cell/tissue type), we incorporated PPI network in-
formation into ICAnet, and used the ‘basal programs’ to
score PPI. The PPI sub-networks with high scores rep-
resented activated sub-networks (or gene-expression mod-
ules), which were inferred by a graph clustering algorithm
named random walk with trapping (40). These resulting ac-
tivated gene-expression modules minimized the influence
coming from batch effect and represented the real biological
signals shared across batches. Finally, ICAnet scored each
cell based on the activated modules using the AUCell algo-
rithm (11) and constructed a module-cell matrix for further
analysis (such as cell clustering). The workflow of ICAnet
is illustrated in Figure 1B and detailed in the Materials and
Methods. In addition, to extend the usability of ICAnet to
other types of molecular interaction networks, such as TF-
target networks used by other tools (e.g. SCENIC), we also
provided another version of ICAnet (called ICAnetTF) to
incorporate TF-target interaction networks into scRNA-
seq data analysis (see Supplementary Notes, Section 6 in
the Supplementary Materials).

ICAnet improves cell clustering and batch integration of cell-
line scRNA-seq datasets

To evaluate whether ICAnet can identify shared expression
patterns among datasets from different batches to enhance
both data integration and cell clustering, we first tested
ICAnet on scRNA-seq datasets of known cell lines. Three
scRNA-seq datasets [pure Jurkat cell (an immortalized hu-
man T-lymphocyte cell line), pure 293T cell (human embry-
onic kidney cell line) and a 50:50 mix of Jurkat and 293T
cells generated by 10× Genomics were used for the analysis
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Figure 1. The principle and workflow of ICAnet. (A) ICAnet corrects batch effects via identifying shared gene co-expression module across different
batches of data. Cell clustering on multi-batch dataset without ICAnet (left) cannot effectively separate cells of the same type (round or triangle dots
in the central circle) coming from different batches (represented by different colors, i.e. brown, green and purple here). For example, purple and green
batches on the up half (cell type A) have same gene co-expression network (purple arrow directed) while brown and green batches at the bottom (cell type
B) have slightly different co-expression network (brown and green arrows directed). The area labeled with gray stands for gene co-expression network,
within which colored circles and lines represent genes and their interactions, respectively. Red circle means these genes were detected to have co-expression
in corresponding dataset. After correction by ICAnet (right), as it can identify shared gene co-expression module (exemplified by the ‘activated’ module
highlighted in yellow area), these two clusters of cells were grouped together and regarded as the same cell type, consistent with the fact that they were
derived from the same type of cells but subjected to different batch treatment, such as library type, sequencing platform and constructed by different labs
or individuals. t-SNE visualization was used for cell clustering exhibition. (B) The workflow of ICAnet consists three main steps. In step 1, ICAnet applies
ICA on each batch of data. In step 2, ICAnet grouped components from different batches together through Partition Around Medoids clustering algorithm
(49). The average silhouette width is used to estimate the optimal cluster number, which acted as basal components for further analysis. In step 3, these
components were used to incorporate PPI network information based on contribution of genes to each component. Each component combined with the
PPI to generate a weighted PPI, followed by random walk with trapping to decompose each network to detect activated module. Finally, each module is
scored within each single cell through AUCell algorithm (11). The resulted module-cell matrix was then used to perform downstream clustering analysis.
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(Dataset DS1, see Supplementary Table S1). Both UMAP
and t-SNE plots based on principal components (PCs) gen-
erated from the gene expression matrix indicated that strong
batch effect existed (Supplementary Figure S1A–D). For a
side-by-side comparison, these datasets were also analyzed
using other algorithms, including SCENIC (11), SCORE
(12), Harmony (50), fastMNN (51), Combat (52) and Seu-
rat V3 (CCA) (7,53). ICAnet and Harmony clustered all the
cells into two major groups in t-SNE and UMAP spaces,
consistent with the fact that these datasets consisted of two
cell types (Figure 2A and Supplementary Figure S1G). In
addition, ICAnet performed a better batch-effect correc-
tion compared with other algorithms, even when integrating
with other type of gene interaction networks (e.g. TF-gene)
(Figure 2A; Supplementary Figure S1H and I).

Next, ARI and LISI were used to quantitatively evalu-
ate the performances of these seven algorithms. The ARI
score assesses the coincidence between predicted cell clus-
ters and cell type/batch labels given by the original authors
(ARIcell type and ARIbatch, respectively) (54), while LISI
measures the local diversity of cell types (cLISI) or batches
(iLISI) (50). Although Harmony performed a slightly bet-
ter batch mixing compared with ICAnet (as indicated by
higher AUCDFiLISI, Figure 2B, top panel; Supplementary
Figure S1E and F), ICAnet outperformed Harmony in
cell-type prediction accuracy [ARIcell type (ICAnet) = 0.99,
ARIcell type (Harmony) = 0.84, Figure 2B, bottom panel;
Supplementary Figure S1J and K]. SCENIC and SCORE
grouped all the cells into three clusters (Figure 2A). The
remaining three methods showed no clear clustering (Fig-
ure 2A). These above results suggest that ICAnet is a com-
petitive method for batch correction and cell clustering in
scRNA-seq analysis.

