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Abstract

Background

Previous studies on the association of enterobiasis and chronic inflammatory diseases have
revealed contradictory results. The interaction of Enterobius vermicularis infection in particu-
lar with gut microbiota and induced immune responses has never been thoroughly
examined.

Methodology/Findings

In order to answer the question of whether exposure to pinworm and mebendazole can shift
the intestinal microbial composition and immune responses, we recruited 109 (30 pinworm-
negative, 79 pinworm-infected) first and fourth grade primary school children in Taichung,
Taiwan, for a gut microbiome study and an intestinal cytokine and SIgA analysis. In the pin-
worm-infected individuals, fecal samples were collected again at 2 weeks after administra-
tion of 100 mg mebendazole. Gut microbiota diversity increased after Enterobius infection,
and it peaked after administration of mebendazole. At the phylum level, pinworm infection
and mebendazole deworming were associated with a decreased relative abundance of
Fusobacteria and an increased proportion of Actinobacteria. At the genus level, the relative
abundance of the probiotic Bifidobacterium increased after enterobiasis and mebendazole
treatment. The intestinal SIgA level was found to be lower in the pinworm-infected group,
and was elevated in half of the mebendazole-treated group. A higher proportion of pre-treat-
ment Salmonella spp. was associated with a non-increase in SIgA after mebendazole
deworming treatment.
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Conclusions/Significance

Childhood exposure to pinworm plus mebendazole is associated with increased bacterial
diversity, an increased abundance of Actinobacteria including the probiotic Bifidobacterium,
and a decreased proportion of Fusobacteria. The gut SIgA level was lower in the pinworm-
infected group, and was increased in half of the individuals after mebendazole deworming
treatment.

Author summary

Whether human pinworm infection plus mebendazole deworming treatment can shift
intestinal microbiota to a composition that is beneficial to the host and influence their
mucosal immune response is currently unclear. In a cohort of 109 primary school chil-
dren, we discovered that Enterobius vermicularis infection is associated with increased
intestinal microbial diversity, a lowered relative abundance of Fusobacteria and an
enriched proportion of Actinobacteria, including the probiotic Bifidobacterium. Mebenda-
zole deworming was found to be correlated with a further increase in bacterial diversity.
However, lower gut SIgA levels were detected in the pinworm infected group, and they
were increased in only half of the subjects after mebendazole treatment.

Introduction

The inverse epidemiology data of parasitosis and autoimmune diseases has led to the hypothe-
sis that childhood exposure to parasites might have protective effects against the development
of allergies and autoimmunity [1]. The immunomodulatory roles of helminth have been well
studied, and several helminth-derived components might regulate the immune system [2, 3].
Enterobius vermicularis (human pinworm) is the most common parasite encountered in devel-
oped countries, and it has been suggested as a good candidate for testing the link between the
“hygiene hypothesis” and disease [4]. In Taiwan, enterobiasis is found in about 0.6-3% of pri-
mary school children [5, 6]. A previous study using peri-anal tape tests and questionnaires
with Taipei primary school children suggested a negative correlation between pinworm infec-
tion and allergic airway diseases [7]. Similarly, enterobiasis has been found to be associated
with a decreased risk of allergic wheezing in Turkish school-aged children [8]. However, a
large population cohort study collecting data of mebendazole prescriptions and chronic
inflammatory diseases in Denmark showed that enterobiasis does not reduce the risk for
asthma, type 1 diabetes (type 1 DM), arthritis, or inflammatory bowel disease (IBD) [9]. These
abovementioned reports lacked mechanistic studies and did not examine the interaction
between pinworm and intestinal microbiota.

The imbalance of pro-inflammatory and anti-inflammatory gut bacteria, or dysbiosis, is
associated with autoimmune diseases such as type 1 DM, IBD, rheumatoid arthritis (RA),
along with pro-inflammatory conditions, such as obesity, atherosclerosis and colon cancer
[10-12]. Since the parasites and intestinal commensal bacteria reside in the same environment,
interaction between these two micro-organisms is conceivable. In humans, it has been
reported that helminth infections may increase intestinal bacterial diversity, and alter the
composition of microbiota [13-15]. Gut microbiota is suspected as causing T helper type 1
(Thl) responses in Trichuris muris infections in mice, and Schistosoma mansoni has been
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suggested to cause Thl-mediated inflammation and granuloma formation via alteration of
microbiota [16, 17]. Furthermore, the protective mucosal immune response against Toxo-
plasma gondii has been reported to be provided by gut microflora that stimulate dendritic cells
[18]. Recently, Ramanan et al. reported that helminth infections may restore the number of
goblet cells via suppression of an intestinal pro-inflammatory Bacteroides species, and thus
protect genetically susceptible mice from the development of Crohn’s disease [19]. Therefore,
the net immunomodulatory effect of pinworm on an individual may be dependent on its inter-
action with that individual’s intestinal microbiota.

