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1 Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin,
Poland; monika.karas@up.lublin.pl

2 Department of Environmental Microbiology, University of Life Sciences in Lublin, 20-069 Lublin, Poland;
kamila.rybczynska-tkaczyk@up.lublin.pl

3 Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 20-704 Lublin,
Poland; ewelina.zielinska@up.lublin.pl

4 Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin,
20-950 Lublin, Poland; damian.zielinski@up.lublin.pl

* Correspondence: anna.jakubczyk@up.lublin.pl; Tel.: +48-81-462-33-96

Received: 26 May 2020; Accepted: 22 June 2020; Published: 29 June 2020
����������
�������

Abstract: Generally, bioactive peptides are natural compounds of food or part of protein that are
inactive in the precursor molecule. However, they may be active after hydrolysis and can be
transported to the active site. Biologically active peptides can also be synthesized chemically and
characterized. Peptides have many properties, including antihypertensive, antioxidant, antimicrobial,
anticoagulant, and chelating effects. They are also responsible for the taste of food or for the inhibition
of enzymes involved in the development of diseases. The scientific literature has described many
peptides with bioactive properties obtained from different sources. Information about the structure,
origin, and properties of peptides can also be found in many databases. This review will describe
peptides inhibiting the development of current diseases, peptides with antimicrobial properties,
and new alternative sources of peptides based on the current knowledge and documentation of their
bioactivity. All these issues are part of modern research on peptides and their use in current health or
technological problems in food production.

Keywords: bioactive peptides; antioxidant; metabolic syndrome; peptide inhibitors; antimicrobial
peptides; peptides from edible insects

1. Introduction

Nowadays, food is considered as a source of not only dietary compounds but also biologically
active compounds that may exert a beneficial effect on human health and condition of the organism.
The growing consumers’ awareness of the impact of diet on health is reflected in their choice of
raw products rich in vitamins, minerals, and other bioactive compounds such as polyphenols [1],
anthocyanins [2], carotenoids [3,4], essential oils [5], or peptides [6].

Biologically active peptides may be natural compounds of food or part of protein that are inactive
in the precursor molecule but are active after release or are transported to the active site [7]. Generally,
peptides are a result of enzymatic hydrolysis of protein in the gastrointestinal tract. They can also
be produced by microorganisms in the fermentation process. To obtain biopeptides with specific
activity, proteases with broad specificity of action are used for proteolysis. They are extracted from
vegetable tissues (e.g., ficin, papain, bromelain), animal tissues (e.g., pepsin, chymotrypsin, trypsin),
and microbial cells (e.g., proteinase K, pronase, collagenase, subtilisin A, Alcalase®, Flavourzyme®,
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Neutrase®) [8]. There are many methods to obtain peptides with biological properties and increase the
isolation process (Figure 1). Several enzymes of different origin are also used to isolate new, most often
short-chain, peptides. Before hydrolysis, the source of peptides may be subjected to various processes,
e.g., fermentation [9–11]. Biopeptides can also be synthesized chemically [12–14] or can be obtained
through the expression of appropriate genes [15–17].
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Figure 1. Scheme of bioactive peptide preparation.

Peptides have been investigated for a long time and it is currently known that, similar to hormones,
they can regulate many important body functions. They are characterized by many properties, including
antihypertensive, antioxidant, antimicrobial, anticoagulant, and chelating effects (Figure 2). They are
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also responsible for the taste of food or inhibition of enzymes involved in the development of diseases.
However, peptides may also show toxic activity or allergenic effects, especially in people with celiac
disease. The activity of peptides depends on their structure and amino acid composition. Until recently,
it was thought that bioactive peptides are composed of 2–20 amino acids. It is now known that they
may contain more amino acids in their structure (for instance, insulin with the peptide-C structure),
which play a special role in carbohydrate metabolism; hence, analysis of their content is an important
factor in diabetic diagnosis [8].
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Figure 2. Properties of bioactive peptides.

Protein hydrolysates and peptide fractions with determined molecular mass or peptides can be used
as functional foods, nutraceuticals, or additives to food products, increasing their nutraceutical potential.
Good sources of peptides are protein-rich food products of plant [18], animal [19], or alternative
origin [20,21]. Recently, peptides were isolated and identified from products with low content of
protein [22], new foods [23], residues from food production [24], or non-food products [25]. It seems
crucial to find ways for making the best use of such sources of peptides, for example, by using efficient
methods to obtain these compounds. An important aspect limiting the use of bioactive peptides is
their characteristic bitter taste, which is why they are not always accepted by consumers.

2. Peptides as Inhibitors of Enzymes Involved in Metabolic Syndrome

2.1. Metabolic Syndrome

One of most common health problems in developing countries is metabolic syndrome (MS). It is
estimated to affect approximately 24% of the US adult population. Approximately 47 million people
have metabolic syndrome: 44% of those in the ≥50-year age group, 12–37% of the Asian population,
and 12–26% of the European population suffer from this disease [26], and many others meet the criteria
but have not been correctly diagnosed and are not aware of the disease. There are a few guidelines and
diagnostic criteria, but MS is generally defined as a cluster of interconnected metabolic abnormalities
involving glucose metabolism, lipid metabolism, cardiovascular blood pressure, and central obesity [27].
MS increases the risk of hypertension, arteriosclerosis-induced heart attack, hypercholesterolemia,
dyslipidemia, and type-2 diabetes. It is also related to other disorders, including prothrombotic and
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proinflammatory processes. It should be noted that MS is increasingly being suggested as a cause of
cancer. The main cause of the occurrence and development of the disease is incorrect metabolism
associated with excessive activity of certain enzymes.

2.2. ACE Inhibitory Peptides

The renin–angiotensin–aldosterone system (RAAS) is a key element in the organism’s homeostasis,
control of fluid and electrolyte balance, and response to physiological and pathological conditions. It can
act locally at different tissue levels, or the components of the system can be transported by the blood
stream into the active site [28]. The most important enzyme in this system is the angiotensin-converting
enzyme I (ACE) produced by lung or kidney tissue and the luminal membrane of vascular endothelial
cells and other organs. ACE converts inactive decapeptide angiotensin I (ANG I) into vasoconstrictor
octapeptide angiotensin II (ANG II). Excessive activity of ACE causes production of high concentrations
of angiotensin II and, consequently, an increase in blood pressure. ANG II contributes to multiple
physiological and pathophysiological cardiovascular functions such as hypertension, atherosclerosis,
thoracic aortic aneurysms, or abdominal aortic aneurysms [29]. Inhibitors of ACE activity are commonly
used as drugs in hypertension treatment, but they may cause serious side effects, e.g., cough, rush,
or edema [29]. Therefore, identification of new, nontoxic, safe, and inexpensive ACE inhibitors is the
main aim of many studies. ACE inhibitors have been isolated and described from protein-rich food
products and natural bioresources.

