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Abstract: Human activity recognition has become an important research topic within the field of
pervasive computing, ambient assistive living (AAL), robotics, health-care monitoring, and many more.
Techniques for recognizing simple and single activities are typical for now, but recognizing complex
activities such as concurrent and interleaving activity is still a major challenging issue. In this paper,
we propose a two-phase hybrid deep machine learning approach using bi-directional Long-Short
Term Memory (BiLSTM) and Skip-Chain Conditional random field (SCCRF) to recognize the
complex activity. BiLSTM is a sequential generative deep learning inherited from Recurrent
Neural Network (RNN). SCCRFs is a distinctive feature of conditional random field (CRF) that can
represent long term dependencies. In the first phase of the proposed approach, we recognized the
concurrent activities using the BiLSTM technique, and in the second phase, SCCRF identifies the
interleaved activity. Accuracy of the proposed framework against the counterpart state-of-art methods
using the publicly available datasets in a smart home environment is analyzed. Our experiment’s
result surpasses the previously proposed approaches with an average accuracy of more than 93%.

Keywords: concurrent; interleaved; RNN; BiLSTM; SCCRF; activity recognition; Smart Home

1. Introduction

Human activity recognition has been a foremost research field since last decades due to
advancements in technologies and its applicability in different domains like home automation,
elderly care [1], telemedicine services [2], ubiquitous computing [3], and so forth. Among them,
Smart homes embedded with many most uncomplicated, portable, fastest sensors have gained much
attention in the field of ambient assisted living for prospering the quality of resident’s life [4,5]. Based on
the sensors used, wearable sensors and external sensors are used to identify the activity. The wearable
sensor attached to the human body measure the signal patterns obtained through a movement of
the human body. External sensors installed into different locations of the environment helps to
recognized activity according to its generated value. One importance of activity recognition is to
provide information on a human’s behavior that allows computing systems to assist them in their daily
tasks proactively. However, recognizing activities is a challenging task because human activities are
complex and uncertain. Thus, only a few approaches address complex activity recognition [6]. Many of
these approaches detect single user-single activity at a time, and a consecutive sequence of sensors
data can achieve that. Nevertheless, multiple-user multiple-activity exists within a single sequence of
actions as a concurrent and interleaving activity [7]. The recognizing of two activities concurrently
through an observed activity sequence is called concurrent activity. Likewise, if one activity is paused
(store for a short time) and then resumes after executing another activity is called interleaved activity.
Recognition of activity mainly consists of three steps, as shown in Figure 1. First, the sliding window
technique is applied to segments a stream of raw sensor data. More of all window shifts a fixed
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time-length or a set number of sensor data along the stream with overlapping or non-overlapping
between adjacent segments. In the second step, we extract features (e.g., max, min, mean, variance,
and entropy) from each segment and represent the feature vector’s raw signals. The last step is called
training and testing [8–10]. Recognition of activities needed detailed user specification, a large amount
of training data, sophisticated network, and time-varying sequential data processing. The machine
learning method solves these kinds of problems.

Figure 1. General Process for Activity Recognition.

Necessarily, many different probabilistic and non-probabilistic machine learning methods [11–13]
have been hot-figure for activity recognition in recent years. However, difficulties confronted
by traditional machine learning approaches are overcome by deep learning and led to numerous
enhancement in activity recognition. A deep learning method called LSTM, A recurrent neural network,
is used to recognize published by [14]. These techniques have already better performed than other
machine learning algorithms in many applications like speech recognition [15], text recognition [16],
image recognition [17] computer vision, including human activity recognition. The skip chain
CRF [18] established the correlation between non-consecutive identical activities in the environment.
This skip-chain is a probabilistic model; it has an advantage in recognizing activity naturally
and conveniently. Therefore this unique feature of learning sequential, feedback connections,
and storage ability of LSTM and recognizing identical features or data along long edges of SCCRF
makes them recognize the composite activities. In this paper, we introduce the approach that
contains a single platform by combining the features of BiLSTM and SCCRF to recognize these
complex activities. This proposed approach could have been the first proposed so far to date.
Our proposed method highlights;

• We present the two-phase recognition method. The first phase is capable of automatically
learning concurrent feature representations and modeling the temporal dependencies between
their activation to detect the concurrent activity with a deep learning framework composed of
Bi-directional LSTM. The second phase explicitly models dependencies between distant activity
and turns out to be particularly useful in interleaved activity detection using SCCRF.

• A feature-learning structure can directly learn spatial-temporal features from the raw data via
LSTM structures, which requires neither manual feature selection nor classifier selection.

• The proposed framework can be applied seamlessly to different recognition modalities and other
recognition platforms.

• The system adopts the raw sensor data with less preprocessing, which makes it exceptionally
comfortable and general.

• We compare the performance of our framework to publically available datasets from Kasteren
and Kyoto (WSU).

• The results depicted by our proposed framework outperforms published results on recognition of
concurrent and interleaved activity.

