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ABSTRACT: Guanosine is a purine nucleoside with important functions in cell metabolism and a protective 

role in response to degenerative diseases or injury. The past decade has seen major advances in identifying 

the modulatory role of extracellular action of guanosine in the central nervous system (CNS). Evidence from 

rodent and cell models show a number of neurotrophic and neuroprotective effects of guanosine preventing 

deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, 

such as ischemia, Parkinson´s and Alzheimer’s diseases. The present review describes the findings of in vivo 

and in vitro studies and offers an update of guanosine effects in the CNS. We address the protein targets for 

guanosine action and its interaction with glutamatergic and adenosinergic systems and with calcium-

activated potassium channels. We also discuss the intracellular mechanisms modulated by guanosine 

preventing oxidative damage, mitochondrial dysfunction, inflammatory burden and modulation of glutamate 

transport. New and exciting avenues for future investigation into the protective effects of guanosine include 

characterization of a selective guanosine receptor. A better understanding of the neuromodulatory action of 

guanosine will allow the development of therapeutic approach to brain diseases. 
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Guanosine is an endogenous guanine nucleoside to 

which has been attributed several neuroprotective and 

neurotrophic effects. This review will describe the 

extracellular role of guanosine as an intercellular 

messenger in the Central Nervous System (CNS). We 

also introduce a brief historical overview of the 

purinergic system, centering in the guanine-based 

purinergic system.   

 

Purinergic system  

 

Purines are a class of aromatic organic molecules 

essential for all cells that include adenine- and guanine-

derivatives nitrogenous bases, as nucleotides with one 

or more phosphates (AMP, ADP, ATP and GMP, GDP, 

GTP, respectively) and related metabolites such as 

adenosine, inosine, adenine, hypoxanthine and 

guanosine, guanine, xanthine and uric acid.  

Intracellular purines are primarily identified as 

structural constituents of nucleic acids, but they are also 

part of the structure of some coenzymes, and display 

roles as second messengers. Adenine-based nucleotides 

are well known for their fundamental intracellular role 

in the maintenance of energetic metabolism in the cells 

[1].  

The adenine-based purines effects in different cell 

types have unfolded the role of purines in cell signaling. 

Important biological functions of adenosine were 

initially unraveled by Drury & Szent-Giorgy [2], 

demonstrating that adenosine is released to the 
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extracellular space after heart ischemia, promoting a 

negative chronotropic effect to the heart and acting as a 

vasodilator of coronary vessels. The adenine-based 

triphosphorylated nucleotide, ATP, was also 

recognized as having extracellular effects [3] and in the 

70 ś Burnstock had demonstrated the concept of 

purinergic nerves and purinergic neurotransmission [4, 

5]. From then on, adenosine and ATP have been 

recognized as intercellular messenger molecules and a 

pivotal role of these purinergic messengers in the CNS 

has been highlighted elsewhere [6-10].  

Similarly to adenine derivatives, guanine-based 

purines have been firstly identified by their intracellular 

effects as modulators of G-proteins function. Guanine-

nucleotide regulatory proteins, GTP binding proteins, 

or simply G-proteins have been identified as central 

actors in the signal transduction field, by coupling 

transmembrane protein receptors to intracellular 

effectors [11]. G-proteins activity modulation occurs 

via interaction with GDP in the basal state (associated 

in the p-loop of the alpha-subunit of heterotrimeric G-

proteins), and with GTP in the activated state, when 

alpha-subunit dissociates from beta-gamma subunits 

[12]. Guanine nucleotides have also been shown to 

modulate the activity of small (low-molecular) 

monomeric G-proteins such as Ras, Rab Ef-Tu, and 

others [13]. To date, there is no evidence of interaction 

of guanosine to G-proteins.   

As expected, guanine nucleotides and the 

nucleoside guanosine have also been shown to exert 

extracellular effects and a guanine-based purinergic 

system has been highlighted after innumerous findings 

demonstrating the extracellular actions of GTP, GMP 

and guanosine, most of them concerning CNS effects 

[14]. In their review, Souza and colleagues proposed 

and described the organization of the guanine-based 

purinergic system in the mammalian CNS and ever 

since it is accepted as an important intercellular 

messengers system compared to the adenine-based 

purinergic system. 

In the present review, we will briefly discuss the 

guanine-based purinergic system and then we will 

focus on the extracellular effects of the guanine 

nucleoside guanosine.   

 

Guanine-based purinergic system  

 

The extracellular effects of guanine-based purines or 

guanine derivatives have been primarily shown in the 

CNS, and these effects are relating to the modulation of 

the glutamatergic system, the main excitatory 
neurotransmission system in the brain [15]. The 

neurotransmitter glutamate exerts essential trophic 

effects in the CNS, but it may act as an endogenous 

toxin after brain injury after excessive release to the 

synaptic space, evoking a cascade of cellular death 

widely known as excitotoxicity. This harmful action of 

glutamate occurs mainly through activation of 

ionotropic glutamate receptors (iGluRs), namely N-

methyl-D-aspartate (NMDA), Kainate (Ka) and alpha-

amino-phosphonic acid (AMPA) receptors, but also of 

metabotropic glutamate receptors (mGluRs) [16]. 

However, the complete blockade of glutamate 

receptors activity is not beneficial to neural cells. 

Clinical trials blocking glutamate receptors, such as the 

use of dizocilpine (MK-801, an NMDA receptor 

antagonist) in traumatic brain injury and ischemia did 

not show an effective outcome, because this NMDA 

receptor blockade also prevents the necessary trophic 

wave of glutamate receptors activation after injury [17]. 

Therefore, molecules that may act as glutamatergic 

modulators without inhibiting glutamate physiological 

function have a fundamental importance in 

neuroprotection. In this scenario, guanine-based 

purines emerge as endogenous modulatory agents of 

glutamatergic transmission eliciting important 

interactions with glutamate receptors and transporters.  

Binding studies initially performed by Sharif and 

Roberts [18] and then confirmed by other groups [19-

23] showed that guanine derivatives displaced 

glutamate binding and analogs to its receptors in cell 

membrane preparations. Several studies from Ramirez 

G. and Souza D.O. laboratories were fundamental in 

order to show that this effect of guanine nucleotides did 

not rely on G-proteins interaction or its ability of 

reducing agonist binding to G-protein coupled 

receptors (GPCRs) when they are interacting with G-

proteins [24-28]. This conclusion are further confirmed 

by the fact that GMP, which does not bind to G-

proteins, is able to decrease glutamate binding to 

metabotropic and to ionotropic receptors that do not 

interact with G-proteins [29-34]. Guanine derivatives 

not only bind to glutamate receptors but they also 

abolished several glutamate-induced cell responses, in 

physiological [34-38] or in pathological situations [32, 

38]. 

A seminal study from Souza and Ramirez [27] on 

guanine derivatives interaction with glutamate 

receptors in cellular membrane preparations was the 

first demonstration showing that there is a possible 

selectivity effect of guanine nucleotides in order to 

displace glutamate binding to its receptors,  but not the 

nucleoside guanosine. However, we have found that 

some neurotrophic effects of guanosine are abolished 
by glutamate receptors antagonists [39]. 
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In addition to modulating glutamate binding to its 

receptors, guanine derivatives modulate glutamate 

transport. Guanine derivatives are involved in the 

regulation of glutamate uptake into synaptic vesicles 

[40], suggesting a modulatory role of guanine-based 

purines on glutamate turnover. Several recent studies 

have shown that guanosine modulate glutamate 

transporters activity (see discussion below), although 

no study so far has demonstrated a direct interaction of 

guanosine with glutamate transporters.  

Additional evidence of guanine-based purines 

importance in the extracellular space were obtained 

from studies showing that purine nucleosides are 

released after an ischemic injury and their levels are 

maintained elevated from 2 hours to 7 days [41]. 

Cultured astrocytes subjected to hypoxic or 

hypoglycemic situations also release purine nucleotides 

and extracellular levels of guanine derivatives may 

reach three-fold higher levels than adenine derivatives 

[42]. These evidences suggested that guanine-based 

purines might represent an endogenous restorative 

system activated after injury situations. Moreover, the 

extracellular presence of guanine derivatives was also 

identified in samples of human cerebrospinal fluid 

(CSF) [43]. 