Generally, ACE inhibitory activity is strongly dependent on the amount and type of amino acid
composition of peptides, but the exact relationship between their structure and activity is still poorly
understood. There are many studies describing ACE inhibitory peptides as short chain molecules,
often composed from 2 to 3 amino acids. A novel ACE-inhibitory peptide (VQY) was obtained and
identified from razor clams. This peptide with an IC50 of 9.8 µM is one of the competitive ACE
inhibitors [30]. A dipeptide (YV) with ACE inhibitory properties was obtained from ostrich egg white
ovalbumin. It exhibited an IC50 value of 63.97 µg/mL and was classified as a competitive inhibitor
as well. Moreover, the molecular docking analysis revealed that the binding between YV and the
S1 and S2 pocket sites of ACE was mainly stabilized by a hydrogen bond [31]. Short chain ACE
inhibitory peptides with sequences KVF, MKR, AKF, AMK, and GIL were isolated from enzymatic
hydrolysates of lysozyme [32]. Several studies have indicated that binding to ACE is influenced by
hydrophobic amino acid residues (aromatic or branched chain) at three positions from the C-terminus
of the peptide [33]. Such amino acids as isoleucine and valine in the aliphatic amino acid chain
have been reported to enhance the inhibitory effect [34]. Lee and Hur [35] described the amino
acid composition as a possible cause of the antihypertensive activity of LIVGIRCV. Hydrophobic
amino acid residues with aliphatic side chains, such as G, A, V, L, and I, at the C-terminus have been
associated with a significant increase in the ACE inhibitory activity due to the higher binding ability
with ACE than in the case of other amino acids. Peptides LPRL, YADLVE, LRLESF, HLNVVHEN,
and PGSGCAGTDL obtained from mung bean protein with strong ACE inhibitor activity contained
leucine in their structure. The results indicate that this amino acid within the peptide sequence has a
main effect on ACE inhibitory activity [36]. In turn, Zhang et al. [37] described two antihypertensive
peptides containing tryptophan at the C-terminus—SAGGYIW and APATPSFW, with IC50 values of
0.002 and 0.036 mg/mL, respectively. These results show that the ACE inhibitory property may be
associated with tryptophan at the C-terminus, blocking the active site in the enzyme via electrostatic,
hydrophobic, van der Waals, and hydrogen bond interactions.

It should be noted that the positively charged amino acids (L and R) have also been involved
in the stronger potency of ACE inhibitory peptides. Moreover, hydrophilic amino acids in
peptides induce weak or no ACE inhibition [38]. However, in the literature, there are reports
on ACE inhibitory peptides CRQNTLGHNTQTSIAQ from Stichopus horrens [39] and YGKPVAVPAR,
investigated by synthesizing four structural analogs including YHR-10 (YGKHVAVHAR), GA-8
(GKPVAVPA), GHA-8 (GKHVAVHA), and PAR-3 (PAR). It was reported that GA-8 (GKPVAVPA) [12]
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or NMAINPSKENLCSTFCK obtained from casein [40] did not have any specific amino acids at the
C-terminal. This demonstrates that the exact relationship between the amino acid sequence in peptides
and their activity is not exactly known.

In addition to the amino acid composition, molecular mass determines the activity of peptides.
Research results indicated that peptides with molecular mass above 3 kDa exhibited higher ACE
inhibitory activity in comparison with larger peptides [41].

Besides, peptides with more than 2 or 3 amino acids have been identified as ACE
inhibitors. Wang et al. [31] described peptides with sequences GHIITVAR, IGGIGTVPVGR,
HIGNILSL, FMPGVPGPIQR, PNYHPSPR, AFPAGAAHW, HIITLGR, LAGNPAGR, MPGVPGPIQR,
AGALGDSVTVTR, and INTLSGR obtained from sesame protein. These peptides were characterized
by molecular weight ranging from 754.8 to 1198.4 kDa, and their IC50 value was in the range 3.60 to
149.63 µM.

Peptides must be unchanged to be delivered to the active site if they are to be used in the treatment
of hypertension or heart disease. They should be resistant to digestion by gastrointestinal enzymes or
must be transported in capsules or pills to the target site and released there. There are several models
reflecting the conditions in the body that are a useful alternative to in vivo conditions. They allow
determination of the influence of diet compounds on enzyme activity, digestibility, bioavailability,
release of bioactive compounds, and structural changes in food [42]. The model used depends on the
food matrix and the aim of study [43–45].

There are several studies of peptide ACE inhibitors and their antihypertensive effect in
spontaneously hypertensive rats. A potent ACE inhibitory peptide obtained from marine C. ellipsoidea,
with an amino acid sequence VEGY (MW: 467.2 Da, IC50 value: 128.4 µM), was characterized
as a competitive inhibitor against ACE. The peptide was stable against gastrointestinal enzymes.
The analysis of the antihypertensive effect in spontaneously hypertensive rats (SHR) also revealed
that oral administration of the purified peptide can decrease systolic blood pressure significantly [46].
Lee and Hur [35] reported that a peptide fraction obtained from beef myofibrillar proteins with
molecular mass <3.0 kDa (400 and 800 mg/kg body weight treatment groups) induced a decrease
in systolic blood pressure by 28 and 35 mmHg, respectively, in a spontaneously hypertensive rat
model. The purified peptide ACE inhibitor had a sequence LIVGIIRC. In turn, a study of ACE
inhibitors obtained from whey protein reported three potent ACE-inhibitory peptide sequences
(DKVGINYW, DAQSAPLRVY, and KGYGGVSLPEW). The highest inhibitory activity was exhibited
by KGYGGVSLPEW. A further study indicated no effect of this peptide (5 mg/kg body weight) on
systolic, diastolic, and mean blood pressure in spontaneously hypertensive rats (SHR) after single
oral administration. Moreover, this peptide had a similar effect to that of ANG II, i.e., it facilitated
noradrenaline release from sympathetic nerve terminals. The absence of an antihypertensive effect may
also be a result of the interaction of these compounds with other components of the systems involved
in the blood pressure control [47]. These results show that peptides with ACE inhibitory activity
should also be tested in vivo, as identification and characterization of new peptides are the first steps
in determination of their potential use in the treatment of hypertension and cardiovascular disease.