Because ICAnet separates independent components from
a mix of single cells, a certain component from the 50:50
mixed cells could represent features from either 293T or Ju-
rkat. To validate such an expectation, we extracted each in-
dependent component from the 50:50 mixed sample and
compared them with each of the cell types. The second
and third components of the 50:50 mixed dataset were
highly correlated with the top components of the Jurkat
and 293T cell lines, respectively (Figure 2C), supporting
the idea that ICAnet can successfully separate expression
programs from mixed data. To further confirm that shared
gene co-expression modules (‘activated’ modules in Fig-
ure 1A) could reflect cell-type features, we performed Gene
Ontology (GO) analysis on those shared activated genes
belonging to the activated modules (Figure 2C). Interest-
ingly, genes in activated modules that correlated with 293T
or Jurkat cells showed distinct enriched GO terms (Figure
2D). While the 293T-associated gene module was enriched
in metabolic pathways such as polyamine metabolic pro-
cess and UTP/GTP biosynthesis (55), the Jurkat-associated
gene module was enriched more in T cell-related func-
tional categories such as T-cell activation and differentia-
tion, which was in line with Jurkat being an immortalized
human T-lymphocyte cell line (56). These results indicate
that ICAnet can find shared and specific expression pro-
grams across different batches, thereby increasing its batch
correction and clustering efficiencies.

ICAnet improves integration performance independent of li-
brary construction strategies

To demonstrate that ICAnet can be applied to more bi-
ologically relevant data with different types of batch ef-
fect, we analyzed two mouse hematopoietic cell datasets
derived from different scRNA-seq library-construction ap-
proaches (Dataset DS2, see Supplementary Table S1). The
first dataset is derived from a SMART-seq2 based scRNA-
seq library preparation of hematopoietic stem and pro-
genitor cell populations in 12-week-old female mice (57).
The second dataset is derived from a MARS-seq library
of myeloid progenitors from 6 to 8-week-old female mice
(58). Each cell in both studies had been assigned a known
cell type using fluorescence-activated cell sorting (57,58),
facilitating the interpretation of the downstream anal-
ysis results. These two datasets mainly contained three
shared cell types (including common myeloid progenitors
(CMPs), granulocyte-monocyte progenitors (GMPs) and
megakaryocyte-erythrocyte progenitors (MEPs), Supple-
mentary Figure S2A) and were widely used for batch-effect
correction evaluation of different methods (6). Since these
two datasets have different sequencing depth, the direct
concatenation of them to calculate the gene co-expression
would result in false positive correlations for certain genes,
such as B2m and Xist (Supplementary Figure S2B). An in-
tegrative analysis of such datasets requires a powerful com-
putational method to correct the batch effect.

For a fair comparison, we extracted the expression pro-
files of the three shared cell types in these two datasets and
compared the results of ICAnet with SCENIC and SCORE
(both are module-based methods) to examine whether
ICAnet performs better in cell clustering and batch-effect
correction. Results were visualized using both t-SNE (Fig-
ure 3A and Supplementary Figure S2C) and UMAP (Fig-
ure 3B and Supplementary Figure S2D), and they revealed
that before batch-effect correction, the cells largely grouped
according to batch resources, while ICAnet grouped cells
of the same cell type between the two batches more ef-
ficiently than the other two methods. We also validated
that ICAnetTF clustered cell efficiently regardless of batch
sources (Supplementary Figure S2E). A quantitative evalu-
ation with ARI also indicated that ICAnet and ICAnetTF
had better cell-type prediction accuracy than the other
two network-based methods (Figure 3C and Supplemen-
tary Figure S2F). Besides, ICAnet and ICAnetTF per-
formed better batch-effect correction, as reflected by the
higher AUCDFiLISI (batch mixing) value (see ‘Materials
and Methods’ for details) compared with SCENIC and
SCORE (Figure 3D and Supplementary Figure S2G). Visu-
alization with t-SNE and UMAP also showed that ICAnet
produced a more accurate differentiation trajectory than
the other two methods (Figure 3A and B), as MEP and
GMP are differentiated from CMP (59). We also performed
a similar analysis including all cell types and arrived the
same conclusion (Supplementary Figure S2H).

To further validate the batch-effect correction efficiency
of ICAnet on scRNA-seq datasets from different sources,
we also applied ICAnet to three scRNA-seq datasets of
human pancreatic islet cells that had been prepared using
different library construction strategies (Dataset DS5, see
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Figure 2. Performance assessment of seven batch-effect correction methods on cell line scRNA-seq data. (A) t-SNE visualization of ICAnet plus six other
batch-effect correction approaches regarding batch label (pure 293T, pure Jurkat and 50:50 mixture) and cell type label (293T and Jurkat) provided by
original authors. (B) Scatter plots to evaluate the performance of six batch-effect correction methods by AUCDF (top) and ARI (bottom). See ‘Materials
and Methods’ section for details. (C) Scatter plots for independent components comparison between 50:50 mixed sample and pure cell line (left is pure
293T and right is pure Jurkat). Each point in the plots represents a gene, and Spearman correlation (Cor) is computed. X and Y axis represent attribute
value of each genes on corresponding component. (D) GO enrichment analysis by clusterProfiler (104) for module genes belong to shared components
indicated in panel (C).