Extracellular nucleotides are hydrolyzed by a 

family of ecto-nucleotidases associated to the cell 

surface, the ecto-nucleoside triphosphate (ecto-

NTPase) family [44]. The ecto-NTPases include the 

ecto-ATPase that hydrolyses ATP and GTP (and also 

pyrimidine nucleotides with less affinity) to ADP and 

GDP; the ecto-ATP-diphosphohydrolase or apyrase 

(ecto-NTPDase), that hydrolyses either ATP or GTP 

and ADP or GDP to AMP or GMP [45]; and the ecto-

5 -́nucleotidase that hydrolyses AMP or GMP to the 

nucleosides adenosine and guanosine [46] (Fig. 1). 

Thus, after brain injury, released nucleotides undergo 

hydrolysis and their respective nucleosides may display 

a protective effect. In addition to this evidence of 

guanine derivatives being released in pathological 

situations, our group showed that GTP is taken up and 

stored into brain synaptic vesicles, suggesting that this 

nucleotide may act as a neurotransmitter [47].  

In conclusion, major findings regarding the 

guanine-based purinergic system are: (i) guanine 

nucleotides displace the binding of glutamate and 

analogs to metabotropic and ionotropic glutamate 

receptors; (ii) guanine nucleotides present a 

competitive pattern of antagonistic interaction with 

glutamate receptors; (iii) the effects of guanine-based 

purines do not rely only on G-proteins interaction; (iv) 
guanine-based purines are present in the extracellular 

space and their released may be increased under certain 

harmful conditions; (v) extracellular guanine 

nucleotides may be hydrolyzed to guanosine and 

increase the extracellular level of this nucleoside after 

brain damage; (vi) guanine-based purines modulate 

glutamate transporters (located at synaptic vesicles and 

at cellular membrane) activity; (vii) guanosine 

modulates glutamate transporters activity although it is 

uncertain whether it directly interacts with glutamate 

transporters. 

This review discusses the extracellular roles of 

guanosine from in vivo and in in vitro experimental 

approaches and presents an update on guanosine effects 

and mechanisms of action as an intercellular messenger 

mainly in the CNS. Although the focus of this review 

is guanosine as a protective and trophic messenger in 

the CNS, some peripheral effects that help to further 

understand the mechanism of guanosine action are also 

discussed.  

 

Metabolism and distribution of exogenous 

Guanosine  

  

Guanosine is a nucleoside that may act as a 

neuroprotective or retaliatory endogenous system. 

However to evaluate the effects of guanosine studies 

often use exogenous administration of this nucleoside. 

Hereafter, we will discuss the metabolism and 

distribution of exogenously administrated guanosine 

followed by the presentation of guanosine effects in in 

vivo models of brain disorders. 

Acute intracerebroventricular (i.c.v.) 

administration of guanosine resulted in a significant 

and rapid (5 min after) increase of guanosine and its 

metabolites xanthine and uric acid in the cerebrospinal 

fluid (CSF), but did not affect hypoxanthine or others 

nucleotides and nucleosides CSF levels [48] indicating 

an in vivo breakdown of the administered guanosine. In 

fact, the enzyme purine nucleoside phosphorylase 

(PNP, which converts guanosine to guanine) and 

guanine deaminase (that converts irreversibly guanine 

to xanthine) were identified at brain membranes, and 

their activities may result in elevated levels of purines 

metabolites in the brain [49]. 

After systemic administration, guanosine levels 

rapidly increase in the CNS. Intraperitoneal (i.p.) 

administration of GMP or  guanosine (7.5 mg/kg) 

increases guanosine CSF levels around two-fold and 

three-fold respectively, after 30 min [50], and i.p. 

guanosine administration increases guanosine and 

guanine levels analyzed in the spinal cord [51].  

Evaluation of guanosine metabolism after sub-
chronic guanosine administration (8 mg/kg, i.p.) in 

mice for 15 days induced increase in GDP and xanthine 
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hippocampal levels, when analyzed 5 days after the last 

treatment (Lanznaster D. et al, unpublished data). In 

rats subjected to a treatment protocol where guanosine 

was added to the drinking water during 6 weeks 

presented elevated xanthine levels in CSF and plasma 

samples, and levels of adenosine and hypoxanthine 

were elevated in rats plasma [52]. These data confirm 

guanosine breakdown both at CNS and periphery, and 

guanosine-induced adenosine release, as showed 

before [49], might explain the increased adenosine 

levels in the rat plasma. More studies are necessary to 

clarify the distribution of guanosine by oral route, 

considering the effectiveness of oral administration of 

guanosine [53-58].  

Guanosine distribution through tissues after 

systemic administration is reported in rats [51, 59]. In 

the first study, rats received guanosine (8 mg/kg - i.p.) 

and radioactivity peaked about 15 min after injection in 

the heart, kidney, liver and lungs. In the adipose tissue 

and CNS [3H]-guanosine concentration peaked about 

30 minutes after injection. Further investigations on 

guanosine metabolism revealed that guanine was the 

major metabolic product in all sites, with over twice as 

much guanine compared to guanosine after 30 minutes 

[60] suggesting the occurrence of a rapid breakdown of 

the guanosine. In the second study, guanosine 

distribution and metabolism were demonstrated after 

different doses (2, 4, 8 and 16 mg/kg) in the presence 

of trace amount of [3H]guanosine, also given i.p. [59]. 

Radioactivity increased time- and dose-dependently in 

the plasma, reaching a plateau after 60 min. Guanosine 

and guanine levels were significantly higher in all 

analyzed tissues than the plasma, indicating a rapid 

distribution and accumulation at different organs 

including CNS. This study also demonstrated that 

plasmatic activity levels of the enzyme PNP were 

elevated, what might be associated to the rapid 

guanosine metabolism. Xanthine levels were higher at 

liver and kidneys, suggesting that these organs play an 

important role in the metabolism and possibly excretion 

of guanosine. This data is supported by a previous 

study, where [3H]guanosine given via intramuscular 

was primarily found at animals kidney [61]. 

Taken together, these data show that systemic 

administration of guanosine reaches central and 

peripheral nervous systems in order to exert its 

functions. Regarding guanosine metabolism, several 

studies confirm the rapid conversion into guanine, thus 

raising the question if the biological activity observed 

is directly dependent from guanosine [51, 59, 60]. 

Although there are no studies to date reporting the 
neuroprotective effect of guanine, only one in vitro 

study showed that guanosine (100 μM) but not guanine 

treatment  increased cell proliferation of neural stem 

cells in culture [62], suggesting that, at least for 

neurotrophic effects, guanosine is the bioactive 

molecule.  

 

 In vivo effects of Guanosine 

 

Neuroprotective effects of Guanosine  

 

Several studies have shown the neuroprotective effect 

of guanosine in animal models of CNS disorders in 

both rats and mice, and hereafter we discuss these 

findings.  

  

Seizures 

 

Seizures are often related to an overstimulation of 

glutamatergic activity. Quinolinic acid (QA, an 

endogenous NMDA receptor agonist) is involved in 

epilepsy ethiology and induce seizures when it is 

exogenously administered in the rodent brain [15, 63, 

64]. Acute administration of guanosine i.p. reduced 

QA-induced seizures about 50 - 70% [65-69], and 

guanosine neuroprotective effect is also observed when 

guanosine was administered via intracerebroventricular 

(i.c.v) [70] or orally [53, 55], showing that 

anticonvulsant effect of guanosine is effective 

regardless the route of administration. In a chronic 

treatment protocol, guanosine added at the drinking 

water during two weeks decreased seizures induced by 

QA and by α-dendrotoxin, a potassium channel blocker 

that promotes the endogenous release of 

neurotransmitters like glutamate [54, 71]. 

Guanosine prevents QA-induced seizures in a 

similar degree of the NMDA receptor antagonist, MK-

801 [68]. Besides acting as an NMDAR agonist, QA 

modulates glutamate transport and guanosine was 

shown to counteract QA-induced decrease in glutamate 

uptake [55] and the increase in synaptosomal glutamate 

release [67], reinforcing the hypothesis that guanosine 

modulates glutamatergic system activity.   

Other guanine-based purines have been shown 

anticonvulsant effect against QA, but it seems that this 

effect is dependent upon their breakdown to guanosine, 

once GMP  anticonvulsant effect is abolished after 

treatment with the 5'-nucleotidase inhibitor alpha-beta-

methylene-adenosine-5'-di-phosphate (AOPCP), that 

inhibits GMP breakdown to guanosine [66].  

Guanosine also modulates changes in eletro-

encephalographic (EEG) signals induced by QA i.c.v 

infusion. QA infusion disrupts a prominent basal theta 
(4-10 Hz) activity during peri-ictal periods and also 

promotes an increase in gamma (20-50 Hz) 



 D. Lanznaster et al                                                                                                    Guanosine effects in brain disorders 

Aging and Disease • Volume 7, Number 5, October 2016                                                                               661 

 

 

oscillations. These EEG alterations are counteracted by 

guanosine when seizures are successfully prevented 

[69]. 