2.3. Pancreatic Lipase Inhibitory Peptides

Obesity and fatty acid metabolism disorders are a global epidemic in adults and increasingly in
children. They are generally a result of long-term imbalance between energy intake and expenditure
and, consequently, the main factor of an increased risk of a cardiovascular disease and type 2 diabetes.
It is estimated that the proportion of the population with overweight and obesity in 2030 will reach
89% and 85% in males and females, respectively [48]. There are several mechanisms explaining
the relationship between elevated blood pressure and obesity (and caloric excess). One of them is
enhancement of the real absorption of sodium or expansion of the intravascular volume, activation of
the RAA system by e.g., release of angiotensinogen from adipose tissue, and insulin resistance [49].
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Inhibition of the digestion of dietary lipids is one of the strategies for pharmacological intervention,
since it does not involve a central mechanism of action. Pancreatic lipase is the main enzyme
hydrolyzing 50–70% of food-derived fat in the human organism. Inhibition of this enzyme is the
basis of the action of the Orlistat drug used in obesity treatment. Although it exerts satisfying
effects on weight control, it has been found to cause serious side effects, especially in long-term
treatment (e.g., pancreatic damage, gastrointestinal toxicity, or high cancer risk) [50]. Therefore, it is
necessary to search for new safe compounds, also those derived from food, which will be highly
effective in pancreatic lipase inhibition without side effects. The literature provides few studies
of peptide lipase pancreatic inhibitors. The activity of pancreatic lipase inhibitors depends on the
structure of the peptide and amino acid composition. Peptide amphiphiles, which consist of a
hydrophilic head group with a bioactive peptide sequence and a chemically conjugated hydrophobic
tail, have been proposed for their potential therapeutic applications [51]. In turn, a study conducted
by Siow et al. has indicated that the combination of both hydrophilic and hydrophobic properties
allows the peptide to act as an inhibitor. The authors suggest that a peptide with a “hydrophilic
head” (consisting of RH) and a hydrophobic tail (consisting of PAQPNYPWTAVLVF), will act in the
same way. Stefanucci et al. [52] described two peptides with a sequence IWS and YFS exhibiting
potent inhibitory activity. Results of another study have demonstrated a peptide with an amino acid
sequence CQPHPGQTC, which effectively inhibits pancreatic lipase and is, thus, a promising starting
point for development of a new drug [53]. Similarly, two synthetic peptides purified from soybean
with sequences EITPEKNPQLR and RKQEEDEDEEQQRE have been described as pancreatic lipase
inhibitors (IC50 = 79.27 and 16 µM, respectively) [54]. Our previous results indicated that peptides
with sequences GQLGEHGGAGMG, GEHGGAGMGGGQFQPV, EQGFLPGPEESGR, RLARAGLAQ,
YGNPVGGVGH, and GNPVGGVGHGTTGT were characterized by pancreatic lipase inhibitory activity.
The most effective were GQLGEHGGAGMG and GEHGGAGMGGGQFQPV, with IC50 values 60.62
and 62.32 µg/mL, respectively. It should be noted that the N- and C-termini contain hydrophobic
amino acids that may be involved in this activity [14].

As can be seen from these examples, the exact relationship between the inhibitory activity and
peptide structure has not been fully elucidated and further studies are needed [55].

2.4. Peptide Inhibition of Diabetes Risk Factors

One of the metabolic disorders is type 2 diabetes mellitus. It is estimated that from 221 million
to 366 million people worldwide will have been affected by the disease by 2030 [56]. This metabolic
disorder is caused by an imbalance in glucose absorption and insulin secretion, leading to higher than
normal blood glucose levels [57]. One of the therapeutic methods to reduce blood glucose is to limit
its release from food products and absorption. Glucose is released from polysaccharides digested by
the α-amylase and α-glucosidase enzymes, which leads to a rapid increase in its blood levels known
as postprandial hyperglycemia [58]. Besides stimulation of endogenous insulin secretion, one of
the methods to increase the hyperglycemic effect is dietary starch degradation by glucosidases [59].
The common antidiabetic drugs used for diabetes treatment inhibit the release of glucose from food
polysaccharides. However, some compounds contained in these drugs, such as acarbose, may cause
serious side effects, especially often gastrointestinal symptoms e.g., abdominal distension, flatulence,
and diarrhea [60].

Peptides can strongly inhibit α-amylase and α-glucosidase. Peptides with amino acid sequences
CSSV (MW = 393.99 Da), YSFR (MW = 570.99 Da), SAAP (MW = 343.89 Da), PGGP (MW = 325.99 Da),
and LGGGN (MW = 415.99 Da) were found to possess α-amylase inhibitory activity with IC50 values
of 13.76 × 103, 10.82 × 103, 4.46 × 103, 4.23 × 103, and 2.86 × 103 µg/mL, respectively. The IC50 values
for α-glucosidase were 206.00, 162.00, 66.90, 63.50, and 42.93 µg/mL, respectively. It should be noted
that the LGGGN peptide showed higher inhibition of both α-amylase and α-glucosidase and can,
thus, be considered as a potential antidiabetic inhibitor [55]. Wang et al. [61] demonstrated that
LPLLR inhibited both α-glucosidase and α-amylase, and the inhibition rates reached a maximum of



Foods 2020, 9, 846 7 of 28

50.12% and 39.08%, respectively, at a concentration of 2000 µM. Peptides with α-amylase inhibitory
activity were identified in basil seeds [62]. These were P1 (ACGNLPRMC), P2 (ACNLPRMC),
and P3 (AGCGCEAMFAGA). According to the in silico structural model, these peptides bound to
the substrate binding residues (Trp58, Trp59, Tyr62, Val163, His299, Asp300, and His305) and the
catalytic residue (Asp300) of α-amylase with their active fragments (i.e., Asn-Leu-Pro-Arg-Met-Cys of
P1 and P2, and Met-Phe-Ala-Gly-Ala of P3). Another example of α-glucosidase inhibitory peptides is
those obtained from soy protein, with sequences LLPLPVLK, SWLRL, and WLRL and with IC50 of
237.43 ± 0.52, 182.05± 0.74, and 162.29 ± 0.74 µmol/L, respectively [63]. Furthermore, an α-glucosidase
inhibitor was purified from Aspergillus oryzae N159-1. Analysis indicated that the inhibitor was a
tripeptide PFP with the molecular weight of 360.1 Da. The IC50 value of the peptide against
α-glucosidase activity was 3.1 mg/mL, and the compound represented a mixed-type inhibitor [25].

