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Central Composite Design 
Optimization of Zinc Removal from 
Contaminated Soil, Using Citric 
Acid as Biodegradable Chelant
Farrokh Asadzadeh1, Mahdi Maleki-Kaklar2, Nooshin Soiltanalinejad1 & Farzin Shabani3

Citric acid (CA) was evaluated in terms of its efficiency as a biodegradable chelating agent, in removing 
zinc (Zn) from heavily contaminated soil, using a soil washing process. To determine preliminary 
ranges of variables in the washing process, single factor experiments were carried out with different CA 
concentrations, pH levels and washing times. Optimization of batch washing conditions followed using 
a response surface methodology (RSM) based central composite design (CCD) approach. CCD predicted 
values and experimental results showed strong agreement, with an R2 value of 0.966. Maximum 
removal of 92.8% occurred with a CA concentration of 167.6 mM, pH of 4.43, and washing time of 
30 min as optimal variable values. A leaching column experiment followed, to examine the efficiency of 
the optimum conditions established by the CCD model. A comparison of two soil washing techniques 
indicated that the removal efficiency rate of the column experiment (85.8%) closely matching 
that of the batch experiment (92.8%). The methodology supporting the research experimentation 
for optimizing Zn removal may be useful in the design of protocols for practical engineering soil 
decontamination applications

Soil contamination by heavy metals has become a global concern, due to the threat to ecosystems and human 
health of their high toxicity levels1,2. In agricultural areas, heavy metal contamination, even if not associated 
with specific health hazards, may reduce economic output2. The United States Environmental Protection Agency 
(USEPA) has classified Zinc (Zn) as a harmful heavy metal, and placed it on the list of priority pollutants3.

Soils polluted with heavy metals can be decontaminated through a variety of methods of remediation, such 
as stabilization, solidification, electroremediation and phytoremediation4. Among the techniques of remediation, 
the simplicity of chemical soil washing, its low cost, short duration and high efficiency, makes it a practical option 
for metal removal5–7. The selection of a viable solution is a fundamental determinant of the level of efficiency of 
extraction in the washing process3,6,8. Environmental factors, and the cost and availability of the extraction solu-
tion, are other important considerations in selecting a washing reagent3. Due to its superior capacity to complex 
with a number of heavy metal ions, the chelating agent ethylenediaminetetra acetic acid (EDTA) has frequently 
been used in polluted soil treatments9. However, EDTA usage has been restricted due to its poor level of biodeg-
radability8 and it has been replaced by natural biodegradable chelants, citric acid (CA) being the most promi-
nent10,11, due to its minimal impact on the physical and chemical properties of soil12.

Optimum soil washing conditions are prerequisite, particularly in the case of scaled up applications, to min-
imise costs and maximise Zn removal efficiency. Classical optimization, in which only one factor is changed at a 
time in order to measure its effect, is time consuming and requires many experiments. In practice, it overlooks, 
or disregards, the interactive effects between individual components. Response surface methodology (RSM), in 
which effective parameters are optimised simultaneously, overcomes the deficiencies of single factor optimiza-
tion13,14. Using RSM substantially reduces the number of experiments necessary to predict the conditions for best 
performance15,16. Furthermore, modelling of the process refines the interpretation of complex phenomena and 
provides a basis for process scaling17.
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Regarding the advantages of RSM, it has been used successfully in the modelling and optimization of soil 
washing conditions, for the efficient removal of Zn from severely contaminated soil. Thus, our principal research 
objective set out to investigate the process of removing Zn from highly contaminated soil, using CA as an eco-
logically benign, biodegradable chelant in a batch washing process. In order to predict optimal conditions for Zn 
removal, we developed a quadratic polynomial model, using a central composite design (CCD) based on RSM. 
Thereafter, the optimized batch washing conditions were applied to a column washing experiment, to compare 
the efficiency of the two washing methods.

Materials and Methods
Soil sampling.  A contaminated soil sample was collected from the topsoil layer (0–20 cm) around the 
Angouran zinc mine in Zanjan Province, Iran (Lat. 47°15′17″, Long 35°44′37″). The sample was air dried, homog-
enized, sifted through a 2 mm nylon mesh sieve for the removal of larger particles, and stored at room tempera-
ture in plastic containers.