Supplementary Table S1; two were 3′-tag sequencing and
one was full-length sequencing) (60–62). Integrating these
datasets was particular challenging because each dataset
had a number of unique co-expression structures. ICAnet
largely removed the batch effect originating from both
donor and library type (Supplementary Figure S3A and B)
and grouped the cells from these three independent datasets
according to the cell types annotated by their original au-
thors. We also analyzed these datasets with other eight
batch-effect correction methods for performance compar-
isons with ICAnet. A visual inspection showed that ICAnet
and Seurat V3 (CCA) grouped the cells according to their
cell types but not the batch source on both t-SNE and
UMAP spaces, while some methods, like BBKNN (41) only
showed batch-effect correction on the UMAP space but not
the t-SNE space (Supplementary Figures S3 and 4). Ad-
ditionally, SCENIC and SCORE showed poor batch ef-
fect correction in these complicated datasets (Supplemen-
tary Figures S3–5). To compare the performance of dif-
ferent methods, we used F1 scoreARI to simultaneously
evaluate the performance of both cell-type inference and
batch-effect correction. We also used the harmonic mean of
AUCDFcLISI and 1-AUCDFiLISI (defined as F1 scoreLISI,
see ‘Materials and Methods’ section for details) to evalu-
ate cell-type purification and batch mixing. We found that
ICAnet had good performance regarding the F1 scores of
both ARI and LISI [top 1 in F1 scoreARI (0.905) and top

3 in F1 scoreLISI (0.66); Supplementary Figure S5A and B].
In summary, ICAnet can surpass or is comparable with the
most state-of-the-art methods for batch-effect correction of
scRNA-seq data of various origins.

ICAnet works stably in multiple datasets having different se-
quencing depth and cell numbers

To better evaluate the clustering performance of ICAnet, we
compared ICAnet and ICAnetTF with seven other meth-
ods [SCENIC, SCORE, SC3, gene expression tSNE fol-
lowed by k-means clustering (tSNE+k-means), pcaReduce,
SINCERA and Seurat (7–10)] using six different scRNA-
seq datasets (Dataset DS3–4, see Supplementary Table S1).
Three of the datasets were of small sample size (< 2000
cells; Biase et al., Goolam et al. and Pollen et al.) (63–65)
and the rest three were of large sample size (> 3000 cells;
Zeisel et al., Ma et al. and Puram et al.) (42,66,67). The
results showed that only ICAnet, ICAnetTF and SCENIC
performed stably on all six datasets (ARIcell type value > 0.8;
Figure 4A), and ICAnet slightly preceded SCENIC in per-
formance for three datasets (Figure 4A).

To further assess the impact of sequencing depth on the
robustness of ICAnet, we simulated low-coverage data by
reducing the coverage depth of each gene to one-fifth of the
raw scRNA-seq data derived from mouse brain (one of the
six datasets used above that has been widely used for bench-
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Figure 3. Performance comparison for three network-based methods between two library types of mouse hematopoietic cells. (A and B) t-SNE (A) and
UMAP (B) visualization for three co-expression network-based clustering algorithms. Dark and light color pairs denote SMART-seq2 and MARS-seq,
respectively. (C) Assessment of cell type accuracy (left), batch correction efficiency (middle) and combined performance (right) reflected by ARIcell type,
ARIbatch and F1 scoreARI, respectively. A larger ARIcell type value means better performance, while a smaller value ARIbatch denotes better batch effect
correction. A larger F1 scoreARI reflects a better performance on both aspects. (D) Assessment of batch mixing through iLISI.

mark studies) (42). The average number of detected genes
per cell in simulated low-coverage data is 1240, while that
of the raw data is 3713. We next ran ICAnet, ICAnetTF,
SCENIC and SCORE simultaneously for cell-clustering
comparison, and ICAnet and ICAnetTF still performed
well on low-coverage datasets (having ARIcell type values of
0.82 and 0.85, respectively; Figure 4B), better than SCENIC
and SCORE (having ARIcell type values of 0.78 and 0.58, re-
spectively). These results suggest that ICAnet captures gene
co-expression structure for better cell clustering even on
low-coverage datasets. We also replaced ICA with other ma-
trix decomposition algorithms (including PCA and NMF)
to benchmark the influence of ICA on the clustering per-
formance of ICAnet and found that ICA performed either
better or comparable cell clustering than PCA and NMF
(Supplementary Figure S6A). Additionally, we compared
ICAnet with other ICA-based tools on single-cell cluster-
ing and found that ICAnet performed better than previ-
ously developed ICA-based transcriptome analysis tools on
single-cell clustering (Supplementary Figure S6B).

The influence of sampling size (number of single cells
sequenced) on cell clustering was next examined among
ICAnet, ICAnetTF, SCENIC and SCORE. We evenly
down-sampled the number of cells in the same mouse brain

expression data used above (the original cell number is
3005) to 2000, 1000, 500 and 100 cells and then performed
clustering on each sampled dataset using all these four
methods. ICAnet consistently produced better ARIcell type
than SCORE, but was comparable to SCENIC on down-
sampled datasets (Figure 4C). Of note, the running time of
SCENIC was 30–130 times longer than ICAnet at different
cell numbers, while the running times of ICAnet, ICAnetTF
and SCORE were comparable with each other (Figure 4D).
Considering the performance improvement of ICAnet (Fig-
ure 4A–C), it is tolerable that the running time of ICAnet
was approximately three times longer than that of SCORE
(Figure 4D).