The studies of the design of novel α-amylase and α-glucosidase inhibitors are based on their
hydrogen bonding interactions and binding energy, which is comparable with that of acarbose. It has
been proposed that the structure of such peptides should contain tri- to hexapeptides with serine,
threonine, tyrosine, lysine, or arginine as the ultimate N-terminal residue, proline preferably at
the penultimate C-terminal position, and alanine or methionine at the ultimate C-terminal position.
There are no specific requirements related to peptide hydrophobicity and charge [64]. Other examples
of peptides are shown in Table 1.

Table 1. Peptides with different activities.

Sequence of Peptide Source of Peptide Activity IC50 Reference

WESLSRLLG Ostrich egg white protein ACE inhibitory 46.7 µg/mL Asoodeh et al. [65]

Antiradical against DPPH 15 µg/mL

Antiradical against ABTS 130 µg/mL

Anti-superoxide radical 150 µg/mL

Anti-hydroxyl radical 160 µg/mL

GAA
GFVG

GIISHR
ELLI
KFPE

Spotless
smoothhound muscle Antiradical against ABTS

1.75 mg/mL
1.30 mg/mL,
0.34 mg/mL
0.32 mg/mL
0.46 mg/mL

Wang et al. [66]

SSEDIKE Amaranth proteins Anti-inflammatory activity nd Moronta et al. [67]

NMAINPSKENLCSTFCK Casein proteins ACE inhibitory 129.07 µM Tu et al. [40]

NLEIILR
TQMVDEEIMELFR Mare whey protein Dipeptidyl peptidase-IV

inhibitory
86.34 µM
69.84 µM Song et al. [68]

GGSK
ELS Red seaweed α-amylase inhibitory 2.58 mM

2.62 mM Admassu et al. [68]

KKFFRAWWAPRFLK Synthetic peptides Inhibition of the yeast
Zygosaccharomyces rouxii MIC (400 µg/mL) Shwaiki et al. [69]

TTFHTSGY
GYDTQAIVQ Whey protein ACE inhibitory 142 µM

1 mM Villadóniga et al. [70]

YAP
VIIF

MAW

Cuttlefish muscle
(Sepia officinalis) ACE inhibitory

6.1 µM
8.7 µM

16.32 µM
Balti et al. [71]

ASPYAFGL Mushrooms ACE inhibitory 1.080 × 10−7 mol/L Zhang et al. [72]

AREGEM Synthetic peptide Antioxidant nd Cao et al. [73]

LAHMIVAGA
VAHPVF Quinoa yoghurt beverages α-glucosidase inhibitory 127 mg/mL

10.39 mg/mL Ujiroghene et al. [74]

HGSEPFGPR
RGDPFPWPWYSH

RPRYPWRYT
Amaranth proteins LOX inhibitory

11.5 µM
>50 µM
17.3 µM

Montoya-Rodríguez et al. [75]

nd—not determined.

3. Antioxidant Peptides

Many scientific studies indicate that oxidative stress can be the cause of many civilization diseases
(obesity, diabetes, heart disease, and cancer). Oxidative stress is caused by an imbalance between
production and removal of oxygen reactive species (ROS) in cells and tissues. ROS are generated
in normal aerobic cellular metabolism and can play several physiological roles (cell signaling) [76].
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However, many environmental stressors (pollutants, heavy metals, and UV or ionizing radiations),
xenobiotics, excessive caloric intake, high-fat diets, or progression of aging can contribute to a substantial
increase in ROS products, and thus, cause imbalance that leads to cell and tissue damage. Moreover,
oxidative stress plays an important role in aging and various neurological disorders in the human
organism (such as Alzheimer’s and Parkinson’s diseases) [77]. Therefore, antioxidant compounds play
an important role in prevention of free radical-induced tissue damage. In recent years, food proteins
have been investigated as a source of peptides with multibiological functions, which promote health
and prevent oxidative stress [78,79]. A growing number of antioxidant peptides (Table 2) have been
identified from animal, plant, and insect sources, as well as food-processing by-products [21,80,81].
The potential application of food protein-derived antioxidant peptides as additives, nutraceuticals,
and pharmacological agents depends on their absorption. Since there are many physiological and
biochemical barriers to the absorption of peptides, many solutions have been tested to take advantage
of their positive properties fully [7]. From a biological point of view, antioxidant peptides can be
divided into endogenous and exogenous. Endogenous peptides occur naturally in cells (glutathione,
carnosine, anserine, GHL), while exogenous peptides are derived e.g., from food proteins during
gastrointestinal digestion [80,82]. Bioactive peptides can also be released from food proteins during
hydrolysis by different proteases of plant, animal, and microbial origin in the food-processing or
fermentation process [79,81,83].

Table 2. Peptide sequences with antioxidant activity.