The following properties of the sample soil were analysed: texture, pH, electrical conductivity (EC), cation 
exchange capacity (CEC), soil organic matter (SOM) and calcium carbonate equivalent (CCE). To determine 
texture, the hydrometer method as described by Gee et al.18 was used. SOM was determined by dichromate 
oxidation, and soil pH and electrical conductivity (EC) were determined in a soil-solution ratio of 1:5 using pH 
and electrical conductivity meter19. CEC was measured by saturating soil with 1 M NH4OAc at pH 7, and CCE 
was determined by the acid neutralization method19. The total zinc content was measured using a flame atomic 
absorption spectrophotometer (Shimadzu AA-7000) based on a soil sample with HNO3-HCl-HClO4 mixture at a 
1:2:2 ratio (v/v/v). Values of these sample physicochemical properties are listed in Table 1.

The sample was calcareous (CCE = 21%), slightly alkali (pH = 7.8), with texture classified as clay loam. The 
total Zn concentration of 5657 mg.kg−1 surpassed the level permitted in soil used primarily for the agricultural 
production of food crops.

Preliminary soil washing experiments.  The preliminary ranges of washing variables, the CA concen-
tration, pH of solution and washing time were determined in a sequence of single factor experiments, using a 
soil-solution ratio of 1:10 (w/v) in 100 mL acid-rinsed polycarbonate plastic bottles. For each run, 5 grams of the 
contaminated sample was added to 50 mL of the washing reagent.

To investigate the effect of CA concentration on Zn removal, a range of concentrations of CA from 5 to 
400 mM were tested. The pH test was based on 200 mM CA at a range of pH values from 2.0–10.0, altered with 
diluted HNO3 and/or NaOH solution. A 200 mM CA solution was also prepared to measure the effects of washing 
time, ranging from 15 to 300 min, on removal efficiency.

The suspensions in each test were mixed using a mechanical shaker, running at a constant 150 rpm for the 
predefined time. Following the shaking, suspensions were centrifuged for 10 min, at 4000 rpm, and then filtered 
through a Whatman (0.45 µm) filter membrane. The supernatant Zn concentration was measured using a flame 
atomic absorption spectrophotometer (AAS). All of these tests were conducted in duplicate.

Experimental design and optimization.  The RSM based central composite design (CCD) with inde-
pendent variables was followed to create the optimum synergy of and to check the response patterns. The specific 
parameters whose ranges had been established in the preliminary testing, CA concentration (20–200 mM), pH 
(4–8), and washing time (30–150 min) were thus optimized (Table 2).

For the CCD, the selected experimental points included eight cubic points, six axial points (α = ±1.68), and 
six replicates at the centre point (α = 0).

Optimum variable values were calculated from the experimental response and coded at five levels from −1.68, 
−1, 0, +1, and +1.68 as defined by Eq. (1).
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where, xi denotes the coded value of variable Xi, X0 the actual value of Xi at the centre point, and ΔXi the 
increment.

Characteristics Unit Value

EC dS.m−1 0.7

pH — 7.8

Soil texture — Clay loam

Sand % 34

Silt 37

Clay 29

SOM 1.03

CCE 21

CEC cmol+.kg−1 17

Total Zn mg.kg−1 5657

Table 1.  Physicochemical characteristics of polluted soil before washing.
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CCD model was designed to fit the second order polynomial model, using a multiple regression program 
according to Eq. (2).
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where Y represents the variable of response (percentage Zn removal), Xi and Xj independent coded variables, 
and β0, βi, βii, βij the intercept term, linear, quadratic and interaction effects, respectively16,20. Random error (ɛ) 
expresses the measure of difference between observed and predicted values. To give greater insight into the 
CCD results, Pareto analysis was used to calculate the percentage effect of each independent variable (Pi) on the 
removal of Zn21 (Eq. 3):
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Minitab 14 statistical package (MINITAB Inc., PA, USA) was used for the statistical analysis of the results.

Results and Discussion
Preliminary washing experiment.  In the preliminary testing, CA removal efficiency followed the trend 
of decreasing Zn removal with increasing pH (Fig. 1a). Results indicated that when pH was decreased from 8 to 
4, Zn removal increased considerably from 5.5% to 61.3%, while remaining almost constant for lower pH values. 
This implies that acidic conditions, rather than alkaline, are preferable for Zn removal. Previous research find-
ings have indicated that the pH of the solution plays a major role in the removal efficiency of heavy metals from 
contaminated soils6,8,22. Accordingly, the behaviour of metal-chelant complexes, solubility of the zinc hydroxides, 
competition between H+ and the Zn2+ for sorption sites on soil particles, as well as the surface charge of the soil 
colloids, is directly controlled by pH. A rise in pH of the CA solution increases the cationic heavy metal adsorption 
on the soil surface, inner sphere complexion, and may also increase the probability of precipitation reactions 6,23.