In this study, we examined the impact of Enterobius exposure on the composition of gut
microflora, and we investigated the interactions among pinworm, microbiota, and host
immune responses in a prospective cohort of 109 primary school-aged children. Through our
observations of differences in probiotic bacteria abundance and changes in gut levels of the
protective secretory IgA (SIgA), we hypothesized the possible correlations of pinworm and
mebendazole exposure with the inflammation status of the gut.

Methods
Ethics statement

The study cohort consisted of 109 primary school children (1°* and 4™ grades) who had under-
gone pinworm screening in 2015, Taichung, Taiwan. The study was approved by the Research
Ethics Committee of China Medical University Hospital (CMUH104-REC1-115). Written
informed consent was obtained from parents.

Study design

A total of 30 children were tested negative for enterobiasis, while 79 were tested positive by
anal tape screening. In children with positive pinworm anal tape results, additional stool sam-
ples were collected in tipped ova concentration tubes and were stained and fixed with freshly
prepared merthiolate-iodine formaldehyde (MIF). After further mixing with ethyl acetate and
centrifugation at 1500 rpm for 5 minutes, the sediments were examined carefully under light
microscope to detect the presence of co-infected helminth eggs or protozoans as described pre-
viously [20]. Stool specimens were collected again from 65 pinworm-infected individuals 2
weeks following 100 mg mebendazole treatment, which underwent MIF-microscopic exami-
nation and 16s rRNA gene sequencing. We did not detect co-infection with other helminths
or protozoans by MIF-concentration-sedimentation method in pinworm (+) samples before
and after mebendazole treatment (Table 1). As shown in the flow diagram (S1 Fig), metage-
nomics analysis was performed on 30 pinworm (-), 65 paired pinworm (+) mebendazole (-)
and pinworm (+) mebendazole (+) samples.

DNA extraction and gene sequencing

Stool specimens were collected at home and transported to our laboratory within 3 hours in
ice, and were fixed in Transwab tubes (Sigma, Dorset, UK). DNA extraction was performed
using the QIAamp DNA Stool Mini Kit (Qiagen, California, USA). PCR primers F515 (5-
GTGCCAGCMGCCGCGGTAA-3’) and R806 (5-GGACTACHVGGGTWTCTAAT-3’),
were designed to amplify the V4 domain of bacterial 16S ribosomal RNA gene as described
previously [21]. The Nextera adapter sequence (Illumina, California, USA) was added to the
5’-end of the primer set for library preparation. PCR using 50~150 ng DNA was performed
with 1 cycle of 98°C for 30 sec, 30 cycles of 98°C for 10 sec, 60°C for 30 sec, 72°C for 30 sec,
and a final extension of 72°C for 5 min. Amplicons were purified using the AMPure XP
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Table 1. Characteristics of the participants.

Total number
1% Grade
4™ Grade
Female
Male
MIF concentration examination

Mostly-meat diet
Recent gastroenteritis
Recent respiratory tract infection with oral

medication

Recent confirmed use of antibiotics

Pinworm (-) Pinworm (+)
Mebendazole (-)
30 79
5 (50.00%) 45 (56.96%)
5 (50.00%) 34 (43.04%)
7 (56.67%) 37 (46.84%)
3 (43.33%) 42 (53.16%)
NA Pinworm egg: 1
(1.26%)
Ova of other parasites:
0
Protozoans: 0
7 (23.33%) NA
5(16.67%) NA
10 (33.33%) (8 had possible antibiotics NA
usage)
0 NA

Pinworm (+)

Mebendazole (+)
65

0 (61.54%
25 (38.46%
2 (49.23%
33 (50.77%
Pinworm egg: 0

)
)
)
)

Ova of other parasites:

0

Protozoans: 0

NA

NA

NA

NA

P value

NA
0.403*

0.650*

NA

0.537%/
0.933%
0.378"/
0.583%
0.014%
0.035°
NA

*P values were calculated by Chi-square tests. In the pinworm (-) group, alpha and beta-diversity analyses were performed comparing gut microbiome

composition of children with and without confounding factors.

# alpha diversity p values;
$: beta diversity p values.

https://doi.org/10.1371/journal.pntd.0005963.t001

Beads (Beckman Coulter, Indianapolis, USA), and quantified using Nanophotometer

(IMPLEN, Miinchen, Germany). The Illumina Nextera Index Primer kit was used to create
the library. The qualities and quantities of purified libraries were checked by 2% agarose gel
electrophoresis, Qubit (Thermo Fisher Scientific, Massachusetts, USA) and qPCR methods.
Finally, libraries were normalized to the same concentration and sequenced by Illumina

Miseq sequencer.

