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Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cogni-
tive remediation approaches have yielded encouraging results. Nevertheless, therapeutic
response is variable, and outcome studies consistently identify individuals who respond
minimally to these interventions. Biomarkers that can assist in identifying patients likely to
benefit from particular forms of cognitive remediation are needed. Here, we describe an
event-related potential (ERP) biomarker – the auditory brain-stem response (ABR) to com-
plex sounds (cABR) – that appears to be particularly well-suited for predicting response
to at least one form of cognitive remediation that targets auditory information processing.
Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem
and midbrain. This ERP biomarker has revealed auditory processing abnormalities in var-
ious neurodevelopmental disorders, correlates with functioning across several cognitive
domains, and appears to be responsive to targeted auditory training. We present prelim-
inary cABR data from 18 schizophrenia patients and propose further investigation of this
biomarker for predicting and tracking response to cognitive interventions.

Keywords: auditory brain-stem response, biomarkers, cognitive remediation, complex auditory brain-stem
response, EEG, psychosis, schizophrenia

Cognitive impairment is a core feature of schizophrenia that is
associated with psychosocial functioning deficits [e.g., Ref. (1,
2)]. Neural network models of cognitive dysfunction in psychosis
implicate a distributed neural architecture that includes “higher”
cortical regions specialized for integrative cognitive operations as
well as neural substrates of lower-level perceptual processing [e.g.,
Ref. (3, 4)]. Consistent with these models, auditory perceptual
deficits have been shown to contribute significantly to impaired
cognition (5). Despite the fundamental role of subcortical struc-
tures in auditory processing and cognition, neurophysiological
characterization of subcortical functioning is largely underrepre-
sented in the schizophrenia literature. The auditory brainstem and
midbrain, in particular, include a group of structures that support
crucial functions in the representation of auditory information:
the cochlear nuclei, superior olivary complex, lateral lemniscus,
inferior and superior colliculi, and the auditory thalamus. These
structures are sensitive to the subtle cues required for perception of
pitch, timing, amplitude and localization of sounds, and they share
reciprocal feedback with higher cortical regions through dense
ascending and descending pathways (6). This subcortical network
has an extremely well-established neurophysiological biomarker of
functioning: the ABR. In fact, the ABR is among the most widely
used clinical EEG measures with a variety of validated applications
including newborn hearing screenings, auditory threshold esti-
mation, intraoperative monitoring of auditory system function,
detecting auditory nerve and brain-stem lesions, assessing for the
presence of demyelinating conditions, detecting brain death, and
determining coma type and recovery prognosis (7).

Despite abundant evidence of auditory system dysfunction
in schizophrenia, surprisingly few studies have actually exam-
ined ABRs in this population, and results therein have been
equivocal. Some studies have found normal ABRs (8, 9) while
others have detected abnormal or even missing responses (10–
14). Interestingly, abnormal brain-stem activity has been asso-
ciated with the presence of auditory hallucinations (13, 15), a
hallmark symptom experienced by most schizophrenia patients
at some point over the course of illness (16). More thorough
assessment of brain-stem function in schizophrenia is, therefore,
warranted.