• The proposed approach can classify the variable window ranges of human activities. Utilizing the
LSTM to read variable window ranges, sequences of input sensors data can later recognize the
entire window segment’s activity.
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The remainder of the paper is organized as follows; related work is in Section 2. Section 3
illustrates the materials and method related to the proposed approach. Part 4 is about our experimental
configuration for the activity recognition method. The activity recognition performance analysis is
described in Section 5. Section 6 describes a conclusion.

2. Related Work

Activity recognition aims to recognize a user’s high-level activity from different sensors
or actions the user performed. In this case, they mostly like to have either logical-based
approaches or probabilistic approaches. [19] Explained the logic-based approach, which provides
a formal theory of activity recognition. Still, these approaches have limited inconsistent activity,
unable to handle uncertainty, single activity recognition, maximum noise appearance, and significant
rule of conduct. A procedure tries to solve the multiple-activity recognition problem in [20].
In their approach, a finite state machine creates transitions between different activity states, i.e.,
interleaving activity. However, this also fails to handle uncertainty. Concurrent activity recognition
using a single classifier, encoding a binary output vector, has gained little attention, but its timing
problem overruled activity’s concurrency.

In the millennium, following the success of machine learning [21] and deep learning [22],
wearable sensor-based activity recognition came in noticed. Restricted Boltzmann machine RBM
on deep learning methods has not significantly improved deep belief network (DBNs) [23] with
multiple layers. The Hidden Markov models also have been exploited above RBM layers on DBN
based models harness temporal sequences in human activities. However, HMM performs well on
limited numbers of hidden states and trying to modeling on long dependencies.

Human Activity Recognition with Convolutional Neural Networks (CNN) [24], recurrent neural
network RNN [25], and other deep learning techniques still use wearable sensors or body-worn
sensors and can only detect single and straightforward activity. Whoever detects some complex
activity suffers from accuracy and complexity. If they use external sensors also, they only focus
on just the single activity recognition. Many researchers also used classification algorithms such
as skip chain conditional random field (SCCRF) [7], Decision Tree [26], Hidden Markov Model
(HMM) [27], Conditional Random Field (CRF) [28]. Still, these approaches get rid of temporal
differences between events. In this work, we focus most of our analysis on concurrent and interleaving
activity using the extended LSTM and CRF due to their widespread popularity and a proven track record.
The growing interest in LSTM-RNN enhanced many technical applications such as language modeling,
handwriting recognition, and generation [29], machine translation [30], speech recognition [31],
video analysis [32], and image captioning [33] least compare to activity recognition. SCCRF were also
have been used for natural language processing and other specific task detection problem like behavior
recognition [34]. Meanwhile, an abundance of work, architecture, and model has been developed,
but relatively less attention has been paid to understand the properties of its concurrency and
interleaved representations and predictions.

3. Materials and Method

Figure 2 explains the overall system (process) of activity recognition. While recognizing
activity phenomena, our interest is in recognizing complex activity such as concurrent and
interleaved activity. The activities done at the same time is a concurrent activity, such as talking
with friends while walking or listening to music while sleeping. Both the activities must be
recognized concurrently, as shown in Figure 2a. When one activity is paused to do another activity
and continues the previous activity after finishing, that is the interleaved activity. That means some
real-life activities are interleaved in nature, as shown in Figure 2b. For instance, if a bell rings at the
door while watching TV, we pause watching TV and go to open the door, and we continue to watch TV.
The activities always may not be concurrent and interleaved separately; it may occur in the combine,
as shown in Figure 2c. Sleeping by listening to music can be paused while talking with friends on the
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phone and may continue sleeping by listening to music after talking is over. This paradigm is the most
critical aspect of activity recognition but its always been avoid due to its complexity.

Figure 2. Pictorial view of (a) Interleaved Activity occurrence, (b) Concurrent Activity occurrence,
(c) Concurrent and Interleaved Activity.

3.1. Long-Short Term Memory (LSTM)

Recurrent Neural Networks (RNNs) make the output use the previously memorized information
extracted from the past data to the neurons. This specific ability of RNNs of the neurons
to find patterns with long-term dependencies. However, the problem of vanishing gradient
may appear. These happened when the error function derivatives concerning the network
weights become either very large or close to zero during the training phase effects the RNNs.
The proposed Long-Short-Term-Memory (LSTM) cell addresses this issue. LSTM designed to
memorize the information over time by storing it in an internal memory called a cell and
update output or erase their internal state depending on their input and the state at the previous
time step. LSTM networks capture temporal dependencies in diversified application fields such as
image captioning, automatic translation, or video-based activity recognition. The LSTM architecture
comprises memory cells with self-connections for storing high temporal dependencies, as shown in
Figure 3. They contain the gates to control the flow of information. The memory cell consists of a
node with a fixed weight with a self-connect loop edge so that the gradient can propagate across
many time steps without vanishing. An input gate controls the input activation data into memory
cells; the primary function of this gate is to write on memory cells. An output gate control and read
output data flow of cell activations. Forget gate decides which data to be forgotten or resetting the
cell’s memory.