ICAnet facilitates functional interpretations of mouse brain
dataset

To evaluate the efficiency of ICAnet in aiding cell cluster-
ing and biological interpretation of scRNA-seq datasets, we
performed further investigations on the widely used mouse
brain scRNA-seq dataset (Dataset DS4, see Supplementary
Table S1) (42). The ICAnet analysis of this dataset identified
1078 ‘activated’ sub-networks (or modules), and clustered
the cells into seven expected cell types (oligodendrocyte,
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Figure 4. Performance comparison for different methods among multiple datasets with different read coverages and cell numbers. (A) Nine clustering
methods were used for side-by-side ARIcell type comparison in datasets with diverse sample sizes. The horizontal line denotes the position of 0.8 for ARI.
The spots denote the rounds that each method ran (see ‘Materials and Methods’ section for details). The X-axis refers to the public datasets denoted by
the name of first author. (B) t-SNE plots of four network-based methods on simulated dataset of low sequencing depth (3005 mouse brain cells). The
calculation of clustering accuracy (represented by ARIcell type) here is based on DBSCAN clustering results on simulated datasets. (C) Clustering accuracy
(ARIcell type) comparison of four network-based methods on simulated data with different sequencing cell numbers (mouse brain scRNA-seq data by Zeisel
et al.). (D) Comparison of running time among these four network-based methods (data by Zeisel et al.). Y axis denotes the log2 transformed running time
(second) and X axis represents the increasing cell numbers involved in simulated data.

astrocyte/ependymal, endothelial/mural, interneurons, mi-
croglia, pyramidal SS and pyramidal CA1) (Figure 5A) as
reported in the original research. To infer the potential bi-
ological functions of each cell cluster, we binarized mod-
ule activity values and identified cell type-specific mod-
ules (Figure 5B, detailed in ‘Materials and Methods’ sec-
tion). Notably, oligodendrocytes, which are neuroectoder-
mally derived glial cells that have a major role in myelinat-
ing central axons (68), had the largest number of activated
modules (Figure 5B). To assess the reliability of ICAnet
in detecting cell type-specific networks, we used an addi-
tional scRNA-seq dataset of mouse oligodendrocytes (43)
to examine whether ICAnet could re-discover the activated
modules specific for oligodendrocytes. We used the Monte
Carlo method (39) to calculate the module recovery score
(MRS, see ‘Materials and Methods’ section for details) for
each sub-network (Zeisel et al.) to evaluate its recurrence in

the independent oligodendrocyte single-cell dataset. As ex-
pected, only the activated modules in oligodendrocytes had
much higher MRSs compared with those of other cell types
(Wilcoxon test, P-value = 1.1e-08; Figure 5C). For compar-
ison, we also calculated MRSs of the modules in oligoden-
drocytes detected by using ICAnet and SCORE (both use
PPI information for integrative analyses). The MRSs of the
modules detected by ICAnet were significantly greater than
those detected by SCORE (P-value < 2.2e-16; Figure 5D),
indicating that ICAnet has better network reproducibility
than SCORE.

Signature genes have been widely used to identify/infer
certain cell types (69). However, genes always function in
the context of a network, and the same gene may play dif-
ferent, even opposite roles when interacting with different
partners. Thus, revealing signature genes involved in a net-
work and the expression status of their interacting partners
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Figure 5. ICAnet facilities functional interpretation of cell clusters from mouse brain. (A) ICAnet groups 3005 mouse brain cells (the data by Zeisel et al.)
into seven clusters shown by t-SNE. Each color represents a cell type annotated by the original authors. (B) Heatmap presentation of binarized modules
identified by ICAnet for seven cell types. Black signal denotes the active status of a certain network module, the hub gene of each module is used for
presentation. The number of genes in each module is denoted in the parenthesis. The colors of the horizontal bar at the top denote the same cell types
as those indicated in panel a. (C) Boxplot displaying the distribution of module recovery scores, which reflects the reproducibility of the inferred modules
in independent mouse oligodendrocyte single cell dataset. The P-value was based on Wilcoxon rank sum test. The box colors denote the same cell types
as those indicated in panel (A). (D) Violin plot of oligodendrocyte-associated module recovery scores between ICAnet and SCORE. The P-value was
calculated by Wilcoxon rank sum test. (E) Violin plots displaying the expression levels of Gad1, Grm5 and Grp in each cell type annotated by original
authors. (F) The sub-networks (modules) of interneurons and pyramidal CA1. Each dot represents a gene and each line means the interaction of two
genes. The size of the dot reflects the importance (degree of connection) of the gene in the network.

in different subpopulations will facilitate our deeper under-
standing of these cell types in a certain tissue. For instance,
ICAnet revealed that Grm5, which encodes a subunit of glu-
tamate metabotropic receptor (mGluRs), whose role is to
bind with the excitatory neurontransmitter glutamate (70),
showed higher expression in three (interneurons, pyramidal
SS and pyramidal CA1) out of seven cell types from the
mouse brain (Figure 5E). Interestingly, we found that two
distinct active subnetworks containing Grm5 existed in in-
terneuron and pyramidal CA1 cell types, respectively (Fig-
ure 5F). In the interneuron subnetwork, Grm5 connects to
Gad1, which helps the synthesis of GABA and plays an in-
hibitory role (71). However, in the pyramidal CA1 subnet-
work, Grm5 interacts with the gene Grp (Figure 5F), which

is specifically expressed in pyramidal CA1 cells (Figure 5E)
and known to enhance the excitatory synaptic transmission
through facilitating glutamate release (72). This example
indicates that ICAnet can identify cell-type-specific active
networks to label the biologically relevant information in
single-cell clusters.