Bioinformatic analysis of 16S rRNA gene sequencing data

FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit) was used to process the raw read
data files. Sequence qualities were checked in 3 steps: (i) The minimal acceptable Phred
quality score of sequences was 20 (having over 70% of the sequence bases > 20). (ii) Follow-
ing quality trimming from the sequence tail, the sequences over 100 bp and those with an
acceptable Phred quality score of 20 were retained. (iii) Both forward and reverse sequenc-

ing reads which met the first and second requirements were retained for subsequent
analyses.

UPARSE [22] was used to create operational taxonomic unit (OTU) clustering. Bowtie2
[23] was then used to align OTUs with 16S rRNA gene sequences of bacteria. These sequences
were taken from the SILVA ribosomal RNA sequence database (version 115). Following
sequence data collection, sequences were extracted by V4 forward primer and reverse primer.
To prevent repetitive sequence assignments, V4 sequences from SILVA were then grouped
into several clusters by 97% similarity using UCLUST. A standard of 97% similarity with the
database was applied.

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005963  September 25,2017

4/16


http://hannonlab.cshl.edu/fastx_toolkit
https://doi.org/10.1371/journal.pntd.0005963.t001
https://doi.org/10.1371/journal.pntd.0005963

@‘ PLOS NEGLECTED
Z) : TROPICAL DISEASES Pinworm and mebendazole altered microbiota and immune response

Intestinal SIgA and cytokine detection

Fecal samples were weighed before adding equal amounts of sterile PBS together with Pierce
proteinase inhibitor (Thermo Fisher Scientific). After thorough mixing and centrifugation at
10000 g for 10 minutes, the fecal supernatants were stored at -80°C until analysis. Stool secre-
tory IgA (SIgA) was analyzed using Immundiagnostik ELISA kit (Bensheim, Germany), IL-18,
and IL-4 levels were measured using Quantikine ELISA kits (R&D Systems, Minneapolis,
USA) according to manufacturer’s instructions.

We further grouped the samples according to levels of SIgA, IL-1£3, and IL-4. Based on
median levels detected, SIgA was considered high at >150 pg/ml, and low at <80 pg/ml; IL-1{3
was high at >10 pg/ml, and low at <0.5 pg/ml; and IL-4 was high at >10 pg/ml, and low at <5
pg/ml. In paired samples (collected before and after mebendazole treatment), SIgA level was
considered to be elevated given a greater than 1.1-fold increase.

Statistical analysis

A rarefaction process was applied to normalize the operational taxonomic unit (OTU) table
following taxonomy assignment in the bioinformatic analyses. Alpha diversity (Shannon
index, inverse Simpson index and richness) was calculated. Beta diversity using weighted
UniFrac distance metrics [24], principal coordinate analysis (PCoA) and unsupervised clus-
tering were performed. Multiple response permutation procedure (MRPP) in an R package
“vegan” (https://cran.r-project.org/web/package=vegan) was performed to assess community
difference in PCoA. Wilcoxon rank sum test were used to compare non-paired variables
(e.g., P- v.s. P+M-), and Wilcoxon signed rank test were used to compare paired variables
(e.g., P+M- v.s. P+M+). The differentially expressed bacteria were filtered by the following
criteria: (i) P value < 0.05 (ii) Fold change > 1.40 or < 0.71 (iii) At least one group achieved
an average relative abundance of 0.5%. Sex and pair factors were adjusted. For multiple
group comparisons the false discovery rate (FDR) was controlled by using Benjamini-Hoch-
berg (BH) FDR multiple test correction. Pathway enrichment analysis was performed using
an R package "Tax4Fun’ [25]. ANOVA test was used to calculate the enrichment difference.
Mann-Whitney U tests using GraphPad Prism version 5 were performed to compare fecal
cytokine and SIgA levels between groups. Wilcoxon signed rank test was used to analyse the
paired stool SIgA data before and after mebendazole treatment.