3.2. Bi-Directional LSTM

The baseline LSTM algorithm can recognize current activity based only on prior information.
However, some vital information about the activity may not be adequately extracted by the cell if it
processes only one direction. The principal feature in bidirectional LSTM is that it follows information
and current output related to former details. Bidirectional LSTM is a design of two LSTM cells, and the
output is determined together, as shown in Figure 4.
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Figure 3. LSTM Architecture.

Figure 4. Bi-directional LSTM architecture.

The LSTM architecture also contains peephole in internal cells to gates in the same cell to
learn the outputs’ precise timing. The multiplicative equation controls each cell and gate to the
forward propagation:

i(t) = σ
(
wxix(t) + whih f (t− 1) + wcic(t− 1) + bi

)
(1)

f (t) = σ
(
wx f x(t) + wh f h f (t− 1) + wc f c(t− 1) + b f

)
(2)

o(t) = σ
(
wxox(t) + whoh f (t− 1) + wcoc(t− 1) + bo

)
(3)

c(t) = ftc(t− 1) + i(t)tanh f (wxcx(t) + whch(t− 1) + bc) (4)

h f (t) = o(t)tanh f c(t) (5)

x(t) is the input sequence and wxi, wx f and wxo being the input weight matrix of i(t) an input gate,
f (t) a forget gate and o(t) an output gate, having the same vector size as the vector of hidden value.

The c represents the memory cell, and b represents the bias of the respective gate and cell.
The hidden state h(t) processes input x(t) and thus yields output y(t) at time t by unrolling LSTM cells,
as shown in Figure 4. σ; known as the logistic sigmoid function or the sigmoid activation function that
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limits the value in between [0,1] and given as σ(x) = 1
1+e−x . tanh; Hyperbolic tangent activation function.

The forward propagation executes input x (t) from left to right with a hidden layer of h f , and backward
propagation executes input from right to left with the hidden layer of hb as according:

δi(t) = σ
(
wyix(t) + whihb(t + 1) + wcic(t + 1) + bi

)
(6)

δf(t) = σ
(
wyfx(t) + whfhb(t + 1) + wcfc(t + 1) + bf

)
(7)

δo(t) = σ
(
wyox(t) + whohb(t + 1) + wcoc(t + 1) + bo

)
(8)

δc(t) = ftδc(t + 1) + δi(t)tanhb
(
wycx(t) + whchb(t + 1) + bc

)
(9)

hb(t) = δo(t)tanhbδc(t) (10)

Therefore, in this work, we focused on recognizing concurrent and interleaving activity and
its analysis. Meanwhile, an abundance of research work modifies or extends LSTM architecture to
understand the properties of its complex representations and predictions. [35] Recently evaluated a
comprehensive study of LSTM components. The most leading deep LSTM networks for the HAR
method for human activity recognition using wearable sensing approaches exploit the contextual
information and adopt the temporal dependencies in variable-length input data [36].

3.3. Skip Chain CRFs

The SCCRFs can represent dependencies between distant nodes so that similar activity can
be detected. The SCCRF [37] can contain information from the activity of both times. Because the
activity of one time is specific, it can impact the activity of the other time. We have to choose an
identical activity that belongs to the same class or have a small edit distance, as shown in Figure 5.

Figure 5. SCCRF Representation.

However, we connect all possible activity because it requires excessive programming algorithm.
Therefore we are only concern about the edges (activity) that appeared to be active or not at time slice t.
Given observation sequence Y, let Z be all pairs of active activities connected with skip edges. Thus the
probability of activity sequence Z given an observation activity Y can be written as;

P(z, y) =
1

S(y)

n∏
t=1

Φ(zt, zt−1, y, t)
∏

(uv)∈I

Ψ(zu, zv, y,u,v) (11)
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Φ is the values over linear-chain edges, and Ψ is the potential factor over skip edges. S(y) is a
normalization factor where each of the potential factors is factorized by taking the log.

Φ(zt, zt−1, y, t) = exp
∑

k

λkfk(zt, zt−1, y, t) (12)

Ψ(zu, zv, y,u,v) = exp
∑

k

λ′kf′k(zu, zv, y,u,v) (13)

λk and λ′k are the parameters of the linear and skip chain template on which each of them factorizes
according to a set of features fk or f ′k respectively. In skip-chain CRFs, exact inference P(z

∣∣∣y) is much more
difficult due to long loops and overlapping in the model. Instead, we approach approximate inference
utilizing the belief propagation algorithm that works as the principle of the forward-backward algorithm
for HMM. However, LPA passages information between the long-distance edges, emitting probabilistic
information from distant sequences.