ICAnet has the ability to identify rare cell types

We went on to inspect whether ICAnet could identify rare
cell types that were usually hard to discover using regular
analysis methods. A previous study had found that oligo-
dendrocytes could be further classified into six subpopula-
tions using the BackSPIN clustering method (42). However,
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we found that they could be divided into 10 subpopulations
with ICAnet (Figure 6A and B), and each subpopulation
was supported by signature gene(s) (Figure 6C). Some of
the newly-found cell subpopulations were of biological sig-
nificance (Supplementary Figure S7). Oligodendrocyte pro-
genitor cells (OPCs), a subtype of glial cells that can differ-
entiate to oligodendrocytes in the central nervous system,
was discovered by ICAnet but missed in the original study
(Figure 6A–C). This was supported by several lines of evi-
dence, for example, ICAnet identified a Ptprc-centered sub-
network in the OPCs (Figure 6A and B; Supplementary Ta-
ble S2). PTPRC (also known as CD45) is a key phosphatase
involved in OPC differentiation (73). Genes in this network
were also enriched in GO terms related to OPC differentia-
tion, such as glutamate metabolic process and oligodendro-
cyte differentiation (Figure 6A and B; Supplementary Table
S2).

To examine whether the activated modules in the OPCs
identified by ICAnet exist across different datasets, we an-
alyzed two more scRNA-seq datasets derived from mouse
oligodendrocytes (43) and human oligodendrocytes (74).
The activated modules in the OPCs discovered above also
existed in these two validation datasets (Figure 6D). Thus,
ICAnet could sensitively identify sub-networks specific to
rare cell types and improve the cell-type interpretation of
scRNA-seq data. Further investigations revealed that the
OPC network existing in both mouse and human contained
three orthologous genes, Bcan, Cntn1 and Ptprz1 (Figure
6E). A literature search largely supported the functional
OPC-relevance of these three genes. Bcan encodes a mem-
ber of the lectican family of chondroitin sulfate proteogly-
cans, which are usually highly expressed in gliomas and a
subtype of the OPCs, and may promote the growth and cell
motility of brain tumor cells (74); Cntn1 encodes the cell
adhesion molecule contactin 1, which has been proven to
bind to its ligand PTPRZ1. The PTPRZ1/CNTN1 complex
represses OPC proliferation and promotes oligodendrocyte
maturation and differentiation (73). Ptprz1 encodes Pro-
tein Tyrosine Phosphatase Receptor Type Z1 (PTPRZ1),
which is expressed in both adult and fetal human OPCs and
has been reported to regulate the tyrosine dephosphoryla-
tion of �-catenin, the key Wnt pathway intermediate (75).
This shared sub-network and related genes in specific cell
types across species may have some evolutionary implica-
tions worthy of further study.

Moreover, we examined the ability of ICAnet to infer rare
cell types by combining the pancreas-originated scRNA-
seq datasets generated by different construction strategies
(Dataset DS5, see Supplementary Table S1) (60–62). Inter-
estingly, a rare cell type was identified when combing these
scRNA-seq datasets (Supplementary Figure S8A and B).
Further analysis suggested that this rare cell type was a sub-
population of beta cells that underwent endoplasmic reticu-
lum (ER) stress, as evidenced by the high expression of ER
stress-related marker genes DDIT3 and PPPR15A (Sup-
plementary Figure S8A and B). Additionally, the activated
sub-network in this cell type contained eight more genes, in-
cluding KRT8, HSPA5, XBP1, DNAJB9, PDIA4, MANF,
HSP90B1 and CRELD2 (Supplementary Figure S8C and
D), all of which are associated with the ER-stress path-
way (76–83). The hub gene of this activated sub-network,

HSPA5 (Supplementary Figure S8C), is the central media-
tor of ER stress and can be quickly induced by the unfolded
protein response (UPR) upon ER stress (84). These lines of
evidence support the notion that ICAnet identifies a rare
cell type relevant to ER stress in the pancreas.

ICAnet identifies developmental trajectories using time-
course scRNA-seq datasets through batch-effect correction

Time-course scRNA-seq datasets are important for reveal-
ing crucial biological processes during development. Cur-
rent integrative analysis methods applied on time-course
datasets remove batch effect with the risk of eliminating
real biological signals (85). As demonstrated above, ICAnet
can characterize the similarities of co-expression structures
among different batches. To investigate how well ICAnet
performed on time-course scRNA-seq datasets, we ana-
lyzed scRNA-seq data of 15 022 cells from eight time points
(E6.75 to E8.5) during mouse embryonic hematopoiesis
(86) (Dataset DS6, see Supplementary Table S1). We first
analyzed the data without batch-effect correction step (no
ICAnet) and found that cells largely grouped according to
their batches rather than cell type (Figure 7A), suggesting
that a severe batch effect existed. However, ICAnet anal-
ysis on the same datasets grouped the mixed cells from
different mice according to known cell types (Figure 7B).
ICAnet also constructed a smooth and continual trajec-
tory structure in the t-SNE manifold space (Figure 7B),
consistent with hematopoietic development process (86).
For comparison, other methods including SCORE, Com-
bat and Harmony, were also used to analyze the same
dataset. Both SCORE and ICAnet revealed continual dif-
ferentiating processes with t-SNE and UMAP, uncover-
ing a branching trajectory structure representing the pro-
cesses from mixed mesoderm and hematoendothelial pro-
genitor populations to differentiated endothelial and ery-
throid populations (Supplementary Figure S9). In contrast,
Harmony and Combat resulted in relatively discrete cell dis-
tributions (Supplementary Figure S9). These results suggest
that ICAnet can reliably capture developmental trajectories
during blood cell differentiation. To further test the capacity
of ICAnet in developmental trajectory inference, we applied
ICAnet to our recently sequenced mouse testis scRNA-seq
dataset to predict the differentiation trajectory during sper-
matogenesis. ICAnet generated a differentiating trajectory
consistent with that produced by DDRtree-based embed-
ding methods (see Supplementary Notes, Sections 8 and 9
in the Supplementary Materials).