Results
Study population and characteristics of intestinal microbiota

We analyzed the influence of pinworm infection on gut microbiome in a cohort of 109 chil-
dren in the first or fourth grade of primary school. Grade and sex effects were both insignifi-
cant among the groups (p = 0.650, p = 0.403, respectively, Table 1). In the pinworm (+) group,
additional stool specimens were collected to perform MIF concentration sedimentation proce-
dure on to detect co-infection of other parasites. As shown in Table 1, no co-infection was
detected. In the pinworm (-) group, possible confounding factors including a mostly-meat
diet, recent (within these 2 months) gastroenteritis, recent respiratory tract infection with oral
medication, and recent confirmed use of antibiotics were recorded, and diversity analysis of
the gut microbiota showed that recent respiratory tract infection with oral medication might
decrease the intestinal microbial diversity (Table 1). Further differential abundance analysis at
the phylum level showed that children with recent respiratory tract infection and oral medica-
tion (8 of 10 had possible antibiotics usage) had a trend to correlate with relatively less
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Fig 1. Intestinal microbiota community comparison of pinworm infection and mebendazole treatment groups. a. Boxplot of alpha diversity
(Inverse Simpson index) is shown in genus level. **: p<0.01 by ANOVA test. P-: pinworm negative, n = 30; P+M-: pinworm positive before mebendazole
treatment, n = 65; P+M+: pinworm positive after mebendazole treatment, n = 65. b. Principal coordinate analysis of weighted UniFrac beta diversity
between subjects, colored by community subgroups. €. Bacterial relative abundance distribution of the community subgroups and differentially
expressed phyla. *: p < 0.05 by Kruskal-Wallis test.

https://doi.org/10.1371/journal.pntd.0005963.g001

abundance of Fusobacteria (0.01% 0.18% vs. 1.65%+4.62%, p = 0.03, FDR = 0.17). Informa-
tion about the above confounding factors was not available in the pinworm (+) group.

The alpha diversity of the pinworm (+) mebendazole (+) group was significantly higher
than the pinworm (-) group (inverse Simpson index, p = 0.002), and the alpha diversity was
only marginally higher when comparing the microbial composition between the pinworm (+)
mebendazole (-) group and the pinworm (-) group (p = 0.061, Fig 1a). The principle coordi-
nate analysis also showed a significant beta diversity difference among the 3 groups (pinworm
(+) mebendazole (+) group vs. pinworm (-) group, p = 0.001, Fig 1b).

Analysis of the intestinal microbiome operational taxonomic units (OTUs) of our cohort
revealed the following major bacterial phyla: Bacteroidetes, Firmicutes, Proteobacteria, Actino-
bacteria, Verrucobacteria, and Fusobacteria. The phylum microbial distribution pattern dif-
fered significantly in the proportion of Actinobacteria (pinworm (+) mebendazole (+) vs.
pinworm (-), 1.08% + 1.15% vs. 4.23% + 5.52%, fold = 2.56, P = 5.19 x 10~* FDR = 0.012, Fig
1¢) and Fusobacteria (pinworm (+) mebendazole (+) vs. pinworm (-), 0.04% + 0.17% vs.
1.10% + 3.82%, fold = 0.04, P = 3.30 x 107>, FDR = 0.012, Fig 1c).

Impact of pinworm infection and mebendazole deworming treatment on
intestinal microbial composition

At the genus level, a trend of higher relative abundance of Alistipes (fold = 2.56, p = 0.008) and
Faecalibacterium (fold = 1.64, p = 0.004), and a decreased proportion of Fusobacterium

(fold = 0.18, P = 0.050), Veilonella (fold = 0.25, p = 0.042), Megasphaera (fold = 0.28,

p = 0.021), and Acidaminococcus (fold = 0.56, p = 0.030) were found in the pinworm (+)
mebendazole (-) group as compared with the pinworm (-) group (Fig 2a). However, the cor-
rected p values (FDRs) for all differentially distributed taxa were all > 0.05. In the 65 pinworm
(+) mebendazole (+) subjects, the intestinal bacterial diversity further increased and was corre-
lated with significantly more abundant Collinsella (fold = 3.04, p = 1.58 x 10~*, FDR = 0.028),
Streptococcus (fold = 2.94, p = 1.32x 107, FDR = 0.043), Blautia (fold = 1.71, p = 1.22x 107,
FDR = 0.043), as well as a lower proportion of Suterrella (fold = 0.30, p = 1.32 x 10,
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Fig 2. Visualization of differentially expressed genus-level bacteria by volcano plots. Red dots represent significant taxa analyzed by Wilcoxon
rank sum test (pinworm (+) mebendazole (-) vs. pinworm (-)) and Wilcoxon signed rank test (paired pinworm (+) mebendazole (+) vs. pinworm (+)
mebendazole (-)). After p value corrections, those taxa remained to be significant (FDR< 0.05) are written in red, and bacterial species with FDR> 0.05
are written in blue. Boundaries of significant fold change and p value of Wilcoxon tests are shown in dashed lines. Dot size represents average relative
abundance. a. Impact of pinworm infection on gut microbiome. Comparison was made between the P+M- group and the P- group. b. Impact of
mebendazole administration on gut microbiome. Comparison was made between P+M+ group and P+M- group. P-: pinworm negative, n = 30; P+M-:
pinworm positive before mebendazole treatment, n = 65; P+M-+: pinworm positive after mebendazole treatment, n = 65.

https://doi.org/10.1371/journal.pntd.0005963.9g002

FDR = 0.043), as compared with the microbial composition of pinworm (+) mebendazole (-)
group, Fig 2b. The relative abundance of the probiotic Bifidobacterium increased after pin-
worm infection, and it became even higher in the mebendazole treated group (pinworm (+)
mebendazole (+) vs. pinworm (-), 7.32% + 9.28% vs. 2.86% * 3.67%, p = 1.97 x 10-3,

FDR = 0.100, Fig 2a and 2b).