For the given training data, we estimate the parameter λk by maximizing the log-likelihood after
calculating the partial derivative and optimization technique

∂P(z
∣∣∣y)

∂λk
=
∂L
∂λk

=
λk

σ2 (14)

whereL log-likelihood and σ2 is the covariance as assuming that the long-distance parameter is similar,
therefore replacing λ′k by λk and f ′k by fk.

3.4. Proposed Method

The schematic architecture in Figure 6 demonstrates complex activity recognition. Our proposed
approach has the two-phase structure in which the first phase processes under the bi-directional LSTM
theorem, and the second phase implement a theory of Skip-Chain CRF (SCCRF). It performs a direct
mapping from raw multi-modal sensor inputs to activity classification and recognition. It recognizes
the label of performed activity during a specific time window. The input is an equally spaced discrete
sequence of samples (xt−2, xt−1xt, xt+1 . . . , xt+n) where each data point xt, is a set of individual observed
samples by sensors at time t. The extracted samples are segmented into windows and fed to the
BLSTM-based model. The model outputs a sequence of scores representing activity predictions. The first
phase represents the detection of concurrent activity; second, interleaved activity. The bi-direction
LSTM network contains two parallel LSTM tracks; forward and backward propagations for exploiting
data from past and future of a specific time step to recognize the parallel activity. The output of
the bi-directional LSTM determines the concurrency of the recognized activity. The same output is
feedforward to recognize an interleaved condition of activity using the Skip-Chain Conditional Random
Field (SCCRF). The model outputs a sequence of activity (yt−2, yt−1yt, yt+1 . . . , yt+n) in which there
is an activity prediction for each time step (zt−2, zt−1, zt, zt+1 . . . , zt+n). SCCRF finds the probability
of activity that has been paused to perform a crucial uncertain task. The SCCRF is very reliable and
efficient in finding the possibility of a similar activity performed in activity sequences. A schematic
diagram in Figure 7 gives concepts of an overall system architecture of the proposed. In the first phase,
the input sensor data or sampled data is transformed through a sliding window to produce data;
this procedure is regarded as data preprocessing. Prepared data is inserted into the first layer Bi-LSTM
is processed until it adapts its internal state. An passed into another Bi-LSTM layer where we applied
the dropout to drop the unused neurons. The obtained result is normalized and fed into a fully
connected layer, which is also known as the coding layer and hence recognizes the concurrent activity.
In the second phase, the data’s sequence and the data from the fully connected layer are inserted
into the clique template. Clique template makes surmise on the structure of data by defining the
configuration of the cliques. A clique is a set of interdependent data. And finally, the SCCRF model
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is used to recognize the interleaved activity. Our concern target is to develop a reliable algorithm
implementing both the machine learning and deep learning into a single frame (Algorithm 1).

Figure 6. Proposed schematic architecture.

Figure 7. Overall system structure of the proposed approach.
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Algorithm 1 pseudocode for the proposed algorithm

1. initialize network
2. reset : inputs = 0, Activations = 0
forward propagation:
3. initialize the inputs do
4. roll over: Activations; cell states
5. loop over a cell, end for
6. do
for t=0 to n do
Calculates the gate values :
inputs gates: i(t)← σ(wxix(t) + whihf(t− 1)hf(t− 2) + wcic(t− 1) + bi)

forget gates: f(t)← σ(wxfx(t) + whfhf(t− 1)hf(t− 2) + wcfc(t− 1) + bf)

loop over the cells is block now
output gates: o(t)← σ(wxox(t) + whohf(t− 1)hf(t− 2) + wcoc(t− 1) + bo)

update the cell: c(t)← ftc(t− 1) + i(t)tan hf(wxcx(t) + whchf(t− 1)hf(t− 2) + bc)

final hidden state/ final output : hf(t)← o(t) � tanhfc(t)
end for
7. Single activity detect
8. do
Update the weight
end for
9. backward propagation do
for t=0 to n
inputs gates: δi(t)← σ

(
wyix(t) + whihb(t + 1)hb(t + 2) + wcic(t + 1) + bi

)
forget gates: δf(t)← σ

(
wyfx(t) + whfhb(t + 1)hb(t + 2) + wcfc(t + 1) + bf

)
output gates: δo(t)← σ

(
wyox(t) + whohb(t + 1)hb(t + 2) + wcoc(t + 1) + bo

)
cell output: δc(t)← ftδc(t + 1) + δi(t)tan hb

(
wycx(t) + whchb(t + 1)hb(t + 2) + bc

)
10. Hidden state / final output : hb(t)← δo(t) � tan hbδc(t)
end for
11. do
z = hf(t) tends to 1 and hb(t) tends to 1
Concurrent activity detect
end For
12. do for t=0 to n, k = 0 to n-1 do
Φ(zt, zt−1, y, t) = exp

∑
k
λkfk(zt, zt−1, y, t), Ψ(zu, zv, y,u,v) = exp

∑
k
λ′kf′k(zu, zv, y,u,v)

∂P(z|y)
∂λk

= ∂L
∂λk

= λk
σ2

end for
13. Interleaved activity detect
14. end for
15. end for
16. end

4. Experimental Configuration

Our primary target is to recognize the complex activity using our novel approach. We experiment,
evaluate, and analyze our proposed method using publically available datasets named; Kasteren House-
B from Kasteren [38] and Kyoto 3 from CASAS [39]. The pseudocode for the proposed approach is
shown in Algorithm 1. Then we compare the results with other HAR methods.