Figure 1(b) illustrates the effect of CA concentration on Zn removal efficiency, at a fixed washing time of 
120 minutes. The zinc removal was less than 0.5% when distilled water was applied as a washing solution, which 
might be due to the very low solubility of zinc compounds in the water. Further, the zinc removal increased con-
siderably for concentrations of CA up to 100 mM, with a slower increase at higher concentrations, which can be 
ascribed to the high efficiency of CA as a chelating agent. Citric acid forms a square planar complex with heavy 
metals, through binding to the citrate anions with cations. Huang et al.24 also noted the increase in heavy metals 
removal with increasing CA concentrations, in the range lower than the 200 mM. This could be explained by the 
high stability content (Log KML = 6.1) for Zn-CA complexes25.

Washing time is another influential factor in remediation of heavy metals from contaminated soil, in that the 
process of desorption is a kinetic equilibrium. Figure 1c shows the kinetics of Zn removal by CA (concentra-
tion = 100 mM; pH = 4.0) for washing times ranging from 15 to 300 min. Zn removal efficiency increased within 
the time range of 30 to 120 min, before approaching a relatively constant level, indicating that soil washing with 
CA is a time dependent process. This observation shows a strong agreement with other studies, regarding wash-
ing time6,7,22,26. The initial rapid increases in Zn removal, followed by a levelling, may be due to the fact that the 
chelation process reaches equilibrium at a certain length of washing time.

From the preliminary results, the range of independent variables, as listed in section 2.3 (Table 1), was selected 
for the RSM based central composite design (CCD). In the following section, the results of Zn removal optimiza-
tion, using RSM based CCD are presented.

CCD modelling.  The CCD experiment design for Zn removal, based on three independent factors with a 
five- level structure, is shown in Table 3. The broad range of Zn removal (from 5.35 to 79.11%) demonstrates 
the necessity to optimize washing conditions. The quadratic polynomial equation (Eq. 4), obtained from exper-
imental results which expressed as coded units, defines the relationship between the independent variables (CA 
concentration, pH, and washing time) and response (percentage Zn removal).

= . − . + . − . + .

+ . − . − . + . + .

Y 28 61 23 84x 11 49x 1 76x 4 96x
2 44x 1 53x 7 38x x 5 56x x 5 72x x (4)
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2
2
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2

1 2 1 3 2 3

The CCD predicted Zn removal values, as determined by the quadratic polynomial model (Eq. 4), are shown 
in Table 3, and display generally strong agreement with the measured values of Zn removal derived from the 
experiment results. The model validation resulted in a coefficient of determination (R2) of 0.966, and root mean 

Independent Variables Symbol

Range and level

−α −1 0 +1 +α

pH X1 4 4.81 6 7.19 8

Concentration (mM) X2 20 56.48 110 163.51 200

Time (min) X3 30 54.32 90 125.68 150

Table 2.  Experimental range and level of independent variables.
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square error (RMSE) of 4.4% (see supporting information, Fig. S1) in agreement of empirical and predicted val-
ues. Thus, 3.4% of the variation in Zn removal is not supported by the CCD model.

Analysis of variance (ANOVA).  Table 4 displays the ANOVA results for the fitting of the quadratic model. 
The table indicates that in both the linear and square parameters, the effects of the prominent variables are signif-
icant on response, with p-values < 0.05. Similarly, the response levels of the interactions of independent variables 
are also significant with p-values < 0.05.

In the ANOVA Table, the model F-value of 31.66 is notably greater than the tabulated F-distribution value of 3.02 
at 95% significance, indicating that the model is conclusively efficient in predicting experimental results. Table 5 lists 
the regression coefficients, t-values, and p-values for the linear, quadratic, and effects of variable interactions, at a 
significance level of 95%. The significance of each term of the model was verified by means of the associated p-value.

The liner effect of pH, CA concentration and the second order effect of pH are significant model terms on Zn 
removal (p-value < 0.05). Furthermore, interaction effects of all three independent variables (pH, CA concentra-
tion, and washing time) are also significant.

Pareto analysis ranks the effect of variables on response (Eq. 3). The analysis indicated that the order of effective 
variables on Zn removal was pH (66.52%) > CA concentration (15.45%) > pH and CA concentration interaction 
(6.37%) > washing time and CA concentration interaction (3.83%)> washing time and pH interaction (3.62%) > 
quadratic effect of pH (2.88%). These six terms accounted for 98.67% of cumulative effects on Zn removal (Fig. 2).