At the species level, pinworm infection was associated with a trend of increased proportions
of Faecalibacterium prausnitzii, Ruminococcus flavefaciens, Alistipes purtredinis, Bifidobacter-
ium longum and uncultured Oscillospira sp. (Fig 3a, percentages and p values are shown in S1
Table), as well as a trend of decreased relative abundance of Acidaminococcus intestine, Mega-
sphaera elsdenii, Veillonella dispar and Fusobacterium varium (Fig 3b and S1 Table). The rela-
tive abundance of Faecalibacterium prausnitzii and Ruminococcus flavefaciens were lower,
while the proportion of Bifidobacterium longum and uncultured Oscillospira sp. were higher
after mebendazole deworming (Fig 3a, S1 Table). Mebendazole deworming was not associated
with an increase in the relative abundance of Acidaminococcus intestine, Megasphaera elsdenii,
Veillonella dispar and Fusobacterium varium as compared with the pinworm (+) mebedazole
(-) group (Fig 3b).

Furthermore, as shown in Fig 3c, the relative abundance of Collinsella aerofaciens and Strep-
tococcus thermophilus did not change significantly after pinworm infection; however, an
increase in the proportion of these 2 species was detected 2 weeks after mebendazole deworm-
ing treatment (Collinsella aerofaciens: pinworm (+) mebendazole (+) vs. pinworm (+) meben-
dazole (-), 3.07% £ 5.52% vs. 1.00% + 2.00%, fold = 3.08, p = 9.18 x 107, FDR = 0.034;
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Fig 3. Changes in proportions of intestinal bacterial species after pinworm infection or mebendazole deworming. a. Bacterial species increased
after pinworm infection. b. Bacterial species decreased after pinworm infection. ¢. Bacterial species increased after mebendazole deworming. ***: p
<0.001, **: p <0.01, *: p<0.05 by Wilcoxon rank sum test (P- vs. P+M-, P- vs. P+M+) or Wilcoxon signed rank test (P+M- vs. P+M+, paired). Bars
represent mean+SEM.

https://doi.org/10.1371/journal.pntd.0005963.g003

Streptococcus thermophiles: pinworm (+) mebendazole (+) vs. pinworm (+) mebendazole (-),
0.89% +2.04% vs. 0.31% + 0.42%, fold = 2.93, p = 0.003, FDR = 0.158, Fig 3c).

Enrichment of microbiome by pinworm infection and mebendazole
treatment

Taxonomic annotation-based enrichment analysis showed that the abundance of Gram-posi-
tive and endospore-forming bacteria was increased in the pinworm (+) mebendazole (+)
group, as compared with the pinworm (-) group (p = 0.0001 and p = 0.001, respectively, S2a
and S2b Fig). Further pathway enrichment analysis suggested that an enriched gut microbiome
involving fat absorption and digestion pathway (ko04975) was associated with pinworm infec-
tion (pinworm (+) mebendazole (-) vs. pinworm (-), fold = 2.49, p = 0.014, S2¢ Fig), and the
statistical significance remained when comparing the microbiota of the mebendazole treated
group with the pinworm uninfected group (fold = 2.54, p = 0.007, S2¢ Fig). In addition, expo-
sure to pinworm and mebendazole was found to be correlated with the enrichment of the gut
microbiome involving the fatty acid elongation pathway (ko00062, pinworm (+) mebendazole
(+) vs. pinworm (-), fold = 2.01, p = 0.001, S2d Fig) and the caffeine metabolism pathway
(ko00232, pinworm (+) mebendazole (+) vs. pinworm (-), fold = 2.04, p = 0.002, S2e Fig).

Association of fecal SIgA and cytokine levels with pinworm infection and
intestinal bacterial abundance

To analyze the impact of Enterobius exposure on a host’s intestinal immune response, stool
samples from pinworm-uninfected, pinworm-infected and untreated, and pinworm-infected
and treated groups were collected and measured for their SIgA, IL-18 and IL-4 levels. Pin-
worm infection was found to be associated with a significant decrease in gut SIgA levels
(median level of uninfected vs. pinworm (+) mebendazole (-) group: 125.59 ug/ml vs.