One particularly promising subcortical target for future investi-
gation is the inferior colliculus (IC) of the midbrain, a key auditory
processing structure and convergence site for auditory pathways
ascending from brainstem to cortex (6). The IC is crucial for
maintaining fidelity of neural signals generated at the very earli-
est stages of auditory perception [i.e., in the cochlear nucleus and
auditory nerve (17)]. Along with the nearby lateral lemniscus, IC
exhibits the ability to phase-lock up to 1,000 Hz concordant with
the acoustic properties of relatively complex sinusoidal sounds
(18–22). Extant neurophysiologic research on brainstem and mid-
brain function in schizophrenia has only examined ABRs evoked in
response to simple click stimuli (click ABRs), which lack the com-
plexity necessary to evoke this “frequency-following” response.
Speech and other more acoustically complex sounds, however,
do elicit such a response and could thus provide a more sensi-
tive assessment of brainstem and midbrain neurophysiology in
schizophrenia.
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COMPLEX AUDITORY BRAIN-STEM RESPONSE
The complex auditory brain-stem response (cABR), shown in
Figure 1, is an event-related potential (ERP) with an onset approx-
imately 6 ms after presentation of an acoustically complex sound.
Its peak amplitudes and latencies correspond with the acoustic
properties of its evoking stimulus (23, 24), and it is thought to
provide an objective index of the brainstem and midbrain’s repre-
sentation of complex sounds [cf. Ref. (25)]. Although cABRs can
be evoked in response to various types of complex stimuli, here,
we primarily focus on those evoked by consonant-vowel speech
sounds (e.g., /da/or/mi/). As illustrated in Figure 1, portions of
the cABR uniquely correspond to speech stimulus parameters –
namely, the stop consonant onset, consonant-to-vowel formant
transition, frequency-following response to the vowel sound, and
offset of voicing. Neural representation of stimulus pitch, timing,
and timber can be derived from the waveform, with high corre-
lation between cABR and stimulus suggesting accurate encoding
of sound (25–27). Abnormal cABRs can be characterized by a
number of features including small peak amplitudes and long
peak latencies relative to the stimulus sound wave (i.e., small
stimulus-to-response correlation), low signal-to-noise ratio, weak
phase-locking activity, and response variability over time. Such
abnormalities have been demonstrated in a number of clini-
cal conditions, including specific language impairment, dyslexia,
and autism (25, 28, 29). Older adults have also demonstrated
abnormalities in comparison with their younger counterparts (30,
31). Perhaps the most compelling argument for investigating the
cABR in schizophrenia comes from Russo et al., who showed
that children with autism exhibit abnormal cABRs in the con-
text of intact click-ABRs (29), suggesting that speech and perhaps

other complex sounds may offer improved sensitivity over tradi-
tional click-ABR measures for detecting brainstem and midbrain
dysfunction.

UTILITY OF THE cABR AS A TREATMENT BIOMARKER IN
PSYCHOSIS
Numerous higher level sequelae of cABR abnormalities have been
identified, with robust relationships demonstrated between cABRs
and reading abilities (32), phonological processing (33–35), per-
ception of speech in background noise (36), language learning
(37), auditory selective attention (38), auditory learning (39),
auditory working memory (40), and executive functioning (38).
Given that deficits in several of these domains are also commonly
present in patients with psychotic illnesses, the cABR may serve
as a sensitive index of neural dysfunction occurring within the
earliest stages of auditory processing that subsequently cascades
“forward” to affect the engagement of higher cortical networks
known to underlie cognitive deficits in schizophrenia, or that may
otherwise reflect pathology common to both brainstem and higher
brain areas.

Among the more intriguing findings from cABR research thus
far is that, contrary to conventional beliefs about the “fixedness” of
subcortical structures and their relatively passive role in auditory
perception (41, 42), brain-stem activity can seemingly be modified
as a function of experience with sound. Musicians, presumed to be
“auditory experts” due to their extensive training in pitch discrim-
ination and other auditory skills, exhibit stronger correspondence
between cABRs and speech stimuli than do non-musicians, and
cABR pitch-tracking accuracy is positively correlated with years of
musical training (43–45). Language experience can also influence

FIGURE 1 | Grand average cABR from 18 schizophrenia patients. Black
line is average cABR from Cz; peaks are named in accordance with
convention [e.g. (27)]. Blue line represents “da” stimulus sound wave, 200 Hz
low-pass filtered to better illustrate similarities between cABR and stimulus.
Sound wave has also been shifted forward approximately six milliseconds to

account for transmission time from cochlea to brainstem. Peaks V–A, C, and
O are transient features of the cABR, corresponding with stop consonant
onset, consonant-vowel formant transition, and offset of voicing, respectively.
Peaks D, E, and F comprise the sustained frequency-following response (FFR)
of the vowel sound (Tarasenko et al., in preparation).
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brain-stem activity, as evidenced by greater fidelity of cABRs in
tonal language speakers (46) and bilinguals (38). Notably, the ben-
efits of auditory experience on acoustic processing can also be
reaped through targeted short-term interventions, with increased
cABR fidelity having been found following training programs con-
taining an auditory discrimination training component (47–50).
In fact, Skoe et al. (51) demonstrated transient cABR modifica-
tion after only 15 min of auditory training, leading the authors
to characterize the brainstem as a “barometer of rapid auditory
learning.”