To produce the optimised model for Zn removal, the final quadratic response surface model (Eq. 5), expressed 
as coded units, represents the CCD model with the removal of insignificant terms (p-value > 0.05).

= . − . + . + .
− . + . + .

Y 28 61 23 84x 11 49x 4 96x
7 38x x 5 56x x 5 72x x (5)

1 2 1
2

1 2 1 3 2 3

Effect of independent variables.  The independent variable interactions are illustrated by 3D surface plots, 
derived from the quadratic polynomial model, in Fig. 3(a–c). In each 3D surface plot, two variables are altered, 
while the third variable is maintained at a constant value of zero coded level. The shape of these plots supports an 
interpretation of the level and quality of the interactions of the independent variables.

Figure 3b shows the trend of Zn removal against upon coinciding variation of washing time and CA concen-
tration at constant pH of 6. As expected, the removal efficiency increased proportionate to the CA concentration. 
Removal was significantly enhanced as the washing time increased from 30 to 150 min. An increased CA con-
centration promotes the reaction of the heavy metal ion-ligand complex to move toward the direction of chelate 

Figure 1.  Preliminary single factor washing experiments; Zn removal as a function of (a) pH, (b) CA 
concentration, and (c) washing time.
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formation6,7. Similarly, Ren et al.5 reported a significant increase in the efficiency of Zn removal from sewage 
sludge, with increases of the CA concentration over the range of 200–1000 mM.

The combined effect of CA concentration level and pH value on Zn removal efficiency, at a fixed washing time 
of 90 min, is presented in Fig. 3b. Here it can be seen that the efficiency of Zn removal depends strongly on CA 
concentration and pH, with a higher CA concentration increasing efficiency, but a higher pH having a negative 
effect. The pH effect was more notable at higher CA concentrations, and thus maximum Zn removal occurred at 
lower pH values, with increased CA concentration. As the pH decreases, the surface of the soil colloids commonly 
acquires a positive charge, due to the protonation of functional groups. This promotes heavy metals desorption 
from the soil surface. Additionally, hydrogen ions are weak competitive cations which can replace the adsorbed 
heavy metals via the cation exchange mechanism27.

The effect of simultaneous variations of pH and time is illustrated in Fig. 3c. The CCD model was applied with 
pH increasing from 4 to 8, and washing time from 30 to 150 min. Figure 3c illustrates that removal efficiency is 
enhanced by decreasing the pH, but the effect of time appears to be more intricate. According to the results of the 
CCD model (Table 4), Zn removal is not directly influenced by washing time, the effect of which is only signifi-
cant in terms of interactions. Likewise, Tejowulan and Hendershot28 demonstrated that the heavy metal removal 
rate was dependent on chelant concentration, and not on washing time.

Run

Independent Variable Zn Removal (%)

pH CA Conc. (mM) Time (min) Measured Predicted

1 1.00 1.00 1.00 15.55 24.28

2 0.00 0.00 0.00 28.64 28.61

3 0.00 0.00 1.68 27.93 21.33

4 0.00 0.00 0.00 28.64 28.61

5 1.68 0.00 0.00 5.35 2.55

6 0.00 −1.68 0.00 15.82 16.18

7 0.00 1.68 0.00 54.36 54.84

8 1.00 −1.00 −1.00 5.57 8.45

9 −1.00 1.00 −1.00 78.66 78.80

10 −1.68 0.00 0.00 79.11 82.75

11 −1.00 −1.00 −1.00 61.85 52.50

12 −1.00 1.00 1.00 79.11 75.61

13 0.00 0.00 −1.68 19.80 27.25

14 0.00 0.00 0.00 28.64 28.61

15 1.00 −1.00 1.00 5.35 4.60

16 0.00 0.00 0.00 28.64 28.61

17 0.00 0.00 0.00 28.64 28.61

18 −1.00 −1.00 1.00 20.33 26.42

19 0.00 0.00 0.00 28.64 28.61

20 1.00 1.00 −1.00 11.93 5.24

Table 3.  The three factor CCD matrix in coded units.