In a recent study, by using a genetic model of 

absence epilepsy (WAG/Rij rats), guanosine reduced 

the number of spike-wave discharges related to 

abscence epileptic activity. This effect was independent 

of adenosinergyc system, as the anti-epileptic effect of 

guanosine is not altered by co-treatment with 

teophylline (a non-selective adenosine receptors 

antagonist) [72]. 

  
Ischemia 

 

Brain ischemia is the major cause of disability 

worlwide, and the reduction in blood flow associated 

with ischemic events in the brain leads to a decrease in 

oxygen and glucose supplies in the affected area, 

resulting in cellular bioenergetics faillure followed by 

excitotoxicity and oxidative stress events [73].  

Neuroprotective effect of guanosine was evaluated 

in several models of brain ischemia. In a perinatal 

hypoxia-ischemia (HI) model, neonatal rats (P7) were 

subjected to an unilateral occlusion of the common 

carotid artery and exposed to an hypoxic athmosphere 

(8% O2, 92% N2) for 1.5h, resulting in reduced 

glutamate uptake 3 to 5 days after the insult. Guanosine 

treatment immediately before, immediately after, 24h 

and 48h after HI recovered HI-induced reduction in 

glutamate uptake [74]. Following this study, the same 

group showed that the first guanosine administration 6h 

after HI also induced an increase in glutamate uptake 

[75]. Moreover, different protocols of guanosine 

treatment protected adult rats from neurological 

damages associated with unilateral middle cerebral 

artery occlusion (MCAO), improving gait disturbances 

and spontaneous activity, and reducing infarcted area 

[76-78]. 

Reduction in cerebral blood flow is a pathological 

feature of chronic cerebral hypoperfusion, which is 

associated with neurological vascular diseases and 

acounts for 10-50% of all dementias worldwide [79, 

80]. An usefull model to study cerebral hypoperfusion 

is the permanent bilateral occlusion of common carotid 

arteries in adult rats, ensuing progressive and long-

lasting neuronal damage and cognitive deficits [81-83]. 

Using this model, Ganzella and coworkers [57] found 

that oral guanosine treatment for two weeks after the 

hypoperfusion induction reverses the lost of pyramidal 

neurons and the increase in glial fibrillar acidic protein 

(GFAP) at hippocampal CA1 region, but has no effect 
over cognitive deficit induced by permanent bilateral 

occlusion of common carotid arteries. 

Guanosine treatment also protects rats subjected to 

permanent cortical focal ischemia induced by 

thermocoagulation [84, 85]. This model leads to an 

impairment of the forelimb function and an increase in 

lipid peroxidation in the infarcted area, and guanosine 

treatment recovered these alterations. Furthermore, 

guanosine reduces cortical infarcted area by 40% and 

decreases neuronal degeneration. Guanosine also 

prevents the increase in reactive oxygen species (ROS) 

and reactive nitrogen species (RNS) levels, and 

increases the function and expression of important 

antioxidant defenses decreased by focal ischemia, like 

glutatione and superoxide dismutase (SOD). Regarding 

inflammatory pathways, guanosine reduces microglia 

activation induced by focal ischemia, and restores 

inflammatory mediators levels, like tumor necrosis 

factor (TNF-α), interferon-gamma (INF-γ) and 

interleukins, IL-1 IL-6 and IL-10 both in the CSF and 

infarcted area [85]. These neuroprotective effects are 

observed in a guanosine treatment protocol that 

initiates soon after thermocoagulation, pointing to a 

possible use of guanosine in clinical treatments 

performed immediately after ischemic damage.   

  

Parkinson’s disease 
 

Parkison’s disease (PD) is a neurodegenerative 

disorder characterized by massive dopaminergic 

neuronal death at substantia nigra pars compacta (SNc), 

causing motor symptoms like bradykynesia, rigidity 

and postural difficulties [86]. In a parkinsonism rodent 

model induced by administration of a proteasome 

inhibitor, guanosine decreases neuronal apoptotic cell 

death and increases dopaminergic neurons at SNc, 

accompanied by an improvement of motor symptoms 

(i.e. reduction of bradykinesia) [87].  

Recently, a metabolomic analysis of PD-related 

alpha-synuclein A53T transgenic mice suggested that 

the interaction effect of aging and genotype disturbed 

only guanosine levels in the brain, amongst more than 

200 metabolites analyzed. This study observed lower 

levels of guanosine in young A53T transgenic mice (3 

month-old) compared with age-matched non-

transgenic controls. There is no alteration of guanosine 

levels between young and old (18-month-old) non-

transgenic mice. However, aged A53T transgenic mice 

showed increased guanosine levels compared to young 

transgenic mice. The authors suggest that increased 

guanosine levels in aged transgenic mice might 

represent a protective mechanism against 

neurodegeneration [88]. However, it is important to 
consider that these observations were obtained from the 

whole brain analysis, whereas neurodegeneration in PD 
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patients and in this mouse model may be more 

restricted to basal ganglia structures and more 

specifically to the loss of dopaminergic nigrostriatal 

neurons [89]. Moreover, alterations in purines 

metabolism may be considered as biomarkers for PD 

diagnosis. Analyzed plasma samples from PD patients 

showed significantly reduced levels of uric acid, the 

end-product metabolite of purines catabolism (Fig. 1) 

[90]. 

 

 

 

 

Figure 1. Guanine-based purines catabolism. GTP, GDP and GMP are hydrolyzed sequentially by nucleotidases (or ecto-

nucleotidases, when produced extracellularly), generating guanosine (GUO). Ecto-NTPDase (or apyrase) metabolizes GTP and 

GDP to produce GMP. Guanosine is hydrolyzed by PNP generating the purine base guanine (GUA). By action of a guanine 

deaminase, guanine is converted to xanthine and sequentially to uric acid by action of a xanthine oxidase. The salvage purines 

pathway enzyme HGPRT produces GMP or IMP from condensation of GUA or hypoxanthine with 5 -́phosphoribosyl, 

respectively (blue arrows). Ecto-NTPDase, ecto-nucleotide diphosphohydrolase; HGPRT, hypoxanthine-guanine 

phosphoribosyltransferase; PNP, purine nucleoside phosphorylase.  

 

 

 

Alzheimer ś disease  

 
The possible neuroprotective effect of guanosine in a 

mouse model of Alzheimer’s disease is currently under 

investigation in our laboratory. Preliminary data  

indicates that guanosine (8 mg/kg, i.p.) treatment for 

two weeks prevents the increase in sodium-

independent hippocampal glutamate uptake induced by 

i.c.v. infusion of β-amyloid1-40 peptide in mice 

(Lanznaster et al., unpublished data), pointing to a 

modulatory effect of guanosine against glutamatergic 

toxicity induced by β-amyloid. 

 

Hepatic encephalopathy 

 

Hepatic encephalopathy (HE) is a neurological 

condition associated with a cognitive impairment 

initiated by liver dysfunction, where ammonia is the 

major toxin. In animal models, the ammonia leads to an 

alteration in glutamate neurotransmission, increasing 

the levels of extracellular glutamate [91, 92]. The 

neuroprotective effect of guanosine was evaluated in 

rats subjected to bile duct ligation (BDL), an animal 

model of HE [93]. Guanosine (7.5 mg/kg, i.p.) 

treatment for 7 consecutive days from 2 weeks after 

surgery reverses BDL-induced cognitive impairment, 

without producing changes in ammonia levels. This HE 

model increases CSF glutamate levels and oxidative 

stress in the striatum and hippocampus, and guanosine 

restored most of these alterations, which may be related 

to the cognitive recovery induced by guanosine.  

 

Sepsis 

 

Sepsis induction performed by cecal ligation and 

perforation results in an increase in oxidative stress in 

the hippocampus, striatum, cerebellum and cerebral 

cortex. One single guanosine administration (8 mg/kg, 

i.p.) reduces lipid peroxidation induced by sepsis. 

Guanosine treatment for 10 consecutive days reduces 

cognitive impairment and depressive-like behavior 

induced by sepsis [94], suggesting that the 

neuroprotective effect of guanosine might be related to 

its ability to reduce lipid peroxidation in the brain. 

 
Spinal cord injury 

  

Guanosine administration was able to recover 

locomotor activity in rats subjected to a moderate spinal 

crush damage and a chronic traumatic spinal cord 

injury [95]. After spinal cord injury, remyelination of 

damaged area is critical for functional recovery [96-

100]. Guanosine treatment increases bromo-deoxy-

uridine (BrdU) incorporation in spinal cord slices, a 
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marker for cell proliferation, atributable to an increase 

in the number of oligodendroglial progenitor cells. 