The malleability of cABRs in response to even a brief course
of auditory training is particularly relevant to current treatment
development efforts in psychosis. Recently, cognitive training pro-
grams have capitalized on existing knowledge of sensory disrup-
tion in psychosis by incorporating auditory frequency discrimi-
nation exercises that are designed to place implicit and increasing
demands on basic auditory perception. Targeted cognitive train-
ing (TCT) is one such approach, aiming to improve cognition
in part by “sharpening” the fidelity of auditory processing. Data
increasingly suggest that targeted “tuning” of underlying neural
systems is indeed beneficial for facilitating cognitive recovery in
schizophrenia, with patients demonstrating large improvements
in auditory-dependent domains of verbal learning and memory
and verbal working memory that generalize to enhanced global
cognition (d = 0.86–0.89) following 50 h of TCT (52). Despite
evidence of TCT’s efficacy at the group level, however, indi-
vidual responses to the training are highly variable, with some
patients showing virtually no cognitive improvement even after
an extended course of 100 h of training (53). There is, thus, a need
to identify ERP biomarkers that are sensitive to neurophysiolog-
ical changes occurring early in TCT and may predict response
to a full “dose” of this and other resource-intensive cognitive
interventions.

The identification of biomarkers has been a high priority
for psychiatry research, due to mounting evidence of overlap-
ping neural networks that underlie multiple psychiatric illnesses,
calling into question the validity of traditional symptom-based
diagnostic categories (54, 55). Biomarkers that provide direct
assays of the neural circuits underlying clinical phenomena may
allow for more precise diagnosis and reliable estimation of bene-
fit from interventions targeting clinically relevant neural circuits
(56). Although substantial progress has been made in validating
a number of viable candidates (57–62), a “gold standard” ERP
biomarker of cognitive dysfunction in psychosis has not yet been
established. Scalp ERP measures that currently permeate this lit-
erature (e.g., amplitudes and latencies of peaks P50, N1, MMN,
P300, etc.) reflect relatively high-level brain responses to sound
stimuli and have been shown to sum potentials from multiple
cortical source areas (3, 4, 63, 64). Peak cABR measures, in con-
trast, provide an objective probe of sound representation and have
little intra-individual variation in the absence of a systematic
auditory training regimen (65); their ability to reliably quan-
tify the degree of disruption present in the auditory signal may
thus proffer a unique advantage for accurately diagnosing psy-
chotic disorders and predicting likelihood of benefit from TCT
and/or other cognitive, pharmacologic, or combined interven-
tions. Reported adaptations in brain-stem responses early in the

course of auditory training [e.g., after only 15 min (51)] could
suggest both engagement of the targeted neural system and a capa-
bility for neural plasticity required to benefit more broadly from
further training.

Importantly, the ERP paradigms used to study cABRs are ideal
for inclusion in a biomarker test battery, as they are typically short
in duration (approximately 15 min) and require little attention
or effort from participants, who typically engage in a distract-
ing visual task during auditory stimulus presentation [see in Ref.
(27) for further discussion of task parameters]. Preliminary data,
shown in Figure 1, suggest that this type of task is indeed feasible
to administer and is well tolerated by schizophrenia patients. A
measure of cABR functioning could therefore be easily added to
existing batteries to better inform diagnosis and guide subsequent
treatment.

CONCLUSION
Neurocognitive deficits commonly found in schizophrenia
patients may in part reflect dysfunction in lower-level auditory
processing mechanisms that have conventionally been studied
with click-ABRs and other neurophysiological biomarkers [e.g.,
Ref. (54, 56, 57, 59, 60, 66, 67)]. The cABR provides an objective,
multidimensional measure of sound encoding that is abnormal in
some neurodevelopmental disorders, and these deficits are asso-
ciated with impaired performance across several higher-order
cognitive domains. This measure may serve as a sensitive bio-
marker that predicts or corresponds to therapeutic response to
auditory-based cognitive training interventions for schizophrenia.
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