Additionally, ICAnet identified a new type of cells (Fig-
ure 7C–E) not reported in the original study (86). The num-
ber of these cells is relatively small and featured an acti-
vated module centered on Rap1 (Figure 7E). This cluster
also showed high expression level of four key genes (Plek,
Rab27b, Pf4 and Fcer1g) that are crucial for the megakary-
ocyte cell identity and function (Figure 7D). Consequently,
we named this novel cell type megakaryocyte-like cells. In-
terestingly, the expression levels of these four genes in-
creased with development stages (Figure 7D), and the num-
ber of cells belonging to this type also increased accord-
ingly (Figure 7F). What’s more, highly expressed genes in
this cluster were enriched in GO terms like platelet acti-
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Figure 6. ICAnet dissects heterogeneous expression states of mouse oligodendrocytes. (A) t-SNE plot of ICAnet identified cell clusters in mouse oligo-
dendrocyte. Cell clusters were circled and the cell types were annotated by marker genes. The colors of the horizontal bar at the top denote the same cell
types as those indicated in panel (A). (B) Heatmap presentation of gene expression modules (labeled by red rectangle) specific to certain cell types/clusters
(denoted by the horizontal color bars at the top) in mouse oligodendrocyte dataset analyzed by ICAnet. (C) Dotplot displaying the expression levels of
representative marker genes of oligodendrocyte cell subgroups. Spot size denotes the percentage of cells expressing the gene within each cluster and color
intensity denotes their expression level (Z-score transformed log2CPM value). (D) Activity of OPC associated modules derived from mouse brain dataset
(by Zeisel et al.) in independent related single cell datasets from mouse (by Marques et al.) and human (by Jakel et al.). In the upper panel, color density
represents the intensity of module activity. In the bottom panel, red spots represent cells defined as OPC. (E) Gene network in OPC associated modules
inferred from mouse and human oligodendrocyte scRNA-seq data. Three shared genes were labeled yellow.

vation, coagulation and platelet aggregation (Figure 7G),
in line with the role of megakaryocytes (87,88). Together,
ICAnet can reveal developmental trajectories and even rare
cell types from time-course scRNA-seq datasets.

ICAnet discovers activated modules that may act as prognos-
tic markers for AML patients

As ICAnet can identify biologically meaningful gene-
expression modules, we were curious whether it could dis-
cover modules that would be useful for survival analysis of
cancer patients. We performed ICAnet analysis on publicly

available scRNA-seq datasets from 12 patients with acute
myeloid leukemia (AML) (89) (Dataset DS7, see Supple-
mentary Table S1). ICAnet largely eliminated batch effect
and correctly grouped the malignant cells without obvious
donor effect (Figure 8A and B). We also compared the
ICAnet clustering using four other algorithms (SCENIC,
SCORE, Harmony and Combat) with previously defined
cell labels (89) as references to evaluate the clustering per-
formance. We used ARI and LISI to evaluate the five meth-
ods comprehensively, and the result showed that ICAnet
performed better integration (based on F1LISI and F1ARI
scores) than the other methods (Supplementary Figure S10,
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Figure 7. ICAnet identifies a rare megakaryocytes like cell type through integration analysis of time course hematopoietic datasets. (A and B) t-SNE visu-
alization of cell clustering results of scRNA-seq datasets generated from mouse hematopoietic cells of eight embryonic stages (E6.75–E8.5) (86) analyzed
without (A, PCA-based Seurat method) and with (B) ICAnet. Cell types defined by original authors were used for presentation. (C) Seven cell types were
identified by applying Louvian clustering algorithm based on module activity. (D) The log2-transformed expression level (counts per 10 000, CP10K) of
four key genes related to megakaryocytes cell identity was shown during eight embryonic development stages (left). Cells highly express these four genes
were highlighted by red circles in the t-SNE plots (right). (E) The activity of representative modules was binarized and visualized through heatmap to show
their regulation pattern in different cells. Each module is labeled according to their hub gene. The number of genes within each module was indicated in
the parenthesis. (F) The barplot of number of megakaryocyte-like cells in different embryonic development stages. (G) GO enrichment analysis by clus-
terProfiler for genes highly expressed in megakaryocytes like cells. The top eight significant GO terms were shown. Bar length (X-axis) denotes the gene
number and the color key denotes the Benjamini–Hochberg adjusted P-values.

see Supplementary Notes, Sections 2 in the Supplementary
Materials). By integrating all the scRNA-seq data derived
from malignant cells from the 12 AML patients, ICAnet
clustered these AML cells into five major groups (Figure 8C
and Supplementary Figure S11A–C), each having a distinct
activated module (Figure 8D; Supplementary Figure S11A
and D). The first group corresponded to the cycling-cell-
like state, wherein a module with the hub gene CDK1 was
activated (Figure 8D). CDK1 is a cyclin-dependent kinase
that interacts with RAR� to influence cell-cycle progression
and cellular differentiation in AML (90). The second group
corresponded to the nucleophosmin 1 (NPM1)+-like state,
wherein modules with three hub genes (NPM1, PARP1 and
CDK6) were activated (Figure 8D). NPM1 is a nucleolar
phosphoprotein with diverse biological functions (includ-
ing molecular chaperoning, ribosome biogenesis, DNA re-
pair and genome stability) and has been implicated as a fa-
mous prognostic marker for AML (91). ICAnet also dis-
covered other well-known AML molecular markers in the
NPM1 module, such as FLT3, RUNX1 and RUNX1T1.
Gene set enrichment analysis (GSEA) on the curated gene
set (see ‘Materials and Methods’ section) revealed that these