Increase in progenitor cells induced by guanosine is 

accompanied by the presence of mature 

oligodendrocytes at damaged area, allowing axonal 

remyelination and enhancing functional recovery [95, 

101].  

 

Neurogenic effects of Guanosine  

 

Some of guanosine therapeutic effects are due to its 

trophic actions, as guanosine induces increase in cell 

proliferation and neurogenesis. Active adult 

neurogenesis occurs in two areas of the brain: (i) the 

subgranular zone (SGZ) in the dentate gyrus of the 

hippocampus, and (ii) the subventricular zone (SVZ) of 

the lateral ventricles where neuroprogenitor/stem cells 

initially reside and proliferate prior to migration and 

differentiation [102, 103]. Systemic administration of 

guanosine for eight weeks (8 mg/kg) stimulates 

neuroprogenitors proliferation in the SVZ in a mice 

model of Parkinsonism [87]. The effect of guanosine 

treatment was accompanied by an increased number of 

fibroblast growth factor (FGF-2)-positive cells which is 

an important regulator of neuroprogenitor/stem cell 

proliferation, survival and differentiation [104]. Future 

studies might investigate if this proliferative effect of 

guanosine is followed by increased cell survival and 

differentiation.  

 

Antinociceptive effects of Guanosine  

 

The antinociceptive effect of guanosine was 

demonstrated in nociception animal models, both in 

rats and mice. In a neuropathic pain model induced by 

chronic sciatic nerve constriction in rats, guanosine 

treatment reduced thermic hyperalgesia and motor 

deficit and prevented weight lost [105]. Guanosine 

reduces nociception in several pain models, as  i.p. 

injection of acetic acid, formalin, glutamate or 

capsaicin. Guanosine also inhibits nociception induced 

by non-NMDA receptor agonists administered via 

intrathecal. Mice treated with guanosine showed 

increased latency when exposed to the hot plate test 

[56]. Nociceptive behavior associated with the hot plate 

test (i.e., jumping and liking the hind paws) is 

considered to be organized supraspinally [106]. Taken 

togheter, these results suggest that systemic guanosine 

acts at central structures, once guanosine treatment 

increases mice latency at the hot plate test and inhibit 

nociception induced by central administration (i.e. at 
spinal cord) of nociceptive substances [56]. In 

agreement with these findings, previous studies showed 

that guanosine levels on central structures rises after 

minutes of intraperitoneal administration [59, 60, 105]. 

Moreover, central (i.c.v.) administration of guanosine 

in mice presented antinociceptive effect against 

chemical (glutamate- and capsaicin-induced liking 

behavior) and thermal (tail flick and hot plate) 

nociceptive models [107], reinforcing the hypothesis of 

a CNS action of guanosine in order to promote its 

antinociceptive effect. 

 

Guanosine effects on neuropsychiatric disorders 

 
Anxiety 

 

Guanosine administration promoted anxiolytic-like 

behavior in mice and rats. Guanosine added to the mice 

drinking water during two weeks increased head-dips 

and crossings in the hole-board behavior test when 

compared to the effect observed with the administration 

of Diazepam, a classical anxiolytic drug [54, 108]. 

Administration of guanosine i.p. in rats increased time 

spent in the open arms of the elevated plus-maze 

behavior test also compared to Diazepam, confirming 

an anxiolytic-like behavior induced by guanosine 

[109]. 

 

Depression 

 

Depression is a leading cause of disability worldwide. 

Recently, there is increasing evidence supporting a role 

for glutamate transmission in the etiology and 

treatment of depression and the use of compounds that 

modulate glutamatergic system such as Ketamine, has 

demonstrated to produce a rapid-acting antidepressant 

effect [110]. Guanosine treatment has been show to 

present similar biological effects of ketamine ensuing 

fast antidepressant effect and possible modulation of 

NMDA receptors. A single oral administration of 

guanosine (0.05 – 5 mg/kg) in mice resulted in 

antidepressant-like activity in the forced swimming and 

tail suspension tests [111]. To date there are no studies 

of chronic use of guanosine in depression. Increasing 

adult neurogenesis is a promising line of research 

against depression (for a revision see [112] and studies 

have suggested that neurotrophins are involved in the 

neurogenic action of antidepressants [113]. Guanosine 

neurotrophic effect and further activation of 

intracellular pathways may enhance neuroplasticity and 

neurogenesis contributing to a long-term sustained 

improvement of antidepressant-like effect in rodents.  

Recently, several studies have associated  mood 
disorders with stressful lifetime events (for a revision 

see [114]). Mice subjected to acute restraint stress (a 7 
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h-immobilization period, restraining every physical 

movement) presented an increase in immobility time, a 

parameter of depressive-like behavior analyzed in the 

forced swimming test. A single dose of guanosine (5 

mg/kg, p.o.) reversed this depressive-like behavior and 

decreased stress-induced increase in hippocampal 

TBARS. Guanosine also prevented alterations induced 

by stress in the antioxidant enzymes catalase, 

glutathione peroxidase and glutathione reductase, 

confirming guanosine ability to modulate antioxidant 

system in the brain [58]. 

 
Schizophrenia 

 

Using a mouse model of schizophrenia with 

administration of MK-801, Tort el al. [115] 

demonstrated some anti-psychotic effect of guanosine. 

MK-801 is an uncompetitive antagonist of the NMDA 

receptor that induces hyperlocomotion in mice. 

Approximately 20 min after i.p. MK-801 

administration, mice presented an increase in their 

locomotor activity. Guanosine pretreatment (30 min 

before MK-801) decreased about 60% of this altered 

locomotor behavior. Authors also showed that 

guanosine did not change the hyperlocomotion induced 

by caffeine or amphetamine, indicating a direct 

guanosine action over the glutamatergic transmission 

in this model. 

Table 1 summarizes guanosine effects observed in 

animal models of neurodegenerative diseases or mood-

related disorders. 

 

 

Table 1. Summary of Guanosine in vivo and in vitro effects 

 

In vivo effects Experimental approach References 

Neuroprotection   

Prevented seizures and EEG changes induced by quinolinic acid Mouse [53]; [54]; [55]; [69] 

Improved motor disturbances and neural damage associated with 

ischemia/hypoxia models 
Rat [74]; [76]; [52]; [84] 

Reduced motor deficit and dopaminergic neuronal loss in a parkinsonism 

model 
Mouse [87] 

Reversed cognitive impairment and oxidative parameters induced by a 

model of hepatic encephalopathy 
Rat [93] 

Inhibited TBARS increase and cognitive deficit associated with sepsis Rat [94] 

Increased motor recovery, proliferation of progenitor cells and 

remyelination in spinal crush model 
Rat [95]; [101] 

 

Neurogenic effects  
  

Stimulated neuroprogenitors proliferation in the SVZ and increased 

number of FGF-2-positive cells 
Mouse [87] 

Antinociception   

Prevented nociception induced by acetic acid (i.p.) and by formalin, 

capsaicin or glutamate (i.pl.); increased latency at hot plate test 
Mouse [105] 

Reduced thermic hyperalgesia and motor deficit associated with sciatic 

nerve constriction 
Rat [70] 

Anxiolytic    

Increased head-dips and crossings in the hole-board model Mouse [54] 

Increased time spent in the open arms of the elevated plus-maze task Rat [109] 

Antidepressant   

Reduced immobility time in forced-swimming and tail suspension tests  Mouse 
[58]; [111] 

 

In vitro effects   

Neuroprotective   

Prevented the reduction of glutamate uptake induced by ischemia or   

glucose deprivation 

Cortical  slices 

Hippocampal slices 

C6 astroglial  cells 

[120] 

[121]; [122]; [124] 

[125] 
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Protected from glutamate toxicity by reducing iNOS and oxidative stress     
Hippocampal slices 

HT22 cells 

[126]; [127] 

[128] 

Reduced oxidative damage by increasing antioxidant enzymes and HO-1 

expression 

SH-SY5Y cells 

C6 astroglial cells 

[129] 

[130] 

Prevented increase in proinflammatory mediators induced by ischemia, 

oxidative damage or inflammatory agents 

Hippocampal slices 

C6 astroglial cells 

Cultured mouse microglia 

[124] 

[130] 

[136] 

Protected from apoptosis induced by staurosporine, Aβ  and MPP+ 
Culture rat astrocytes 

SH-SY5Y cells 

[158] 

[132]; [134] 

Inhibited oxidative damage and apoptosis induced by Aβ oligomers SH-SY5Y cells [135] 

Neurotrophic   

Induced cell proliferation, synthesis and release of FGF-2 and NGF 
Cultured rat astrocytes 

 

[42]; [140]; [141]; 

[142] 

    Promoted  neurite outgrowth PC12 cells [143]; [144] 

Altered laminin and fibronectin from punctual to fibrillar organization 
Cultured cerebellar 

astrocytes 
[145] 

Increased the number of neurons  Cultured cerebellar neurons [39] 

Increased cell proliferation and BNDF mRNA levels Neural stem cells [62] 
Abbreviations: Aβ, amyloid-beta peptide; BDNF, brain-derived neurotrophic factor; EEG, electroencephalogram; FGF-2, fibroblast growth factor-2; 

HO-1, heme oxigenase 1; iNOS, inducible nitric oxide synthase; i.p.: intraperitoneal; i.pl.: intraplantar; MPP+, 1-methyl-4-phenylpyridinium; NGF, 
nerve growth factor; TBARS, thiobarbituric acid reactive substances; SVZ, subventricular zone.   