4.1. Benchmark Datasets

Human activities are unpredictable and periodic. There are numerous datasets available. Mostly,
concerns with simple activity with low instances. Furthermore, the sensors used are body-worn.
The proposed method focused on using external sensors rather than body-worn. Human activities
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offered a large Null class that is more challenging to identify the start and endpoint of data and
classify it. In more recognition, we ignore the Null class, as including the null class may lead to an
overestimation of the recognition. Table 1 shows an overview of the datasets. The chosen datasets
count the limitation of sharing features among the activity instances of different groups, the number
of inhabitants in each home, their performance of the same activity in different ways, and the
availability of fewer data for learning. The twenty-three and seventy-six different heterogeneous
sensors collect the data in Kasteren house-B and Kyoto, respectively. Among 76 sensors, 51 sensors
were used to detect motion sensors and five sensors to detect the cooking item. Twelve sensors
as a cabinet sensor, three sensors as a temperature sensor, and another sensor as a medicine
container sensor, pot sensor, phone book sensor, water sensor, burner sensor, and phone sensor. For the
Kasteren House, sensors like RFID (Radio Frequency Identification), Pressure sensor, mercury contacts,
passive infrared-PIR, float sensors, reed switches, and temperature sensors are deployed to capture
the data. The schematic sensor layout of the dataset is shown in Figure 8. There are 135 and 178 activity
instances from which the 13 and 8 activity will be recognized in a concurrent and interleaved fashion.
The sensors represent the change of state according to the action of users.

Table 1. Overview of datasets used in the evaluation of the proposed method.

Description Kasteren House-B Kyoto 3

Setting Apartment Apartment
Rooms 2 4
Senors 23 76

Activities 13 8
Residents 1 4

Period 14 d 15 d
Instances 135 178

Activities Performed

Breakfast, Brushing Teeth, Dinner,
Drinking, Dressing, Leaving

House, Others, Preparing
Breakfast, Preparing Dinner,

Sleeping, Showering, Toileting,
Using Dishwasher

Fill Medication Dispenser, Wash
DVD, Water Plants, Answer the
Phone, Prepare Birthday Card,

Prepare Soup, Clean, Choose Outfit

Figure 8. Sensor layout for (a) Kyoto 3 Dataset (b) Kasteren House B Dataset.

4.2. Parameter Setup and Training

The datasets were segmented into different window ranges, as shown in Figure 9. The maximum
ranges of windows depending on the activities performed by the human and the sampling rate.
In this experiment, we choose the best ranges window that gave better results by performing
various samples. In the uncertain and real-time scenario, varied window length plays a perfect role
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rather than fixed scales because the network has to wait to complete a given range to proceed further.
When the mean cross-entropy of actual outputs and predicted outputs are measured as updated
cost function, then a cost function must be minimized by randomly initializing the approach’s
weight parameters. The actual output is given in the datasets and indicates real output activity for
segmented windows. The predicted outputs contain every output generated by our method.

Figure 9. Sequence labeling after segmentation of data with a sliding window.

During the training iteration, the dropping at nodes in the network is tuned and represents
units of the drop by using hyper-parameter. This dropping technique narrowed the accuracy gap
between training and testing costs, which means dropping technique over through overfitting problems.
The main reason behind using dropout is to disable the neurons with low probability, which improves
the model generalization. The proposed method is implemented in the TensorFlow_gpu1.13.1 library.
The computer taken for testing is best suitable to run our algorithm with i7 CPU with 16GB RAM with
GTX titan GPU with CUDA 9.0 and used the cuDDN 7.0 library. CUDA is a platform that eases for
parallel programming and also an interface for application programming. CuDDN is a GPU facilitated
library of primitives for deep neural networks. 80% of the data are the training set, and the remaining
20% of data is for the test set. We record the Kasteren and Kyoto datasets. The training and testing
use a sliding window of fixed length to segment the data, but data inputs may be variable length
windows in real-time data scenarios. Following the preferred dataset experimental setup, the proposed
approach depicts 500 ms lengthen window size with a 250 ms step size. The number of instances
acquired after using this sliding window arrangement per the depicted dataset. The class corresponds
to the observed sensor during that interval is associated with each segment. The sequence’s activity as
the label at t = n, i.e., the last sample’s label in the sliding window of length ‘n’. A sliding window
segments the sensor signals. The activity class within each activity sequence is the ground truth label
annotated at the sample n of that window.