NPM1+-like cells were enriched with AML risk-associated
genes and leukemic stem cell marker genes (Supplemen-
tary Figure S11E). The third group was dendritic like cell,
wherein modules with the hub genes LYN and CD74 were
activated (Figure 8D). Notably, both LYN and CD74 play
important functions in dendritic cells (92,93). The fourth
group was promonocyte-like cells, wherein modules with
the hub genes ELANE and DNAJA1 were activated (Fig-
ure 8D). The final group was monocyte-like cells, wherein
modules with the hub genes S100A6, SELL and CST3 were
activated (Figure 8D).

Since the proportions of these five types of cells may
change as AML progresses, we hypothesized that activated
gene modules may serve as prognostic markers for AML pa-
tients. To validate this idea, we incorporated bulk RNA-seq
data and survival data to further examine whether ICAnet-
defined modules could group AML patients with differ-
ent survival curves. A dataset of 562 AML patients (Gene
Expression Omnibus (GEO) accession number GSE37642)
was used as the training dataset. We first calculated the
activity of the ICAnet-predicted modules in this training
dataset using GSVA (detailed in ‘Materials and Methods’
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Figure 8. ICAnet-identified active module from scRNA-seq is a prognosis marker for AML patients. (A and B) t-SNE plot based on the expression
matrices without (A) or with (B) ICAnet analysis on scRNA-seq datasets from 12 patients’ day 0 leukemia sample. (C) Five main express states of AML
malignant cells identified based on ICAnet defined modules. (D) Heatmap representation of activated modules identified by ICAnet in AML scRNA-seq
dataset. Gene number and the hub gene in each module were indicated on the right. Color bar denotes the expression state in panel (C) and AML risk
associated genes involved were indicated on the right. (E) The survive curves of 186 AML patients (from TCGA) stratified by prognosis modules identified
by ICAnet. P-value was based on log-rank test. X-axis denotes the survival days and Y-axis represents the survival probability. (F) Heatmap showing
activity of 30 prognosis modules (rows) across 186 bulk AML expression profiles in TCGA. Color key represents the value of module activity. (G) GO
enrichment analysis by clusterProfiler for genes in the prognosis modules. The X axis denotes the number of the related genes and the color key denotes
the Benjamini–Hochberg adjusted P-values.

section), and then applied bootstrap LASSO (see ‘Materi-
als and Methods’ section) to related modules and patient
survival information in the training cohort. Next, according
to the recurrence rate (detailed in ‘Materials and Methods’
section), we selected the top 30 modules identified in malig-
nant cells and used them to predict patient survival, based
on the survival prediction performance of the patients in
the training dataset (Figure 8E and F). Interestingly, three
genes (CXCR4, GPX1 and SF3B1) among these modules
had already been reported as prognostic markers. For ex-
ample, the chemokine receptor CXCR4 mediates cell an-

chorage in the bone marrow micro-environment and over-
expressed in 25–30% of patients with AML (94). Besides,
CXCR4 is associated with poor prognosis in AML patients
with and without the FLT3 mutation (95,96).

We next tested these 30 modules in expression datasets
related to AML from The Cancer Genome Atlas (TCGA)
(97). Using the unsupervised clustering method PAM, we
found patients were clearly separated into two groups with
statistically different survival statuses (Figure 8E and F).
Interestingly, most modules were upregulated in the poor
prognosis group (Figure 8F). GO analysis found that genes
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belonging to these upregulated modules were enriched in
functional terms, such as leukocyte proliferation, cytokine
production, epithelial cell proliferation, coagulation and
immune response (Figure 8G). Furthermore, we compared
our newly identified prognostic factors with well-known
AML prognostic markers (98–101), The result showed that
ICAnet defined modules were the most significant prognos-
tic markers across all known molecular markers (P-value =
0.02; Supplementary Table S3). Thus, ICAnet has the abil-
ity to discover new prognostic markers by discovering ac-
tivated modules specific to certain cell types in scRNA-seq
datasets, at least for AML blood cancer.