 

 

In vitro effects of Guanosine  

 

Neuroprotective effects of Guanosine  

 
Ischemia  

 
In vitro studies are a useful tool in order to elucidate 

the mechanisms of neuroprotective effects of 

guanosine. High levels of guanine-based purines were 

found during and after hypoxia or hypoglycemia, 

mainly guanosine [41, 42]. Moreover, the evidence 

that astrocytes exposed to hypoxic or low glucose 

environment increases guanosine levels in the 

extracellular space [116] prompted researchers to 

assess the neuroprotective role of guanosine in in vitro 

ischemic models.  

Oxygen glucose deprivation (OGD) in brain slices 

is an in vitro ischemia model largely used in the 

literature to study putative neuroprotective agents [117, 

118]. In hippocampal slices, where the neuroprotective 

effect is a resultant from interactions between neurons 

and glial cells, guanosine promoted neuroprotection 

against OGD when added to the re-oxygenation period 

[119].  

The neuroprotective effects of guanosine may be 

related to its ability of stimulating glutamate uptake in 

situations of ischemic damage, as demonstrated in 

cortical slices subjected to OGD [120]. This finding 

was further confirmed from our group by 

demonstrating that modulation of glutamate uptake by 

guanosine was related to its mechanism of 

neuroprotection in rat hippocampal slices subjected to 

OGD [121]. Another study found that guanosine 

increased glutamate uptake in hippocampal slices from 

young rats (10 days) but it did not show any changes in 

hippocampal slices from adult rat slices subjected to 

OGD [122]. This discrepancy may be due to protocols 

differences. While we used a protocol of 15 min of 

OGD followed by 2 hours of re-oxygenation [121], 

Thomazi and colleagues [122] used a protocol of 1 hour 

of OGD followed by 1 or 3 hours of re-oxygenation. It 

is important to note that shorter OGD protocols are 

more compatible with pathological ischemic situation 

in humans.  

Other effects of guanosine treatment in 

hippocampal slices subject to OGD include antioxidant 

effects by reducing oxidative parameters (i.e ROS 

production) and preventing mitochondrial membrane 

depolarization in CA1 region of hippocampal slices 

subject to OGD. Moreover, guanosine regulates 

inflammation by inhibiting p65 (active subunit of NF-

κB transcription factor) translocation to the nucleus and 

reducing inducible Nitric Oxide Synthase expression 

[123, 124]. Recent findings demonstrated that 

guanosine reduces nitric oxide (NO) levels and displays 

similar protection to neuronal NOS (nNOS) or iNOS 

inhibitors against OGD (Thomaz, Dal-Cim, Tasca et 

al., unpublished data), suggesting a mechanism of NOS 

inhibition involved in the neuroprotection promoted by 

guanosine against ischemia. 
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Figure 2. Overview of the main mechanisms involved in the neuroprotective effects of guanosine. Guanosine 

promotes neuroprotection through reduction of reactive oxygen species levels (ROS) by inhibition of nuclear factor 

kappa B (NF-κB) activation via MAPK/ERK and by preventing iNOS induction (1) [124]. Guanosine also counteracts 

ROS production by increasing antioxidant defenses [i.e. superoxide dismutase (SOD) activity and glutathione (GSH) 

and Heme-oxygenase (HO-1) levels] (2) [58, 84, 129, 130, 137]. Activation of PI3K/Akt, PKC and MAPK/ERK by 

guanosine leads to stimulation of glutamate transporters activity (3) [124-126]. Guanosine recovers glutamate 

transporters functionality and increases glutamine synthetase (GS) activity, thus reducing extracellular levels of 

glutamate and protecting from glutamate excitotoxicity (4) [152]. The inhibition of calcium-dependent (big) conductance 

potassium (BK) channels and activation of A2AR inhibits guanosine-induced increase in glutamate uptake (5) [124]. 

Guanosine promotes cell viability recovery by modulation of BK channels, A1R and A2AR [121, 124, 129]. A specific 

binding site for guanosine was identified as a putative GPCR (or GPR23), but this “guanosine receptor” (GuoR) was not 

yet fully characterized and its involvement in the neuroprotective effects of guanosine was not evaluated (6) [149, 150]. 

Figure designed using images from www.servier.com/Powerpoint-image-bank. 

 

 

Cells lineages and primary cells cultures subjected 

to ischemic damage were also used in order to evaluate 

guanosine-induced neuroprotection. Guanosine was 

effective in preventing cell death induced by OGD in a 

neuroblastoma lineage, SH-SY5Y cells [76]. In a 

model of glucose deprivation in an astrocytoma cell 

lineage (C6 astroglial cells) guanosine increased 

glutamate uptake, expression of  neuronal glutamate 

transporter EAAC1 and glutamine synthase activity, 

resulting in neuroprotection [125]. However, in 

primary cultures of cortical astrocytes, we have 

observed that guanosine protects from OGD by 

increasing glutamate uptake without altering the 

protein levels of GLT-1 transporter – the most effective 
glutamate transporter present in astroglial cells (Dal-

Cim et al, unpublished results). Further studies, 

including the evaluation of expression or distribution of 

glutamate transporters might help to clarify the 

mechanisms evoked by guanosine in the modulation of 

glutamate transport in ischemic situations. 

 

In vitro glutamate challenge   
 

Evaluation of putative guanosine protection against 

glutamatergic excitotoxicity in vitro demonstrated that 

guanosine (100 µM) prevents glutamate damage to 

hippocampal slices by decreasing glutamate release 

and preventing iNOS induction [126]. Guanosine 

treatment was also able to attenuate glutamate-induced 

increased ROS production and decrease glutamate 
uptake in brain slices from adult rats [127]. Glutamate 

toxicity induced oxidative damage in the 

http://www.servier.com/Powerpoint-image-bank
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neuroblastoma cells HT22 and treatment of these cells 

with cGMP showed that the metabolites GMP and 

GUO are more effective in affording protection that 

cGMP. In the same study, it was demonstrated that 

guanosine protected from glutamate toxicity by 

increasing the levels of the cystine/glutamate antiporter 

system (Xc-), which is involved in maintaining the 

intracellular cysteine levels for glutathione synthesis 

[128].   

These studies evaluating the role of guanosine 

against ischemic damage and glutamate toxicity added 

key information about the intracellular mechanisms 

evoked by guanosine and its ability to counteract events 

involved in neurodegeneration, as clearance of 

glutamate from the extracellular space, reduction of 

inflammation, activation of antioxidant defenses, and 

maintenance of mitochondria bioenergetics.    

 

Mitochondrial stress  

 

Using an in vitro protocol that evoked mitochondrial 

activity disruption induced by blockade of 

mitochondrial complexes I and V activity in SH-SY5Y 

neuroblastoma cells, we have shown that guanosine (at 

1 mM for 24 hours treatment) can afford cytoprotection 

through induction of the antioxidant enzyme heme-

oxygenase-1 [129]. Heme-oxygenase-1 was also 

involved in ability of guanosine to counteract oxidative 

and nitrosative stress and  pro-inflammatory cytokines 

increase in C6 astroglial cells treated with an inhibitor 

of complex IV (i.e. azide)  [130]. 

 

Parkinson ś disease 
 

An in vitro model to study the mechanisms of cell 

death associated with Parkinson’s disease was assessed 

by using MPP+ (1-methyl-4-phenyl pyridinium), the 

active metabolite of the neurotoxin 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) that 

accumulates in the mitochondria and inhibits complex 

I activity and ultimately causes cell death [131]. 