The best-suited hyper-parameters are tuned, as shown in Table 2, and achieve the possible
optimal performance. We train the model with a learning rate of 0.005, and 100 batches of each epoch
for the Kasteren House and the learning starts at 0.001. The training is carried out for more than
10,000 epochs and stops on stable outputs. The Adam optimizer is an adaptive moment estimation
that obtains independent adaptive learning rates for different parameters making them more stable
for the Bi-LSTM and Quasi-Newton optimizer by the SCCRF. The dimension based on the input
is set to 128. The gradient clipping is set to 5, whereas this parameter scaled-down the exceed
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gradient threshold to match the normalization. Also, In this paper, the SCCRF model uses the
Limited-Memory Broyden-Fletcher-Gold-Shano (L-BFGS) algorithm to estimate the parameter, and the
Loopy Belief Propagation (LBP) algorithm to perform the approximate inference. We used the 10-fold
cross-validation technique to evaluate models. This may also help to estimate the capabilities of
a model on unseen data.

Table 2. Hyperparameter Settings.

Hyperprameters Values

Time Steps of input 128
Dropout Rate 0.5

Initial Learning Rate 0.001
Learning Rates 0.005

Optimizer (Bi-LSTM) Adam
Batch Size 100

Gradient Clipping 5

Skin-chain parameter θ
∑
k
λk

SC Optimizer Quasi-Newton
Epochs 10000

4.3. Analysis Metrics

We define the evaluation terminologies as precision, recall, F-score, and accuracy. F-score is the
harmonic mean of precision and recall. These terminologies are measured using true positive (TP),
false positive (FP), and false-negative (FN) through the confusion matrix.

Precision :
1
N

 N∑
k=1

TPk
TPk + FPk

× 100

 (15)

Recall :
1
N

 N∑
k=1

TPk
TPk + FNk

× 100

 (16)

F− score :
2× Precision×Recall

Precision + Recall
(17)

Accuracy =
tp + tn

tp + tn + f p + f n
× 100 (18)

Each dataset is categorized into three-set: a training set, a validation set for optimizing
the parameters, and a test set for end evaluation.

5. Activity Recognition Performance Analysis

In this section, the experimental results are explained and analyzed. All activities are located
based on the dataset. The most frequently concurrent and interleaved activities are considered the
presiding activities in the smart home environment. The analysis section is subdivided into concurrent
activity recognition, interleaved activity recognition, and the recognition average. The overall
recognition accuracy is then compared to the other state of art method; Hidden Markov model-Skip
Chain Conditional Random field (HMM-SCCRF) [7], Long-Short Term Memory- Skip Chain Conditional
Random field (LSTM-SCCRF) [40], and Bi-directional Long-Short Term Memory- Conditional Random
field (Bi-LSTM-CRF) [41].

5.1. Concurrent Activity Recognition Analysis

Figure 10 represents a confusion matrix for Kyoto 3 for the recognition of concurrent activities.
The proposed approach recognizes activities with satisfactory accuracy of more than 90%. The filling
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medication dispenser and answering phone are concurrent with each other with an accuracy of 96%
as both activity can be performed in parallel. Wash DVD, clean have 2% of their instances is shared
as these activities share the same location. 3% of watering plants is due to some kinds of error
factors such as placement of motion sensor, frequent movement of inhabitants, and confusion in the
kitchen location. The watering can be retrieved from the kitchen supply closet. Answering the phone
is recognized concurrently with all the other activity with an accuracy of 94%, 97%, 94%, 93%, 95%,
and 95% to wash DVD, water plants, prepare birthday cards, prepare soup, clean, and choose outfit
respectively. All the activities can be performed in a parallel manner while talking with high accuracy
with ease. The Kyoto 3 data set’s overall accuracy in recognizing the concurrent activities is more
than 95%, as shown in Figure 11, compared to other previously proposed approaches. There occurred
a confusion between different activities trying to appear parallel with each other because of sharing the
same location, platform, and some of the shared sensor values.

Figure 10. Confusion matrix for Kyoto 3.

Figure 11. F-score comparison on Kyoto.

On the other hand, Figure 12 represents a confusion matrix of Kasteren-House-B to recognize
the concurrent activity. While preparing breakfast, drinking, and eating can be done at the same time.
The preparing breakfast activity is recognized concurrently to drinking activity with an accuracy of 97%,
and the same way, eating and drinking activities are detected concurrently with an accuracy of 93%.
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10% of error for dishwasher activity, 4% of error for other activity creates confusion. These activities
are carried out in the same location at the kitchen. During this session location sensors, they are
common and activated simultaneously time. Drinking activity has a high percentage of appearing B
with an average accuracy of more than 93% to concurrently with other activities like breakfast 88%,
dinner 98%, leaving the house 75%. The only other activity does not have the concurrency because this
activity is not well defined, and this is to reduce the error while recognizing the activity. The confusion
matrix of two renowned datasets shows that recognizing concurrent activity using the proposed
approaches and algorithm is quite impressive. However, a large number of datasets could help to
get the actual and real recognition distribution. Kasteren and CASAS dataset have only a limited
number of data and instances; therefore, it is a little bit easy to recognize, and accuracy may be
high enough. Regarding analysis, our proposed method seems to be more reliable and effective than
other compared models, as shown in Figure 13 on the same Kasteren house datasets.