Sequences of Peptide Antioxidant Methods Source of Peptide
Antioxidant Activity

Expressed as: IC 50; % or
Trolox Equivalent

Reference

LDDPVFIH VAAGRTDAGVH
DPPH radical scavenging
ABTS radical scavenging

reducing power

fermented anchovy
fish (Budu) extract

0.84 mg/mL
1.45 mg/mL
0.617 mg/mL
0.795 mg/mL

0.702
0.422

Najafian and Babji [72]

VVEVYLPR,
VEVYLPR,

VYLPR
ORAC egg-white

36.09 µM
41.05 µM
44.37 µM

Zhang et al. [76]

IREADIDGDGQVN,
PEILPDGDHD, ASDEQDSVRL,

APLEEPSSPH

DPPH radical scavenging
DPPH radical scavenging
DPPH radical scavenging

Fe2+ chelating ability

crucian carp

1.78 mM
1.18 mM
1.45 mM
0.09 mM

Zhang et al. [66]

TSSSLNMAVRGGLTR,
STTVGLGISMRSASVR DPPH radical scavenging finger millet 80.55%

75.1% Agrawal et al. [79]

SYPTECRMR DPPH radical scavenging
ABTS radical scavenging sesame 0.105 mg/mL

0.004 mg/mL Lu et al. (2019) [71]

QMDDQ DPPH radical scavenging,
hydroxyl radical-scavenging activities shrimp 0.5 mg/mL

1.0 mg/mL Wu et al. [74]

EVGK,
RCLQ

Fe2+ chelating ability
reducing power,

ABTS radical scavenging
DPPH radical scavenging

duck plasma

16.35%
0.62,

274.83 mM
95.12%

Yang et al. [73]

LAGNPHQQQQN and
HNLDTQTESDV

hydroxyl radical scavenging or ROS
reduction walnut meal - Sheng et al. [66]

SF and QY protective effects on 385 H2O2-induced
Chang liver cells. M. oleifera seed - Liang et al. [70]

LY, RALP and GHS inhibited the
production of ROS and lipid peroxide rapeseed - He et al. [84]

WDHHAPQLR model of Caco-2 cell monolayers and
oxidative stress in HUVECs rapeseed - Xu et al. [83]

NTVPAKSCQAQPTTM,
EDELQDKIHPF,

QGPIVLNPWDQVKR,
APSFSDIPNPIGSENSE

model of Caco-2 cell fermented milk - Tonolo et al. [85]

AGPSIVH,
FLLPH,

LLCVAV

DPPH radical scavenging
ABTS radical scavenging

reducing power
duck breast

56.41%
0.6393 mmol TE/g

0.0651
Li et al. [80]

LLSGTQNQPSFLSGF,
NSLTLPILRYL,

TLEPNSVFLPVLLH
ORAC lentil storage

proteins

0.013 µmol TE/µmol
1.432 µmol TE/µmol
0.139 µmol TE/µmol

García-Mora et al. [75]

AYL
AYI ORAC Jiuzao 1.35 µmol TE/µmol

1.37 µmol TE/µmol Jiang et al. [70]

Peptide fractions < 1 kDa
DPPH,
ABTS,

hydroxyl radical-scavenging activities
brown rice

0.19 mM TE,
2.28 mM TE,

24.64 mM TE,
Selamassakul et al. [63]
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3.1. Structure-Activity Relationship in Peptides

In general, peptides with low molecular weight and with hydrophobic and aromatic amino
acids in their structure have better antioxidant activity; yet, the relationship between the antioxidant
activities and structural characteristics of peptides is still not clarified in detail. Antioxidant peptides
are oligopeptides including 2–20 amino acids in their structure [82]. The types of amino acids in the
peptide sequence have a major impact on their activity. For instance, hydrophobic amino acids with
nonpolar aliphatic groups (Y, L, W, P, I, and V) were found to effectively scavenge radicals in foods with
high lipid content [84–86]. Aromatic amino acid residues (W, Y, and F) in peptide sequences may affect
the ability to chelate pro-oxidant metal ions [84,87]. Among them, W, Y, and M had higher antioxidant
activity than other amino acids [88]. The presence of hydrophobic (I and L), acidic (D), and basic (H)
amino acids in peptide sequences (LDDPVFIH and VAAGRTDAGVH) is believed to contribute to
the high antioxidant activity of fermented anchovy fish (Budu) extracts [88]. Moreover, the presence
of His in peptide sequences supports their strong antioxidant properties [86]. Lu et al. [87] used a
comparative molecular field analysis (CoMFA) model to show a positive correlation between C, M,
the bulky C-terminal amino acid residue (R), the negatively charged group around sulfur-containing
amino acids, and the antioxidant activity of a nanopeptide with the SYPTECRMR sequence obtained
from sesame protein. The authors indicate that sulfur-containing amino acids (C, M) as well as steric
and electrostatic factors determine the antioxidant activity of SYPTECRMR. The presence of C, R, E, Q,
G, L, and A residues in the structure of RCLQ and EVGK peptides obtained from duck plasma proteins
may explain their high antioxidant activities [89]. Wu et al. reported that the high antioxidant potency
of QMDDQ from a shrimp protein hydrolysate might be attributed to the greater number of active
hydrogen sites and functional groups. Carboxyl active hydrogen atoms and amino active hydrogen
atoms as active sites play a critical role in the antioxidant capacity [90].

The composition of the N- and C-terminal regions can be another key factor for the antioxidant
ability of peptides. García-Mora et al. [91] demonstrated that the electronic, hydrophobic, and steric
properties of amino acid residues in the C-terminal region were important structural features of
LLSGTQNQPSFLSGF, NSLTLPILRYL, and TLEPNSVFLPVLLH, determining their high antioxidant
properties. Luo et al. [91] showed that an increase in dietary valine levels in young grass carp was
accompanied by an increase in the reduced glutathione (GSH) content and the activities of Cu/Zn
superoxide dismutase (SOD1) and catalase (CAT). Moreover, Zhang et al. [92] reported that VEVYLPR
and VVEVYLPR peptides obtained from egg-white protein exhibited lower antioxidant activity than
VYLPR, which explains the fact that the position of glutamate (E) in VEVYLPR and VVEVYLPR may
affect their antioxidant activity. Zhang et al. [92] concluded that valine at the N-terminus of VYLPR
might be helpful to enhance the antioxidant activity of this peptide. Yang et al. [89] showed that the
crucial antiradical activity against ABTS+• of a novel peptide ATVY was dependent on Tyr positions
in the N-terminus. In turn, Sheng et al. [93] reported that the presence of antioxidant amino acids
(W, Y, and M) did not determine the cellular antioxidative effect of peptides. On the other hand,
Matsui et al. [94] concluded that the antioxidant activities of tyrosine containing peptides GYG, GYYG,
and YGGY varied, depending on the characteristics of ROS and/or RNS. The author showed that
the number and position of Y in the peptides did not affect the antioxidant activity against the ClO−

ion, whereas the Tyr position was an important factor for the activity against ONO2
−. In the case of

ROO•, the number of Tyr residues influenced the antioxidant activity, while its position did not have a
significant effect.