Guanosine reverted apoptosis as assessed by DNA 

fragmentation and caspase-3 activity induced by MPP+ 

in SH-SY5Y neuroblastoma cells [132]. However, in 

another in vitro model of Parkinson’s disease where C6 

astroglial cells are exposed to 6-hydroxidopamine, 

guanosine treatment was not able to reduce apoptosis 

levels assessed by apoptotic nuclei and 

oligonucleosome formation, despite promoting an 

improvement in reductive capacity of the cells [133]. 

 
Alzheimer ś disease and neuroinflammation  

 

Few studies evaluated the neuroprotective effects of 

guanosine in in vitro models for Alzheimer's disease 

by using β-amyloid peptides or also by inducing 

neuroinflammation. Treatment of SH-SY5Y 

neuroblastoma cells with guanosine protected cells 

against β-amyloid-induced apoptosis and ROS 

production [134, 135]. Guanosine also prevented 

increased β-secretase activity and increased β-

amyloid1-42 levels induced by oxidative stress in SH-

SY5Y cells [135]. 

In microglial cells exposed to β-amyloid1-42 

guanosine prevented the expression and functionality 

of CD40 receptor (cell receptors associated with 

inflammatory events) by counteracting interleukin-6 

(IL-6) production induced by pro-inflammatory agents 

such as TNF-α [136]. A recent study showed that 

guanosine prevented lipopolysaccharide (LPS)-

induced inflammatory and oxidative damage in 

hippocampal astrocytes in culture and decreased pro-

inflammatory levels of TNF- α and NF-κB by heme-

oxygenase-1 induction [137].  

As discussed above, guanosine displays protective 

role in in vitro protocols of glutamate challenge, 

mitochondrial stress, models of ischemia, Parkinson's 

and Alzheimer's diseases and neuroinflammation. 

From these studies can be stated that the mechanism of 

guanosine protection against neurodegeneration are 

related to its ability of modulating the glutamate 

transport, counteracting oxidative stress, preventing 

inflammatory damage, thus culminating in prevention 

from apoptosis. Fig. 2 presents evidence of 

neuroprotective mechanisms mediated by guanosine. 

 

Neurotrophic effects of Guanosine  

 

In the CNS, extracellular guanosine stimulates trophic 

effects on astrocytes and neurons [116, 138, 139]. 

Guanosine neurotrophic effects are depicted in Fig. 3. 

The neurotrophic effect of guanosine treatment 

(300 µM for 24 hours) in increasing cell proliferation 

on cultured astrocytes was mediated by guanosine-

induced adenosine release [116]. Guanosine also 

stimulates cultured astrocytic cells to increase synthesis 

and release of neurotrophic factors such as FGF-2 and 

neuron growth factor (NGF) [140, 141]. In 

pheochromocitoma (PC12) cells, guanosine treatment 

(300 µM for 48 hours) was able to enhance NGF-

induced neurite arborization outgrowth [141, 142]. In 

fact, guanosine (500 µM) have been show to induce 

cellular protection through neurite arborization 

outgrowth in cultured cerebellar neurons and in PC12 
cells subjected to hypoxia [143]. 
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Figure 3. Schematic illustration of the neurotrophic effects of guanosine. In astrocytes cerebellar cultures guanosine promotes the 
reorganization of extracellular matrix proteins fibronectin and laminin (photomicrographs from Decker H. and colleagues [145]) via 

CaMKII, PKA, MAPK/ERK, PKC and PI3K/AKT activation (1) [145]. Guanosine also increases the number of cerebellar neurons in 

culture (or in coculture with astrocytes) by activation of these kinases. This guanosine neurotrophic effect involves A2AR activation and 
it is also dependent on NMDAR and Kainate receptors activation (2) [39]. In neural stem cells guanosine increases intracellular cAMP, 

CREB phosphorylation and BDNF mRNA levels (3) [62]. Guanosine promotes neurite outgrowth in cerebellar neurons culture by PKC 

activation (4) [143] and in PC12 by heme-oxygenase (HO-1) induction (5) [144]. In cultured astrocytes, guanosine promotes cellular 
proliferation (6) [116] and synthesis and release of neurotrophic factors, as FGF-2 and NGF (7) [141]. These neurotrophic effects of 

guanosine may be involved in cell survival. Figure designed using images from www.servier.com/Powerpoint-image-bank. 

 

 

 

Treatment of PC12 cells with guanosine (300 µM) 

plus NGF promoting neurite outgrowth involved the 

induction of the antioxidant enzyme heme-oxygenase-

1 and increased intracellular levels of cGMP [144]. 

These results showed that guanosine elicits an 

antioxidant response in these cells at the same 

concentration range (micromolar) it evokes 

neurotrophic and neuroprotective effects in vitro, 

suggesting these mechanisms may be interconnected.  

The trophic effects of guanosine were also 

evaluated in neurons cocultured with astrocytes 

pretreated with guanosine (100 µM for 24 hours) in 

order to address a guanosine role on neuron-astrocytes 

interaction, a highly dynamic and reciprocal process. 

We observed that guanosine increased the number of 

cerebellar neurons in a neuron-astrocyte coculture and 

this effect was attributed to an action of guanosine 

modulating the extracellular matrix proteins, such as 

laminin and fibronectin organization [145]. 

Additionally, in a cerebellar neuronal culture treated 

with guanosine it was observed an increase in neurons 

number in culture. Similar results were observed when 

cerebellar neurons were cultured in a guanosine-treated 

astrocytic-derived conditioned medium [39]. 

Therefore, even a direct effect on neurons or via soluble 

factors released by astrocytes, guanosine promoted 

increased adhesion of neurons in culture. These 

guanosine effects may have an important role in 

neuronal migration and cell proliferation. Indeed, in 

neural stem cells culture from the SVZ, guanosine 

treatment (100 μM) was able to increase cell 

proliferation. The effect of guanosine was accompanied 

by increased expression of brain derived neurotrophic 

factor (BDNF) [62].  

Guanosine neuroprotective effects observed in in 

vitro experimental approaches of neurotoxicity and 

guanosine neurotrophic effects cells cultures are 

summarized in Table 1. 

 

 

 

 

http://www.servier.com/Powerpoint-image-bank
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Guanosine-evoked cell signaling  

 

In this section, we discuss the putative interaction sites 

for guanosine in cellular membranes and the 

intracellular signaling pathways involved in the 

biological effects of guanosine.  

 

Putative protein targets  

 

There is still not a clear definition of a target receptorial 

protein specific to guanosine, since the “guanosine 

receptor” has not yet been identified. However, 

selective binding sites for guanosine were already 

demonstrated in rat brain membranes [146, 147]. 

Incubation of [3H]guanosine with total rat brain 

membranes preparations led to the identification of a 

single high affinity binding site for guanosine, with a 

dissociation constant (Kd) of 95.4 ± 11.9 nM and an 

apparent number of maximmal binding sites (Bmax) of 

0.57 ± 0.03 pmol/mg protein. Both association and 

dissociation kinetics were rapid, which is characteristic 

of natural compounds binding to theirs receptors [146]. 

Other guanine-based purines and guanosine 

metabolites were not potent displacers of guanosine 

binding, neither did adenosine or the non-selective 

adenosine receptors antagonists caffeine and 

theophylline [147]. Drugs that inhibit the purine 

transporters systems were also investigated, since 

guanosine could bind to these proteins. 

Nitrobenzylthioinosine, an inhibitor of equilibrative 

nucleosides transporter, showed a small but no 

significant displacement at 10 µM, and 

nitrobenzylthioguanosine (a nucleosides transporter 

inhibitor) and propentofylline (adenosine reuptake 

inhibitor) had any effect on guanosine binding. 

Incubation of rat brain membranes with pertussis toxin 

(PTX), an inhibitor of Gαi family proteins, reduced 

guanosine binding in 45% [147]. Additionally, by using 

a novel GTP-binding assay Volpini and coworkers 

identified a specific GPCR activated by guanosine that 

is different from the well-characterized adenosine 

receptors  [148]. Taken togheter, these data point to the 

existence of a selective and putative guanosine receptor 

in rat brain membranes, although this protein was not 

isolated, sequenced, cloned and consequently there are 

no studies on structural prediction.    