Figure 12. Confusion matrix for Kasteren-House-B.

Figure 13. F-score comparison on KH-B.

5.2. Interleaved Activity Recognition Analysis

Interleaving activity is more complicated and challenging to recognize than concurrent activities;
here, the activity is detected again after it has been performed a time before and reappeared at a specific
time paused. The confusion matrix for Kastern House-B to detect the interleaved activity is shown
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in Table 3. The chances of recognizing breakfast activity after being paused are 93% while it has
external instances error of 2%, 2.3%, and 2.7% of dinner, breakfast, and others. Brushing Tooth can be
re-recognized to 95%, with an error of 5.2% each to toileting and showering; this is because the given
activities share some information like location and sensor values. Sleeping has a 97% chance to recognize
interleave fashion, but it has 6% confusion to the brushing tooth. It is due to the simultaneous occurrence
of brushing teeth activity and sleeping. Activities like Dinner, Drinking, Dressing, Leaving House,
Preparing Breakfast, Preparing Dinner, Showering, Toileting, Using Dishwasher, Others have the
accuracy of 91 %, 95%, 97%, 90%, 92%, 91%, 90%, 92%, 94% and 83% respectively. Therefore, the activity
that appears other than the assigned activity is another activity. The proposed method recognizes the
interleaving activities with an average accuracy of more than 92% with an f-score of 0.918, as shown in
Figure 14. Although the proposed method shows good results of the recognition of interleaving activity,
there are so many confusion values that occurred. The main reason for this type of confusion is all
because of sharing common location, common sensor values, the simultaneous occurrences of activity,
and sharing the same platform.

Table 3. Confusion matrix for Kyoto 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 Recall

1. Breakfast 93 0 0 0 0.2 0.88 0 0 0 0 0 0 0 98.85
2. Brushing

Teeth 0 95 0 0 0 0 0 0 6 0 0 0 0 94.06

3. Dinner 0 0 91 0 0 0 1.9 0 0 0 0 5.3 0 92.67
4. Drinking 0 0 0 95 0 0 0 4.6 0 0 0 0 2.3 93.23
5. Dressing 0 0 0 0 97 1.5 0 0 0 0 3 0 0 95.57
6. Leaving

House 0.3 0 0 2.3 2.5 90 0 2.8 1 0 0 0 3 88.32

7. Preparing
Breakfast 2 5.2 0 0 0 0 92 0 0 0 0 0 0 92.74

8. Preparing
Dinner 0 0 0 0 0 0 0 91 0 2.7 0 1 0 96.09

9. Sleeping 0 5.2 0 0 0 0 1 0 97 0 0 0 0 93.99
10. Showering 0 0 0 0.2 0 0 0 0 0 90 1.6 0 0 98.04
11. Toileting 0 0 0 1.3 1.2 0 0 1.6 0 0 92 0 5 91.00

12. Using
Dishwasher 0 0 7.2 0 0 0 0 0 0 0 0 94 0 92.89

13. Others 3 0 0 0 0 7.5 7 0 0 5 3 0 83 76.50
Precision 94.61 90.13 92.67 96.15 96.13 90.11 90.28 91.00 93.27 92.12 92.37 93.72 88.96

Figure 14. F-score comparison on KH-B.
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Table 4 represents the confusion matrix of recognition of interleaved activity for the Kyoto 3 dataset.
The confusion matrix shows the average f-score of the recognition is above 0.95, as given in Figure 14,
which shows the average accuracy is high to desire. As mention, due to limited data, the accuracy is
pretty much in good shape. The recognition of the same activity, after pausing fill medication dispenser
is about 93%. Recognition of interleaved activity like Wash DVD, Water Plants, Answer the Phone,
Prepare Birthday Card, Prepare Soup, Clean, Choose outfit is satisfactory with an average accuracy
of 90%, 92%, 90%, 91%, 91%, 90%, and 92% accordingly. The resultant recognition of interleaved
activities by our proposed method outperforms existing approaches like HMM-SCCRF, LSTM-SCCRF,
and Bi-LSTM-CRF. The resultant accuracy of Kyoto is more than 0.95 compared to other approaches,
and algorithm 0.92 (HMM-SCCRF), 0.93 (LSTM-SCCRF), and 0.93 (Bi-LSTM-CRF) are as shown in
Figure 15.

Table 4. Confusion matrix for Kyoto 3.