The amino acid sequence of peptides determines their bioactivity potential, but it depends on the
method used to test antioxidant properties. This was confirmed in a study reported by Sheng et al. [82].
Peptides obtained from walnut meal hydrolysates had similar in vitro antioxidative effects, but differed
in the capacity for hydroxyl radical scavenging or ROS reduction. Peptides LAGNPHQQQQN
and HNLDTQTESDV had a similar hydroxyl radical scavenging capacity but exerted significantly
different in vitro antioxidative effects [82]. In a study conducted by Liang et al. [84], eleven M. oleifera
seed peptides containing eight dipeptides and three tripeptides showed strong antiradical activities
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towards DPPH• and ABTS+•. Moreover, dipeptides SF and QY showed the best antioxidant activity,
which reconfirmed the finding that short peptides have better antioxidant activities. Hydrophobic
amino acids play a major role in scavenging free radicals, whereas polar amino acids are responsible
for reducing and chelating metal ions [85]. Seven novel peptides—LDGP, TGVGTK, EVGK, RCLQ,
LHDVK, KLGA, and AGGVPAG—with antioxidant activities were obtained from duck plasma
proteins, identified, and synthesized by Yang et al. [89]. EVGK exhibited the highest Fe2+ chelating
ability, whereas RCLQ had the highest reducing power and ABTS+• and DPPH• scavenging activity.
Four novel peptides with high antioxidant activity were identified by Zhang et al. [82], among which,
IREADIDGDGQVN, PEILPDGDHD, and ASDEQDSVRL showed the highest DPPH• scavenging
capacity, while APLEEPSSPH had the highest Fe2+ chelating ability. Additionally, all novel peptides
identified by Zhang et al. [82] had several hydrophobic and/or net-charged residue side chains exposed
to the external medium, which was beneficial for their antioxidative capacity. Two antioxidant peptides
(TSSSLNMAVRGGLTR and STTVGLGISMRSASVR) were identified by Agrawal et al. [95] from a finger
millet protein hydrolysate. Molecular docking studies revealed that the potential antioxidant activity
of both peptides resulted from the interaction of Ser and Thr residues with free radicals. Li et al. [96]
characterized the primary sequence as well as the secondary and tertiary structures of duck breast
protein, deriving peptides using Nano-LC-ESI-LTQ-Orbitrap MS/MS, NICOLET IS10 FT-IR, and the
PEPstr server, respectively. AGPSIVH was the best DPPH• scavenger, whereas FLLPH and LLCVAV
were effective ABTS+• scavengers. Additionally, LLCVAV proved to have reducing power. Li et al. [96]
used FT-IR spectroscopy to estimate the secondary structures of eleven synthesized peptides and
suggested that the spatial structure could play a significant role in the antioxidant ability.

3.2. Stability and Bioavailability of Antioxidant Peptides

Such structural properties of peptides as the amino acid composition, peptide size,
or hydrophobicity determine not only their reactivity, but also their stability and bioavailability [81].
Peptide–food matrix interactions should also be considered, as they can lead to chemical modifications
affecting the bioaccessibility and bioavailability of bioactive peptides [7,97]. In this regard, simulated
in vitro gastrointestinal (GI) digestion systems are commonly applied for investigation of the release of
potentially bioactive peptides from food proteins and for determination of their bioaccessibility [81,82]
and the stability of specific antioxidant peptides against simulated GI digestion [81,82,96,98].
Gallego et al. [81] evaluated the effect of in vitro GI digestion on the antioxidant activity of peptides
naturally generated in Spanish dry-cured hams within 12 months of processing. Their results
showed that the antioxidant activity in the digested samples decreased when measured with DPPH•

scavenging activity and ferric-reducing antioxidant power methods, but increased in the ABTS+•

scavenging assay. Three novel potent antioxidant peptides AGPSIVH, FLLPH, and LLCVAV were
obtained from duck breast protein hydrolysates by Li et al. [96]. The peptides had no toxic effects but
exhibited digestive resistance. Interesting information about the intestinal absorption, bioavailability,
and pharmacokinetics of antioxidant peptides was reported by Xu et al. [99]. The authors used a
model of Caco-2 cell monolayers and oxidative stress in HUVECs to study the absorption and potential
antioxidant activity of WDHHAPQLR derived from rapeseed protein. Additionally, an animal model
was used to study the metabolism of WDHHAPQLR in vivo and to validate the Caco-2 cell model.
WDHHAPQLR was hydrolyzed by intracellular Caco-2 cell enzymes to DHHAPQLR, WDHHAP,
and QLR; moreover, these peptides were also detected in rat serum after oral administration. Xu et al. [99]
concluded that WDHHAPQLR, DHHAPQLR, and WDHHAP were transported by the paracellular
pathway and QLR was transported by PepT1. The absolute bioavailability of WDHHAPQLR was
estimated at 3.56%.