More recently, the receptor GPR23 is as a new 

candidate suggested for guanosine.GPR23 is one 

receptor for lysophosphatidic acid (LPA), identified as 

the LPA4 receptor. A communication from Di Liberto 

et al., [149] reported that guanosine reduces cell 
proliferation in a glioma cell line (U87), and the 

silencing of GPR23 decreased this effect. In the other 

hand, increasing GPR23 expression also increased 

guanosine antiproliferative effect. Radioligand binding 

assays revealed that overexpression of GPR23 increase 

guanosine binding to membrane fractions, and that both 

LPA and guanine were 10 times less effective than 

guanosine in displacing [3H]-guanosine binding to 

GPR23. Another meeting communication reported 

GPR23 expression and [3H]-guanosine binding in 

different brain areas and they found that cerebral cortex 

has the higher GPR23 expression and the maximal 

[3H]guanosine affinity binding site. Affinity binding 

site rank order for all tested areas was cortex > 

hippocampus > striatum > spinal cord [150]. Together 

these data suggest that GPR23 may represent a 

membrane target for guanosine, without discarding the 

possibility of guanosine interaction with other 

membrane proteins. Hereafter, we will discuss other 

putative target sites to guanosine interaction.  

  

Glutamate transporters or receptors 
 

Guanosine ability to modulate glutamatergic system 

was demonstrated by different groups, as previously 

discussed. Guanine nucleotides (namely GTP, GDP 

and GMP) have been shown to act as antagonist of 

glutamate receptors (for review see [14, 25] however 

guanosine had no effect on glutamate and analogs 

binding to glutamate receptors [54, 151] .  

Since guanosine increases glutamate uptake in 

different models reviewed here, glutamate transporters 

could represent a target for guanosine interaction. We 

have first identified the effect of guanosine on 

promoting glutamate uptake [121, 124] and reducing 

glutamate release [126] through intracellular signalling 

pathways (see discussion in the next section), 

suggesting that this glutamatergic modulation is 

secondary to an intracellular signalling pathway 

activated by guanosine. However, it also appears that 

guanosine interacts directly with glutamate 

transporters, once results from our laboratory showed 

that the presence of synthetic glutamate transporters 

inhibitors abolished the reduction of glutamate release 

promoted by guanosine [152]. To date, to the best of 

our knowledge, studies evaluating a direct interaction 

of guanosine with glutamate transporters were not 

reported.     

    

Adenosine receptors  

 

Guanosine effect over adenosinergic system is 

controversial. Caffeine, an adenosine receptor 
antagonist, reversed the anxiolytic-like behavior 

induced by guanosine in rats [109], but caffeine failed 
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to inhibit guanosine antinociceptive effect against 

capsaicin i.pl. [107], and the anticonvulsant effect of 

guanosine on QA-induced seizures in mice [53]. 

Furthermore, caffeine had no effect on guanosine 

binding to rat brain membrane preparations [147]. 

Regarding the effect of selective adenosine receptors 

antagonists, DPCPX an A1R antagonist, inhibited 

guanosine antinociceptive effect in the capsaicin-

induced pain model, but the same effect was not found 

when treating with SCH58261 an A2AR antagonist [56].  

Trophic effects of guanosine on cultured cerebellar 

neurons had suggested an interaction with adenosine 

A2AR, since the antagonist ZM241385 abolished 

guanosine-induced increase in neuronal adhesion [39].  

An in vitro evaluation of guanosine cytoprotective 

effect in a human neuroblastoma cell line (SH-SY5Y) 

subjected to mitochondrial oxidative stress was 

abolished by both adenosine A1R and A2AR antagonists 

(DPCPX and ZM241385, respectively)[129]. We also 

demonstrated that A1R mediates the neuroprotective 

effect of guanosine in hippocampal slices subjected to 

OGD, as DPCPX reversed guanosine-induced decrease 

in ROS formation and mitochondrial membrane 

potential, although DPCPX did not interfere with 

guanosine effect on glutamate uptake. The effect of 

guanosine of recovering glutamate uptake impairment 

caused by OGD was blocked by PTX (showing an 

interaction with a GPCR) and by the activation of A2AR 

by its agonist CGS21680. Thus, adenosine A2AR 

activation, but not the blockade with the antagonist 

ZM241385, inhibited guanosine-induced 

neuroprotective effect observed on cellular viability 

and glutamate uptake [124]. Since we observed that 

A1R blockade or A2AR activation can reverse 

guanosine-evoked neuroprotective effect, we 

hypothesized that guanosine effect may involve an 

interaction with A1R-A2AR oligomers, which are 

known to associate and interact in an antagonistic 

manner [153-155]. A possible interaction of guanosine 

with A1R-A2AR oligomers is currently under 

investigation in our laboratory.  

 

Potassium channels 

 

Participation of potassium (K+) channels activity on 

guanosine-induced effects was also assessed following 

the observation that guanosine was able to modulate K+ 

channels activity and expression. In cultured rat 

cortical astrocytes, chronic exposition (48h) to 

guanosine in high micromolar levels (500 µM) induced 

an increase in activity and expression of functional 
inward rectifier K+ channels [156]. Afterwards, we 

have shown that neuroprotective effect of guanosine 

may depend on K+ channels interaction, since 

charybdotoxin, an inhibitor of the large (big) 

conductance Ca2+-activated K+ channels (BK), 

abolished guanosine-induced increase on cellular 

viability in hippocampal slices subjected to OGD and 

in SH-SY5Y cells subjected to mitochondrial damage 

[121, 129]. This effect seems to be dependent on BK 

channels activity only, because glibenclamide, 

inhibitor of ATP-sensitive K+ channels, or apamin 

inhibitor of small conductance Ca²+-activated K+ (SK) 

channels, had no effect on guanosine-promoted 

neuroprotection, pointing to a selective effect on BK 

channels. BK inhibition also abolished guanosine effect 

of recovering glutamate uptake decrease in 

hippocampal slices subjected to OGD [121].  

Whole cell patch clamp performed in HEK293 

cells transiently transfected with the functional α-

subunit of BK channels showed that guanosine 

promoted K+ conductance that was inhibited by the BK 

inhibitor iberiotoxin. Co-transfection of BK regulatory 

β-subunit did not modify the K+ conductance induced 

by guanosine, suggesting that guanosine may interact 

with the functional α-subunit of BK channels. Also, 

guanosine had no effect on the conductance of small 

conductance Ca2+-activated K+ channel (SK) channels 

[157], suggesting a selective interaction of guanosine 

with BK. 

In conclusion, although there are reports claiming 

the existence of a selective guanosine receptor, several 

studies also demonstrated other putative interaction 

targets for guanosine, as glutamate transporters, 

adenosine receptors and potassium channels. To date, 

there is still puzzling information about guanosine 

selectivity to a protein target, what supports the idea 

that this nucleoside might act as a multi-target 

neuromodulator.    

 

Intracellular signaling pathways  

 

Modulation of glutamate transport   

 

Guanosine effect on modulation of glutamate 

transporter activity has an important neuroprotective 

mechanism against excitotoxicity events.  To 

understand the mechanism by which guanosine 

stimulates glutamate transport, our group investigated 

the intracellular pathways related to the effect of 

guanosine in hippocampal slices subjected to 

glutamatergic excitotoxicity. We found that guanosine 

prevented glutamate release after glutamate challenge 

through activation of the phosphatidylinositol-3 protein 
kinase (PI3K) and protein kinase B (Akt) pathway 

[126]. Additionally, we demonstrated that guanosine 
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stimulated glutamate uptake in hippocampal slices 

subjected to OGD through activation of the PI3K/Akt 

and mitogen-activated protein kinase/extracellular-

regulated kinase (MAPK/ERK) [124, 126]. It has also 

been shown that guanosine stimulated glutamate 

uptake in C6 astroglial cells deprived of glucose by 

activation of PI3K/Akt, MAPK/ERK, protein kinase C 

(PKC) and p38MAPK pathways [125]. Recent findings 

from our group indicated that guanosine stimulates 

glutamate uptake in astrocytic cells derived from rat 

cortex via modulation of MAPK/ERK, PKC and this 

effect did not involve increased GLT-1 levels but 

appears to increase its availability in astrocytes cellular 

membrane (Dal-Cim, unpublished data). Together, 

these studies conclude that the guanosine effect on 

glutamate transporters is dependent of signaling 

pathways activation, which ultimately could be 

modulating the activity, expression or availability of 

these transporters in the cell membrane.  

 
Neuroprotection 

 

Guanosine-induced cell viability also activates several 

signaling pathways including PKC, protein kinase A 

(PKA), MAPK/ERK and PI3K to protect hippocampal 

slices subject to OGD [119]. Guanosine increased 

activation and expression of Akt to protect astrocytes 

in culture against staurosporine (an apoptosis-inducing 

agent) [158], and decreased apoptosis induced by β-

amyloid in cultured human neuroblastoma through the 

activation of PI3K and increased phospho-Akt [134]. 