109.56 pg/ml, p<0.01, Fig 4a). The amount of fecal IL-1{3 and IL-4 were similar before and
after pinworm infection (Fig 4b and 4c).
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Fig 4. Associations of SIgA/ cytokine levels with pinworm infection and with relative abundance of gut bacterial species. a. Fecal SIgA, b. fecal
IL-1B, and c. fecal IL-4 levels in P-, P+M-, and P+M+ groups. **: p<0.01 by Mann-Whitney U test. Lines represent medians. d. Correlation of the relative
abundance of Prevotella with gut SIgA levels, and correlation of the relative abundance of Collinsellain the P- group (low SIgA: <80000 ng/ml, n = 5;
medium-high SIgA: > 150000 ng/ml, n = 22; low IL-4: < 5 pg/ml, n = 12, medium-high: >5, n = 11). Bars represent mean+SEM. *: p<0.05, **: p<0.01 by
Wilcoxon rank sum test, corrected for the following factors: recent gastroenteritis and recent respiratory tract infection with oral medication.

https://doi.org/10.1371/journal.pntd.0005963.g004

Furthermore, the fecal levels of SIgA and cytokines were grouped into low, medium and
high as described in the Methods Section. In the pinworm (-) group, possible confounding fac-
tors such as recent gastroenteritis and respiratory tract infection with oral medication were
collected; and in this group, correlation studies of SIgA and cytokine levels with intestinal
microbial taxa revealed an association of a higher Prevotella proportion with a decreased
amount of gut SIgA (relative abundance of Prevotella in SIgA medium-high vs. SIgA low,
6.22% + 2.97% vs. 26.46% * 11.52%, p = 0.006 (corrected for respiratory and gastrointestinal
infection factors), Fig 4d), and association of a higher Collinsella abundance with a decreased
amount of gut IL-4 (relative abundance of Collinsella in IL-4 medium-high vs. IL-4 low, 0.36%
+0.21% vs. 1.69% + 0.84%, p = 0.043 (corrected for respiratory and gastrointestinal infection
factors), Fig 4d).

Microbiota associated with increased SIgA level after mebendazole
treatment

After mebendazole deworming, the amount of intestinal SIgA only increased in half of the
treated subjects (Fig 5a). We then investigated the fecal microbial composition of the meben-
dazole-treated samples with and without SIgA-restoration. Before mebendazole deworming,
the SIgA-non-increased group was associated with a higher proportion of the gut pathogen
Salmonella (SIgA-non-increased vs. SIgA-increased group, 1.40% * 3.21% vs. 0.18% + 0.45%,
p = 0.012, Fig 5b), and a lower abundance of the commensal Klebsiella, as compared with the
SIgA-increased group (0.00% + 0.00% vs. 0.74% + 2.84%, p = 0.010, Fig 5b). Furthermore,
mebendazole deworming was associated with increased percentages of Bifidobacterium and
Streptococcus in the SIgA-increased specimens (P+M+ vs. P+M-, Bifidobacterium: 9.96% +
12.53% vs. 5.83% + 8.47%, p = 0.037; Streptococcus: 1.58% =+ 3.23% vs. 0.27% + 0.35%,

p = 0.004, Fig 6a), and a decreased relative abundance of Salmonella in the SIgA non-increased
subjects (P+M+ vs. P+M-, 0.12% + 0.48% vs. 1.40% + 3.21%, p = 0.010, Fig 6b). A mebenda-
zole-deworming associated increase in the proportions of Collinsella was observed in both the
SIgA-increased and the SIgA-non-increased groups (P+M+ vs. P+M-, SIgA-increased group:
2.08% + 3.43% vs. 0.43% + 0.69%, p = 0.002; SIgA-non-increased group: 3.71% + 5.95% vs.
1.38% + 2.43%, p = 0.018, Fig 6a and 6b).

At the species level, a higher proportion of Salmonella enterica was noted in pre-treatment
samples of the SIgA-non-increased group (fold = 7.81, p = 0.012), and it decreased after
mebendazole deworming (fold = 0.08, p = 0.010) (S3a and S3b Fig). The association of the
increased relative abundance of the probiotic bacteria Streptococcus thermophilus and
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Fig 5. Gut microbial composition differences in SlgA-increased and SlgA-non-increased groups. a. 48 pinworm (+) mebendazole (-) and
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P+M- samples of SIgA-increased group. Significant microbes analyzed by Wilcoxon rank sum tests are shown in red dots. Boundaries of significant
fold change and p value are shown in dashed lines. Dot size represents average relative abundance.

https://doi.org/10.1371/journal.pntd.0005963.9g005

Bifidobacterium longum with mebendazole deworming was detected only in the SIgA-
increased group (Streptococcus thermophilus: fold = 5.84, p = 0.006; Bifidobacterium longum:
fold = 1.67, p = 0.046, S3c Fig).