DISCUSSION

Single-cell transcriptome analyses have been increasingly
applied to reveal cellular heterogeneity in a tissue, which is
important for understanding its biological roles and even
the pathological state of a diseased tissue. Based on the
idea that different types of cells have different gene–gene
interaction networks, recent bioinformatics tools, such as
SCENIC and SCORE, began to adopt gene co-expression
networks to perform cell clustering and biological inter-
pretations in scRNA-seq data analysis. With the unprece-
dented increase in publicly available scRNA-seq data, in-
tegrative analysis capable of discovering new knowledge
has become extremely important, although it is still a chal-
lenging task. Batch-effect correction is one of the key ob-
stacles that needs to overcome in integrating analysis of
multiple datasets. Current batch-effect correction meth-
ods usually adopt a strategy searching for nearest neigh-
bor cells across different batches and then applied differ-
ent weight or transformation schemes to construct a cor-
rected expression matrix or cell embedding vectors (51,53).
Although these strategies have been widely used in multi-
batch scRNA-seq data integration, most of them are weak
in biological interpretations of the data. Methods based
on gene co-expression networks, such as SCENIC (11) and
SCORE (12), concatenate all the analyzed datasets into one
dataset and then directly apply correlation learning algo-
rithms (random forest importance and Pearson’s correla-
tion) to identify co-expression modules. Such direct data
merging ignores batch-specific properties and, thus, may
result in certain false positive correlations that impair the
batch-effect correction. In contrast, to improve the batch-
effect correction efficiency, ICAnet learns shared and inde-
pendent expression programs from different datasets and
also integrates PPI network information (Figure 1A). The
ability of ICAnet to efficiently perform batch-effect correc-
tions was validated using scRNA-seq data of various con-
ditions (tissues/donors/library-type), and they all indicate
that ICAnet can largely eliminate batch effect originating
from multiple sources.

In addition to its batch-effect correction ability, ICAnet
can also detect cell types (or expression states) through local
co-expression modules of functionally relevant genes (Fig-
ure 1B), which enables rare cell type discovery. Currently
network-based clustering algorithms, such as SCIENC and
SCORE, tend to miss the gene co-expression structures of
rare cell types possibly owing to gene–gene correlations are
calculated based on all the cells. ICAnet decomposes the

gene expression of single cells into a number of indepen-
dent components, with each component linked to a certain
number of activated modules. By analyzing both simulated
and real scRNA-seq data, the accuracy and robustness of
ICAnet were also validated. The theoretically valid concept
was also practically confirmed using three datasets of differ-
ent tissue origins, brain (both mouse and human), pancre-
atic islet and blood cell development (hematopoiesis with
time courses). ICAnet identified a rare cell type (OPCs) in
the mouse brain single-cell dataset. In addition, the acti-
vated gene modules in OPCs identified by ICAnet were also
found in two independent scRNA-seq datasets from both
mouse and human oligodendrocytes, supporting the robust-
ness of ICAnet in identifying rare cell types. ICAnet also
identified a rare type of beta cells under ER stress in pancre-
atic islet. Multiple lines of evidence support the reliability of
this conclusion. First, the ER-stress marker genes DDIT3
and PPPR15A were highly expressed in this cluster; sec-
ond, the active sub-network of this cluster also contained
eight more genes associated with the ER-stress pathway;
and lastly, the hub gene HSPA5 of this active sub-network
in the cell type is a central mediator of ER stress. In the
scRNA-seq dataset of mouse blood cell development with
eight time points during hematopoiesis, ICAnet revealed
the developmental trajectories of the blood cells and also
identified a novel rare cell type missed by the original study
(86). This rare cell type showed high expression levels of
four genes that play important roles in megakaryocyte cell
identity. Interestingly, their expression increased with devel-
opment stage and the functional enrichment analysis also
supported their megakaryocyte-like features. Together, we
demonstrated by three independent datasets from different
tissues to show that ICAnet is a powerful tool to discover
biologically meaningful rare cell types for further study.

Information and knowledge of PPIs in human and
mouse have been increasingly accumulated in recent years
(102). Thus, using PPIs as the backbone to discover gene-
expression modules in scRNA-seq analyses is now feasible.
Previous studies have revealed that genes with PPIs showed
co-expression trends at the RNA level (16,103), suggesting
that integrating PPI information into scRNA-seq data anal-
yses could be beneficial. In practice, we performed multiple
simulations and statistical tests to demonstrate the impor-
tance of incorporating PPI networks into cell clustering and
module interpretations of scRNA-seq data (see Supplemen-
tary Notes, Sections 2 and 3 in the Supplementary Materi-
als). We also applied ICAnet on other species (Drosophila
as an example) and the results showed that ICAnet could
be extended to other species through incorporating species-
specific PPI network (see Supplementary Notes, Section 7
in the Supplementary Materials). These analyses results,
combined with those from our comprehensive analysis on
scRNA-seq datasets from different tissue/species, suggest
that integrating PPI networks and gene expressions at the
single-cell level could have great potential to reveal dynamic
molecular regulatory mechanisms underlying different cell
states.

In summary, we have shown the accuracy, robustness and
reproducibility of ICAnet in single-cell transcriptome anal-
ysis. We demonstrated that ICAnet performs efficient cell
clustering and batch-effect correction, which eventually fa-
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cilitate the functional interpretation of the resulted cell clus-
ter. Moreover, ICAnet also shows a promising capacity for
discovering new prognostic markers by analyzing scRNA-
seq data from patients of certain disease. We believe that
ICAnet will benefit studies in multiple research fields that
utilize scRNA-seq techniques.

DATA AVAILABILITY

ICAnet is freely available at https://github.com/
WWXkenmo/ICAnet/. The raw single-cell RNA-seq
dataset of mouse whole testis (fastq format) has been
uploaded to NCBI-SRA with the accession number
PRJNA650016. The single-cell gene expression ma-
trix and cell-type annotation by ICAnet is available at
https://github.com/WWXkenmo/MouseGerm/. Besides,
the gene lists correspond to related modules (Figures 5B,
6B, 7E, 8D and F) are provided as the Supplementary Table
S4. For the detail information about the public datasets
used in this manuscript, see Supplementary Notes, Section
10 in the Supplementary Materials and Supplementary
Table S1.
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