Protection of guanosine against the blockade of 

mitochondrial complex I and V-induced oxidative 

damage involved activation of PI3K and increased 

activation of downstream targets Akt and GSK3β  

[129]. 

Guanosine also reduced p38MAPK and Jun Kinase 

(JNK) induced by 6-OHDA and increased Akt 

phosphorylation and anti-apoptotic Bcl-2 protein 

expression in SH-SY5Y cells [159].  

In summary, the PI3K/Akt pathway seems to be 

required for neuroprotection evoked by guanosine 

against ischemia [119], apoptosis [134, 158] and 

oxidative damage [129]. 

 

Inflammation  
 

In microglia cell cultures, guanosine reduces 

inflammation and expression of pro-inflammatory 

proteins, an effect associated with the activation of 

PI3K pathway [136]. In hippocampal slices subject to 
OGD guanosine prevented NF-κB activation through 

MAPK/ERK and inhibited iNOS induction by PI3K 

and MAPK/ERK [124].   

Antidepressant-like effect 

 

Most of in vivo studies do not explore the signaling 

pathways involved in guanosine mechanism of action. 

However, Bettio and coworkers [111] have 

demonstrated that guanosine produces antidepressant-

like effect in mice by activation of PI3K/Akt. The 

authors also demonstrated that rapamycin, an inhibitor 

of mammalian target of rapamycin (mTOR) prevent 

the antidepressant-like effect of guanosine, 

demonstrating for the first time the involvement of 

mTOR in the effects of guanosine. 

 

Trophic effects 

 

The intracellular signaling pathways by which 

guanosine promotes trophic effects has also been 

scarcely investigated. Guanosine protected primary 

cerebellar neurons culture from hypoxia and promoted 

neurite outgrowth by activation of PCK-related kinase-

1 (PRK1) [143]. PRK1 is a member of PKC 

superfamily and is activated by interacting with the Rho 

and Rac families of small G-proteins and arachidonic 

acid [160]. In neurons, PRK1 appears to be involved in 

neuronal differentiation [161].  

Guanosine promoted neural stem cells 

proliferation by stimulation of intracellular cAMP and 

phosphorylation of CREB (cAMP response element-

binding protein). Moreover, guanosine treatment 

increased BDNF mRNA levels suggesting  the 

involvement of cAMP/CREB  in neurotrophic effects 

promoted by guanosine [62].   

In coculture of neuron and astrocytes pre-treated 

with guanosine, the inhibition of MAPK/ERK, 

CaMKII, PKC, PI3K or PKA blocked the 

reorganization of extracellular matrix proteins from a 

diffuse to a fibrillar matrix [145]. Furthermore, the 

effect of guanosine in increasing the number of 

cerebellar neurons cultured was also blocked by 

inhibition of ERK, CaMKII, PKC, PI3K and PKA [39].  

Therefore, considering the neuroprotective and 

trophic effects promoted by guanosine, it is imperative 

to identify its membrane binding sites (putative 

receptor or selective target proteins) and understand the 

sequence of cell signaling pathways activation by 

guanosine in order to unravel the mechanisms triggered 

by this nucleoside. The studies discussed in this review 

add important information regarding the mechanism of 

action of guanosine, contributing for its potential use as 
a pharmacological strategy against neurodegenerative 

and neurotoxic events.  
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Implications of guanosine effects towards a clinical 

strategy 
 

Guanosine presents beneficial effects in several rodent 

and cellular models of neurodegeneration, mainly brain 

diseases associated to glutamatergic system unbalance, 

as aging-related disorders, mood-related disorders and 

peripheral damages that affect the CNS. Additionally, 

studies describe guanosine as a safe drug once there is 

no evidence of toxicity after exogenous guanosine 

administration. Recently, an intravenous guanosine 

administration used to evaluate vascular cardiorenal 

effects showed that guanosine may increase adenosine 

release and promote anti-inflammatory vascular effects 

[162]. Also in this study, guanosine per se has little 

effect on basal arterial blood pressure or renal blood 

flow and therefore it would be safer than adenosine for 

in vivo administrations. Nowadays, there is no effective 

treatment for ischemia in humans and the current 

available treatment, the tissue plasminogen activator (t-

PA), is not effective for all patients [163]. Results 

obtained in ischemic models in rodents suggest an 

effectiveness of guanosine during the window of 

treatment opportunity, between the ischemia onset and 

irreversible neuronal death [75]. Taken together, these 

studies suggest guanosine as an interesting putative 

clinical strategy in humans. However, currently there is 

a lack of specific studies on guanosine toxicity and 

distribution after oral administration. 

Recently, statins have been also prescribed after 

ischemia onset in order to prevent vascular damage 

[164]. Atorvastatin is a statin with the classical 

hypocholesterolemic effect and it has been shown to 

modulate glutamate-induced toxicity in vivo [165] and 

in vitro [166], similar to guanosine. Interestingly, 

atorvastatin treatment shows to limit the infarct size in 

ischemic myocardium by activating 5 -́nucleotidase the 

enzyme that produces adenosine or guanosine [167]. 

An additional correlation between the effect of these 

two neuroprotective agents comes from the evidence 

that guanosine may increase cholesterol efflux from 

astrocytes and rat astrocytoma and increase expression 

of apolipoprotein E (ApoE) in astrocytes [168]. The 

guanosine effect of modulating cholesterol levels or 

distribution in cell membranes is still not clear.    

Regarding purines metabolism, it has been 

suggested that drugs that facilitate the salvage pathway 

of purines recycling, as the inhibitor of xanthine 

oxidase activity allopurinol, may represent a clinical 

strategy in refractory epilepsy [169] and as an adjuvant 

therapy for poorly responsive schizophrenia, refractory 
aggressive behavior, and mania [170-173]. This 

mechanism of reducing purines catabolism may 

increase nucleosides levels contributing to the 

beneficial effects observed. Analysis of post-mortem 

PD brains showed increased urate levels, suggesting a 

decreased activity of purines salvage pathway in this 

disease. Recently, metabolomics analysis in a 

transgenic mice model of PD showed decreased levels 

of guanosine in the brain of adult transgenic mice, in a 

period where altered motor symptoms were observed, 

and a recovery of guanosine levels in aged transgenic 

mice [88], what might suggest a compensatory 

mechanism of purines metabolism.   

In vivo human studies have shown higher levels of 

guanosine in patients suffering from chronic pain and it 

is correlated with pain severity [174]. In pregnant 

women levels of GTP and guanosine are increased in 

CSF compared to non-pregnant women and acute pain 

labor is negatively correlated with adenosine levels 

[175]. Taken together, these human studies reinforce 

that purines levels and metabolism modulate the 

organism response to injury.  

The question remains whether guanosine has (or 

not) a selective receptor and present the necessity of 

developing selective pharmacological tools to study 

and modulate the guanine-based purinergic system. 

Currently, several studies are addressing the possible 

targets to guanosine, considering the “orphan ligand” 

guanosine situation. If a guanosine receptor does exist 

[148], it would share some (structural) features with 

adenosine receptors or adenosine receptors-containing 

oligomers [124, 155], regarding adenosine receptors 

antagonist and agonists effects over guanosine actions. 

Additionally, the guanosine interaction with potassium 

channels [119, 121, 124] opens a new mechanism 

related to the neuroprotective effect of guanosine that 

deserves further investigation. It is likely that 

guanosine may have cell-selective effects, as mediating 

inflammatory actions in microglia, increasing 

glutamate uptake in astrocytes and activating K+ 

channels in neuronal cells, therefore orchestrating an 

integrated cellular symphony to promote 

neuroprotection.        

 

Concluding remarks     

 

Guanosine is an endogenous molecule that exerts 

neuroprotection in several disease models; however, its 

mechanisms of action are not well clear. Studies have 

proposed some guanosine receptors to explain the 

protective role of guanosine. However, guanosine may 

also act as a multi-target neuromodulator, because of its 

interaction with others systems, as adenosine receptors, 
glutamate transporters and potassium channels. It is 

feasible that guanosine composes an endogenous 
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modulatory system integrating glutamatergic and 

purinergic transmission, gathering systems that are 

responsible for important plastic effects on the CNS.      

Finally, mechanistic studies on guanosine action 

are necessary to better define the guanine-based 

purinergic system. These evaluations will support the 

future direction of clinical investigations and 

evaluations of safety profile that will support the use of 

guanosine or drugs acting at purines metabolism as 

clinical strategies against neurodegeneration.  
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