Discussion

We examined the impact of Enterobius vermicularis infection and the effect of mebendazole
deworming on intestinal microbial composition and mucosal immune responses in 109 pri-
mary school children. Both enterobiasis and mebendazole deworming were associated with
altered intestinal microbiome.

Consistent with a previous study on helminth-infected microbiota [14], pinworm infection
in our study was associated with increased intestinal bacterial diversity. Furthermore, it has
been reported that hookworm infection in human subjects with celiac disease could not only
increase gut microbial richness, but also regulate gluten-induced inflammation [26]. We did
not conduct a pinworm infection trial on human with chronic inflammatory diseases. How-
ever, in our study we found that Enterobiasis was associated with an increased relative abun-
dance of Faecalibacterium prausnitzii and Alistipes species. Faecalibacterium prausnitzii has
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been shown to be underrepresented in the gut of patients with IBD, type 2 DM, and obesity;
while Alistipes spp. has been reported to be overrepresented in irritable bowel syndrome (IBS)
patients reporting abdominal pain, and in depressive individuals, suggesting a possible role in
disturbing the intestinal serotonergic system [10, 27-31]. The pro-inflammatory role of Alis-
tipes spp. remains speculative. As for the bacterial taxa which showed lower percentages after
pinworm infection, both Veillonella spp. and Fusobacterium spp. have been suggested to be cor-
related with pro-inflammatory conditions such as ulcerative colitis and colon cancer, and Veil-
lonella dispar and Fusobacterium varium have been detected in colon carcinoma in adenoma
[32-34]. Whether bacterial species altered by pinworm favors an anti-inflammatory profile

requires further investigations.

Anthony et al. (2007) noted that the major immune response raised against helminth infec-
tion is the Th2-type response, consisting of an expansion of Th2 helper T cells, eosinophils,
mast cells, basophils, elevated IgE, IL-4 and other cytokines, including IL-5 and IL-13 [2]. A
previous study in children in central Greece suggested a Th2-type oriented response to pin-
worms based on elevated serum levels of IgE and eosinophil cationic protein (ECP) [35]. How-
ever, we found no differences in the fecal IL-4 levels among the pinworm (-), pinworm (+)
mebendazole (-), and pinworm (+) mebendazole (+) groups. In our study, mebendazole
deworming was found to be associated with an increased proportion of Collinsella. Interest-
ingly, in the pinworm (-) group, after correction for possible confounding factors including
recent gastroenteritis and respiratory infection with oral medication (and possible antibiotics
usage), an inverse correlation between Collinsella abundance and gut IL-4 level was detected.
Additional research on germ-free animals is needed to evaluate the effect of pinworm and
mebendazole on gut Collinsella and IL-4 levels.

IL-113 is another cytokine that could be altered by parasites, and its over-activation is associ-
ated with chronic inflammatory diseases [36]. To establish the chronicity of infection, the
murine helminth Heligmosomoides polygyrus bakeri (Hp) has been observed to downregulate
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the host’s IL-4 response by promoting IL-1{3 production [37]. In contrast, the parasite Fasciola
hepatica has been seen to directly inhibit host IL-1{3 secretion [38]. We found that pinworm
infection alone did not significantly alter the fecal IL-18.

The principle immunoglobulin involved in combating intestinal microbial infection and
maintaining mucosal homeostasis with commensal bacteria is SIgA, which mediates anti-
inflammatory functions via multiple mechanisms [39]. A lack of SIgA can also cause inflam-
matory diseases [40, 41]. Bacteroides thetaiotaomicron colonization in mice has been reported
to elevate SIgA levels via an influx of IgA-producing B cells and an increase of polymeric
immunoglobulin receptor (pIgR) that mediates the transport of IgA across epithelia [42]. In
this study, pinworm infection was found to be correlated with lower gut SIgA level. Further-
more, the amount of intestinal SIgA was found to be negatively associated with the relative
abundance of Prevotella. Whether this pinworm—microbial interaction influences gut SIgA
production is unclear. Of note, after mebendazole deworming treatment, SIgA levels increased
in half of the pinworm-infected subjects. We observed that the intestinal pathogen Salmonella
enterica was overrepresented in the SIgA non-increased group, when compared with the SIgA-
increased group. Although the relative proportion of Salmonella enterica was lower after
mebendazole deworming in the SIgA-non-increased samples, the increase of the probiotic spe-
cies Streptococcus thermophilus and Bifidobacterium longum following mebendazole treatment
was only observed in the SIgA-increased group. Our results suggest that the relative abundance
of Salmonella might have a negative effect on the mebendazole deworming -associated increase
in the amount of SIgA and probiotic species in the gut.