3.3. Investigations of Cellular Antioxidant Activity

The antioxidant properties of peptides are most often expressed as free radical scavenging (DPPH•,
ABTS+•, or OH•) and metal ion chelation (Fe2+ and Cu2+) activity, inhibition of lipid peroxidation,
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reducing power, and their influence on the activity of enzymes involved in the oxidation–reduction
process (e.g., SOD, CAT, PPO, and GSH-Px) [100]. Recently, the activity of antioxidant peptides has
been studied in different cell lines such as HepG2 (hepatocarcinoma), Caco 2 (intestinal cells), HUVeCS
(human umbilical vein endothelial cells), and Chang liver cells [84,101]. Several models e.g., AAPH-,
H2O2-treated HepG2, H2O2-treated Caco 2, and H2O2-treated SH-SY5Y/HUVeCS cells have been
used to investigate the cellular antioxidant activity of peptides [93,100]. Eight peptides with the
highest antioxidant activity were selected from hazelnut meal hydrolysates by Shang et al. [93]. In the
next stage of their study, the in vitro antioxidant effects of peptides were evaluated in H2O2-injured
SH-SY5Y cells. The results showed that all peptides exerted a protective effect on the proliferation
of H2O2-injured SH-SY5Y cells. Moreover, seven peptides significantly decreased the amount
of intracellular ROS. New peptides identified from fermented milk by Tonolo et al. [101] were
synthesized and analyzed in vitro and in a cellular model to determine their antioxidant properties.
Four of these novel peptides (NTVPAKSCQAQPTTM, EDELQDKIHPF, QGPIVLNPWDQVKR,
and APSFSDIPNPIGSENSE) exerted antioxidant effects on Caco-2 cells both via protection against
oxidative stress induced by TbOOH and inhibition of ROS production. Novel antioxidant peptides
VYLPR, EVYLPR, VEVYLPR, and VVEVYLPR were also identified [92] from egg-white protein.
The results obtained by Zhang et al. [92] showed that the peptide VYLPR exerted the strongest protective
effect on H2O2-induced cell damage (HEK-293 cells). Liang et al. [84] investigated antioxidant peptides
from a protein hydrolysate of Moringa oleifera seeds and their protective effects on Chang liver cells
exposed to H2O2 oxidative damage. Eight novel antioxidant peptides GY, PFE, YTR, FG, QY, IN,
SF, and SP and three known antioxidant peptides YFE, IY, and LY were obtained, but only SF and
QY showed significantly protective effects on H2O2-induced Chang liver cells. It was observed that
SF and QY increased the activities of endogenous antioxidant enzymes such as SOD and CAT and
intracellular ROS scavenging capacity. The authors suggested that SF and QY could potentially
serve as natural antioxidants in pharmaceutical products or functional foods (Liang et al., 2020).
In turn, Jiang et al. [84] identified four peptides AYI(L) and DREI(L) from Jiuzao protein hydrolysates.
The antioxidant activities of these peptides were measured using ABTS, DPPH, ORAC, RP, and FCA
assays and in the HepG2 cell model. AYI, AYL, and DREI exhibited strong capacities in the oxygen
radical absorbance capacity (ORAC) assay. Their antioxidant capacities were reflected in their ability to
decrease ROS in HepG2 cells, enhance the activities of SOD, CAT, and GSH-Px in HepG2 cells, and exert
protective effects on AAPH-induced changes in the GSH, GSSG, and MDA contents. In addition,
each of the peptides with the same concentration exerted different effects on the activities of SOD, CAT,
and GSH-Px [84].

3.4. Multifunctional Nature of Antioxidant Peptides

Peptides are often multifunctional and may exhibit several activities such as antioxidative,
antihypertensive, anti-inflammatory, cytoprotective, and antimicrobial effects [102]. In a study
conducted by He et al. [102], three rapeseed protein-derived ACE inhibitory peptides (LY, RALP,
and GHS) were used to investigate their antioxidant and anti-inflammatory properties. For this
purpose, a RAW 264.7 cell model and a spontaneously hypertensive rat model were employed.
The results showed that LY, RALP, and GHS significantly inhibited the secretion of nitric oxide,
interleukin-6, and tumor necrosis factor-α in lipopolysaccharide-stimulated RAW 264.7 macrophages
in vitro. In vivo, these peptides inhibited the release of nitric oxide and the production of lipid
peroxides and ROS. They also improved cell damage caused by oxidative stress in spontaneously
hypertensive rats. As suggested by He et al. [102], LY, RALP, and GHS can protect the organism from
oxidative and inflammatory damage. Song et al. [98] observed a positive correlation of the antioxidant
and antibacterial activities of cottonseed protein hydrolysates with the contents of basic amino acids
(Arg and Lys) and a negative correlation with acidic amino acids (Glu and Asp). García-Mora et al. [91]
showed that peptides (LLSGTQNQPSFLSGF, NSLTLPILRYL, and TLEPNSVFLPVLLH) from lentil
storage proteins (vicilin, convicilin, and legumin) had dual highest antioxidant and ACE inhibitory
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activities, and the GI digestion of these peptides improved their dual activity. Moreover, based on
molecular docking studies, the authors demonstrated that the C-terminal heptapeptide residues of
peptides interacted by hydrogen bonds with three ACE residues of the catalytic site (Tyr520, Lys511,
and Gln281).

An important aspect of many studies of bioactive peptides is the selection of protein hydrolysis
conditions to obtain compounds with the best specific activities.

Hussein et al. [91] optimized hydrolysis parameters such as the temperature, enzyme/substrate
(E/S) ratio, pH, and hydrolysis time, which allowed the obtaining of a whey protein concentrate (WPC)
hydrolysate with the highest dual activities. The authors investigated the whey protein concentrate as
a unique source of peptides with dual functionalities, i.e., ACE inhibitory and antioxidant activities.
The results showed that the selected hydrolysis parameters are very important for the production
of hydrolysates with desirable levels of activities. Additionally, Hussein et al. [91] designed the
response surface methodology (RSM) for establishment of optimal conditions of hydrolysis of WPC by
alcalase to produce protein hydrolysates with the highest activity. It was found that the experimental
data, which were well fitted to the predicted data, further validated the regression model adequacy.
Antioxidant and cytoprotective peptides were obtained by Ballatore et al. [103] in a process of
trypsin-assisted hydrolysis of whey protein concentrate. Peptides with molecular weights lower than
3 kDa exhibited high HO• radical scavenging activity and high cytoprotection against oxidative stress
generated by MEN in IEC-18 cells. Therefore, the authors claim that the enzymatic hydrolysis of whey
protein concentrate (WPC 35) to produce antioxidant peptides is an innovative approach that can
provide added value to whey.