1 2 3 4 5 6 7 8 Recall

1. Fill Medical on Dispenser 93 1.3 2.7 0 0 1.6 0 0 94.32

2. Wash DVD 0 90 0 4 2 0 2 0 91.84

3. Water Plants 0 0 92 0 0 0 0 0 100.00

4. Answer the Phone 0.6 1.2 0 90 0 6 0 0 92.02

5. Prepare Birthday Card 0 3 0 0 91 0 0 2.3 94.50

6. Prepare Soup 5 0 0 2.3 3.2 91 0 0 89.66

7. Clean 2 0 5 0 1.2 90 1 90.73

8. Choose Outfit 0 4 0 0 0 2 2 92 92.00

Precision 92.45 90.45 92.28 93.46 93.43 90.46 95.74 96.54

Figure 15. F-score comparison on Kyoto.

6. Conclusions

We adapt BiLSTM-SCCRF to establish a new approach to recognize concurrent and interleaved
human activities within a single platform at a smart home. The proposed method recognizes activity
in two phases. The first phase recognizes the concurrent activity using the bi-directional long short
term memory (BiLSTM) extended version of RNN. The second phase is responsible for recognizing the
interleaved activities using the skip-chain conditional random field (SCCRF) upgraded CRF version.
By cascading these two phenomena, we can easily detect complex activity. This paper uses the two
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datasets to evaluate the proposed method’s recognition performance with other recognition methods.
In the evaluation process, F-score and accuracy are calculated from precision and recall. Also, Table 5
represents the mean and standard deviation by varying the Batch size hyperparameter on 10,000 epochs.
Similarly, Table 6 shows the epochs parameter’s result on sizing batch to 100, and the mean and
standard deviation are calculated. The window size selection also plays a vital role in system accuracy;
technically, 500 ms to 5000 ms window size extent will be relevant. The mean and standard deviation
of accuracy and error using the 10-fold cross-validation is shown in Table 7. The average accuracy was
found to be 92.69 ± 4.565%.

Table 5. Mean & standard deviation of variable range Batch Size on 10,000 epochs.

Batch Size 10 20 50 100

Mean (µ) ± SD (σ) Mean (µ) ± SD (σ) Mean (µ) ± SD (σ) Mean (µ) ± SD (σ)

House B 0.9261 ± 0.0734 0.9332 ± 0.0479 0.9327 ± 0.0413 0.9234 ± 0.0458

Kyoto 0.9407 ± 0.0620 0.9334 ± 0.0479 0.9419 ± 0.0413 0.9394 ± 0.0458

Table 6. Mean & Standard deviation of different Epcohs on 100 Batch Size.

Epochs 1000 5000 8000 10000

Mean (µ) ± SD (σ) Mean (µ) ± SD (σ) Mean (µ) ± SD (σ) Mean (µ) ± SD (σ)

House B 0.9030 ± 0.0655 0.930 ± 0.0468 0.9295 ± 0.0353 0.9103 ± 0.0482

Kyoto 0.9175 ± 0.0613 0.9303 ± 0.0347 0.9388 ± 0.0304 0.9411 ± 0.0464

Table 7. 10-fold Cross-validation Result.

Mean ± SD Accuracy Mean ± SD Error

House B 0.9148 ± 0.0458 0.476161 ± 0.15032

Kyoto 0.9390 ± 0.0455 0.31367 ± 0.21140

Figure 16 shows the training and testing accuracies of our method. The graph depicts successful
training and recognition of activity in accordance. The training loss is comparatively more than test loss,
which is natural when the training goes lots of phases to learn the activity’s actual occurrence.

Figure 16. Accuracy of Training or Testing.
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Therefore, the proposed approach recognizes that complex activity, like concurrent and
interleaved activity, is better than other techniques. The window size is also an important parameter to
consider as too small size may not contain all information and too large causes the vacant producing
recognition errors.

Figure 17 shows the accuracy and the F-score of the proposed method compared to the other
well-known approaches. Our proposed method outperforms other existing approaches holding
accuracy of around 94% on average. Our proposed method’s distinguishing feature is that both the
concurrent and interleaved activities are recognized through the single platform; instead, others use a
different platform to recognize each activity separately.

Figure 17. Overall accuracy and F-score of the proposed method.

We did our best to develop an adaptive way to adjust the searching process, reshaping, adding,
and removing various layers. However, the excellent approach could be who has perfect generalization.
The resident’s activities are recognized effectively and wisely by using the binary sensors deployed
in smart homes. The external sensors have been used rather than wearable and camera or video
sensors to avoid the burden and protect the inhabitant’s privacy. In the future, more complex activities
like multiple users’ activity will be recognition by improving and updating the proposed method.
As activity instances and training samples are not much, the technique could be suitable for many data
like big data. We will also explore a transfer learning approach to this model to recognize the more
complex activity on large-scale data and cloud infrastructures. In conclusion, it would seem preferable
to use the model that offers fewer parameter complexities and computational loss.
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