Mebendazole is a classic anti-helminth drug, which is well-tolerated [43], and is routinely
given to pinworm-positive school aged children. A Danish study on pinworm infection and
risk of chronic inflammatory diseases even used mebendazole treatment history as a surrogate
for enterobiasis diagnosis [9]. The results of our study show that increased percentages of the
known probiotic species, Streptococcus thermophilus, and another anti-inflammatory bacte-
rium, Collinsella aerofaciens [44], could be associated with mebendazole deworming, but not
with pinworm infection alone. Our study is limited in that we did not use anal tape, a more
sensitive method for detection of pinworm eggs than MIF concentration sedimentation, to
evaluate the efficacy of mebendazole deworming. However, Wang CC et al. reported in |
Microbiol Immunol Infect. 2009 that the efficacy of mebendazole treatment on eradicating pin-
worm in primary school children in Taichung, Taiwan, was 96% [6]. Mebendazole was found
to have anti-inflammatory, anti-angiogenesis and oncogene-suppressing activities in a mouse
model of colon cancer initiation [45]. The direct effect of mebendazole on gut microbiota
composition remains to be investigated. An enrichment pathway analysis of the microbiome
in our study showed that the increase in the percentages of microbes involved in the metabo-
lism of fatty acid elongation and caffeine after pinworm infection only became significant
when a comparison was made between the pinworm (+) mebendazole (+) group and the pin-
worm (-) group. Further metabolomics studies are needed to evaluate if pinworm and meben-
dazole treatment could alter the metabolism of commensal bacteria and subsequently
influence a host’s immune system.

In our study, the change in microbial composition detected two weeks after administration
of mebendazole on pinworm-infected children could be confounded by late onset effects of
enterobiasis. A larger prospective cohort study with a longer follow-up on gut microbiomes
will help to determine more exactly the duration and dynamics of the change in microbiota
and in SIgA levels after mebendazole deworming treatment. Host genetics and diet are con-
founding factors for long-term follow up. Variations in the human genome have been found
to favor the colonization of different gut microbiota [46]. A high fat and low fiber diet has
been shown to be associated with reduced beneficial microbes producing short chain fatty
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acids (SCFAs) and thus such a diet increases the risk of inflammatory and autoimmune dis-
eases [47]. In addition, our results revealed that recent respiratory tract infection with oral
medication usage in the study population may be inversely correlated with intestinal microbial
diversity and a decreased relative abundance of Fusobacterium and Acidaminococcus, which
might interfere with the effect of pinworm infection. Thus, differential host genetics, lifestyles,
respiratory tract infection rates and medication usage can all contribute to the inconsistent
association of enterobiasis and the risk of inflammatory diseases observed in pediatric cohorts
of various countries.

In conclusion, Enterobius vermicularis infections are associated with increased intestinal
microbial diversity, and decreased gut SIgA levels. Several bacterial taxa exhibited differential
abundance in pinworm (-), pinworm (+) mebendazole (-), and pinworm (+) mebendazole (+)
groups. Mebendazole deworming was correlated with increased intestinal SIgA level and a
higher proportion of probiotic bacteria in half of the infected subjects. To better understand
the causal relationships of pinworm infection and mebendazole treatment on gut microbial
composition and hosts’ immune responses, more experiments including animal studies are
needed.

Supporting information

S1 Table.
(DOCX)

S1 Fig. Flow diagram. P(-): pinworm-negative; P(+)M(-): pinworm-infected, before meben-
dazole treatment; P(+)M(+): pinworm-infected, 2 weeks after mebendazole treatment.
(TIF)

S2 Fig. Microbiology characteristics and pathway enrichment analysis. A-B. Box plots
showing microbiology characteristic enrichment analyses based on Gram staining (a) and
endospore-forming features (b). ***: p <0.001 by ANOVA test. c-e. Pathway enrichment anal-
yses showing significant increase in fat metabolism (c), fatty acid elongation (d) and caffeine
metabolism (e) pathways after pinworm infection plus mebendazole treatment. R package
“Tax4Fun” was used to transform the OTU table into pathway activity value. ***: p <0.001,
**:P<0.01, *: P<0.05 by ANOVA tests.

(TIF)

$3 Fig. Gut bacterial species composition differences in SIgA-increased and SIgA-non-
increased groups. Volcano plots showing differentially expressed species-level bacteria com-
paring the untreated, pinworm-infected P+M- samples of SIgA non-increased group vs. the
P+M- samples of SIgA-increased group (a), P+ M+ samples vs. P+ M- samples in SIgA non-
increased group (b), and P+M+ samples vs. P+M- samples in SIgA-increased group (c). Red
dots represent significant taxa analyzed by Wilcoxon tests. After p value corrections, those taxa
remained to be significant (FDR< 0.05) are written in red, bacterial species with FDR> 0.05
are written in blue. Boundaries of significant fold change and p value are shown in dashed
lines. Dot size represents average relative abundance.

(TIF)
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