Model parts Source

Zn Removal

DF Mean square F-Value P-Value

— Model 9 1226.12 31.66 0.00

— Linear 3 3202.99 82.71 0.00

Linear

pH 1 7762.7 200.46 0.00

CA 1 1804.08 46.59 0.00

Time 1 42.21 1.09 0.32

— Square 3 160.4 4.14 0.04

Square

pH*pH 1 355.16 9.17 0.01

CA*CA 1 85.86 2.22 0.17

Time*Time 1 33.63 0.87 0.37

— Interaction 3 314.97 8.13 0.01

Interaction

pH*CA 1 435.58 11.25 0.01

pH*Time 1 247.19 6.38 0.03

CA*Time 1 262.15 6.77 0.03

Table 4.  ANOVA results for Zn removal. R-sq = 0.9661 R-sq(adj) = 0.9356.
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Determination of optimal conditions.  Optimal values of the independent variables, CA concentration, pH 
and washing time, as given in Table 6, to achieve a Zn removal efficiency of 95%, were obtained by a response optim-
izer. For validation, a confirmation experiment was conducted, with four replicates at the optimum conditions pre-
dicted by CCD model. Zn removal efficiency obtained from the experiments at optimal condition (92.80 ± 4.84%) 
showed a strong agreement with that of the predictive model value (95%). The results suggest that the use of CCD 
for optimization of soil washing conditions, to attain the maximum efficiency of Zn removal, has proven successful.

Leaching column experiment.  To compare the efficiency of batch and column washing techniques, a 
leaching column experiment was executed at the optimum CCD batch washing values of CA concentration 
(167.6 mM) and pH (4.43). The leaching column consisted of PVC tube (20 cm length, 5 cm diameter), with 
the contaminated soil sample positioned at a height of 10 cm by uniform tapping with a wooden rod to create a 
constant bulk density of 1.3 g.cm−3 (total porosity ≈ 50%). The top and bottom of the column were filled with an 
approximately 1 cm filter gravel layer. Wathman NO. 47 filter paper was used to preclude the loss of soil particles, 
from the bottom of the each column, during leaching.

The cumulative leaching of the Zn is depicted as a function of pore volume in Fig. S2 (see supporting infor-
mation). The leaching column experiment indicated that Zn removal by CA solution (167.6 mM, pH = 4.43) is a 
two-step process, commencing with a fast desorption within the initial pore volumes, followed by a slower deso-
rption occurring over the subsequent pore volumes. The more pore volumes that are added, the more Zn may be 
removed. From the first 15 pore volumes, equal to a 1:6 (w/v) soil to water ratio, 76.24% of the final total Zn was 
leached from the soil. Thereafter, the removal efficiency increased slightly, culminating in 85.8% at the 26th pore 
volume (soil water ratio of 1:10 (w/v) similar to the batch experiments). Further soil washing had little effect on 
the overall Zn removal, which is consistent with the findings of Lo et al.29 and Elmaslar-Özbaş and Balkaya30, in 
regard to leaching.

The comparison of two soil washing techniques with CA, batch washing vs. column washing, indicated that 
the removal efficiency for the column experiment (85.8%) is comparable with those of the batch experiment 
(92.8%). It is noteworthy that although Zn removal by batch washing experiment is less time consuming, and 
slightly more efficient than column washing, the latter technique has some benefits. Column leaching minimizes 
worker exposure to contamination. Additionally, it is more practical and has the potential for the economical 
treatment of relatively large amounts of soil. During the column washing procedure the soil structure remains 
undisturbed, unlike the batch techniques4. However, it should be noted that the column leaching technique may 
be very difficult to apply in low permeable soils31.

Term

Zn Removal

Coefficient T-Value P-Value

β0 28.61 11.27 0.00

β1 −23.84 −14.16 0.00

β2 11.49 6.83 0.00

β3 −1.76 −1.04 0.32

β11 4.96 3.03 0.01

β22 2.44 1.49 0.17

β33 −1.53 −0.93 0.37

β12 −7.38 −3.35 0.01

β13 5.56 2.53 0.03

β23 5.72 2.60 0.03

Table 5.  Estimated regression coefficients, t-values and p-values.

Figure 2.  Graph of Pareto analysis ranking effectiveness of individual factors on removal response.
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Conclusions
Zn removal from contaminated soil, by CA as a biodegradable chelant, was modelled and optimized by the 
response surface methodology (RSM) based central composite design (CCD). The following conclusions can be 
drawn from this research:

•	 RSM based CCD is a promising tool (R2 = 96.6%) for modelling and optimizing Zn removal from contami-
nated soil by CA.

•	 The optimum values of pH, CA concentration, and process time were estimated at 4.43, 167.6 mM, and 
30 min, respectively, with 95% Zn removal as target efficiency.

•	 It was found that the pH and CA concentration with a percentage importance of 66.52% and 15.45% respec-
tively, are the most significant parameters in the Zn removal process.

•	 The optimal values for pH and CA concentration from the batch washing experiments could be successfully 
translated to column washing, and the removal yields were efficient and comparable under both techniques.
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