3.5. Bioinformatics Studies of Antioxidant Peptides

Currently, many scientific reports contain information from not only in vitro or in vivo tests but also
in silico analyses. There are many free online bioinformatic tools that have become popular techniques
for investigation and identification of potentially bioactive peptides [91]. An interesting tool used for
estimation of the antioxidant properties of peptides are databases, e.g., BIOPEP [104]. BIOPEP is a
good software tool for prediction of biological activity and flavor [104]. In turn, QSAR (quantitative
structure–activity relationships), QSPR (quantitative structure–property relationships), and molecular
docking simulation models can be used for the characterization of structural and physicochemical
properties [81]. The authors suggested that in vitro and in silico approaches can be operated in parallel
and can be complementary, since they both determine the extracted/predicted peptide and its activity
in a complex food matrix. Knowledge of SAR is valuable and useful for estimation of the potential
antioxidant activity of peptides derived from food proteins [97]. The SAR analysis may also be
applicable in the design of a generation of antioxidant peptides from food proteins as a result of the
activity of enzymes. Five novel antioxidant peptides with 10–13 amino acid residues released from the
Crucian carp were identified by Zhang et al. [82]. In silico assessments of these peptides showed their
amphiphilic nature, good sensory quality, and different target sites in the human body. The authors
used the PepDraw tool for the calculation and prediction of hydrophobicity and the net charge of
the peptides. The ExPASy ProtParam tool allowed estimation of the instability index, aliphatic index,
and GRAVY (grand average of hydropathicity), while the BIOPEP database helped to determine the
sensory quality and biological activity of the peptides. Based on the in silico analysis, Zhang et al. [82]
suggested that the high antioxidant activity of peptides might be associated with their predicted
3D structure exhibiting at least one β-turn, β-sheet, and/or α-helix with partial hydrophobic and/or
net-charged residues exposed to the external medium. A study conducted by Selamassakul et al. [79]
focused on the in vitro biological properties of rice protein-derived peptides in relation to in silico
flavor characteristics. Most of the eight peptides identified showed ACE inhibitory and antioxidant
activity, particularly peptides with the FGGSGGPGG and FGGGGAGAGG sequences. The authors
evaluated the flavor characteristics of the peptides using the BIOPEP database. The study results
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demonstrated high frequencies of umami peptides (ESDVVSDL, GSGVGGAK, and SSVGGGSAG) and
a low Q-value.

Recently, antioxidant peptides have become attractive again due to their multiple sources and
significant antioxidant activity. Antioxidant peptides are often multifunctional and may exhibit other
bioactivities, such as antihypertensive, anti-inflammatory, or antimicrobial effects; therefore, they are
attractive substances to be used as food ingredients in enhancing human health. In vitro, in silico,
and in vivo research should be conducted in parallel to provide a general view of extracted/predicted
peptides and their activity in a complex food matrix or organism.

4. Peptides with Antimicrobial Properties

Antimicrobial peptides (AMPs) are generally classified as antibacterial (Table 3), antifungal,
and antiviral compounds. The physiological mechanism of antibacterial peptides consists of binding
to bacterial cell membranes or mitochondrial membranes, which causes their disintegration and,
consequently, cell death. This mechanism is based on the electrostatic interaction between the positively
charged peptides and the negatively charged surface of the cell membrane. Then, the peptides disrupt
the continuity and structure of the cell membrane [105]. The antimicrobial activity of peptides is
related to their physicochemical properties as well as the number and type of amino acids [106,107].
The physicochemical properties of peptides, such as their size, charge, hydrophobicity, amphipathicity,
and solubility, are crucial for their antimicrobial properties [107,108]. AMPs are usually rich in cationic
and hydrophobic amino acids and have cationic (positively charged) and amphiphilic (both hydrophilic
and hydrophobic) characteristics [107]. Additionally, one of the key features of antibacterial peptides is
their high content of cysteine and/or glycine residues [109]. Due to their ability to produce a secondary
structure, lack of Arg residue in the sequence, or low hydrophobicity, short peptides (4–7 amino acid
residues) probably have lower antibacterial activity [106].

Table 3. Peptide sequence with antimicrobial activity.

Sequence of Peptide
(Name) Source of Peptide Antimicrobial Activity Reference

RYRRKKKMKKALQYIKLLKE
(peptide 35,409)

synthetic peptide, analog from peptide 20,628
(321RYRRKKKMKKKLQYIKLLKE340)

inhibit growth of E. coli,
S. aureus, P.aeruginosa Barreto-Santamaría et al. [104]

ASHLGHHALDHLLK
(H2) Holothuria tubulosa inhibit growth of

L. monocytogenes Cusimano et al. [105]

MRGSHHHHHHGSSGENLYFQSL
(Tag) synthetic peptide inhibit growth of

L. monocytogenes Cusimano et al. [105]

GIWKKWIKKVVNVLKNLF-NH2
(KU2) hybride peptides (KABT-AMP/Uperin 3.6) inhibit growth of

C. albicans Lum et al. [110]

GIWKKWIKKWLNVLKNLF-NH2
(KU3) hybride peptides (KABT-AMP/Uperin 3.6) inhibit growth of

C. albicans Lum et al. [110]

KTCENLADTYKGPPPFFTTG
(phaseococcin) Phaseolus coccineus inhibit HIV reverse transcriptase

activity Patrick et al. [111]

KTCENLADTY
(sesquins) Vigna sesquipedalis inhibit HIV reverse transcriptase

activity Wong and Ng [112]

5. New Alternative Sources of Peptides

The mechanism of the antifungal action of AMP is associated with lysis of fungal cells and
disintegration of their cell wall, which affects its permeability. The antiviral effect of some AMPs
depends on their interaction with the membrane by electrostatic association with the negative charges
of glycosaminoglycans facilitating binding of AMP and competing with viruses [105]. One of the most
important antibacterial properties of peptides is inhibition of the growth of foodborne pathogens.
Foodborne pathogens cause a great number of diseases with serious effects on human health. Most food
poisoning reports are associated with bacterial contamination, especially by members of Gram-negative
bacteria like Salmonella typhi, Shigella dysenteriae, and Escherichia coli and Gram-positive bacteria e.g.,
Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus [111,113]. A previous study indicated
antibacterial activity of peptide 35,409 against E. coli ML 35 (43,827), Pseudomonas aeruginosa ATCC
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15,442 and S. aureus ATCC 29,213 with MIC 22 and 350 µM, respectively [112]. Cusimano et al. [114]
demonstrated antibacterial activity of synthetic peptides H2 and Tag against different strains
of L. monocytogenes (MIC > 5 mg/mL). The antifungal activity of peptides against yeast, e.g.,
Candida albicans, is also important. C. albicans yeasts are commensal microorganisms commonly
residing on the skin, gastrointestinal tract, genitourinary system, oropharynx, and upper respiratory
tract, without causing harm to healthy individuals [110,115]. However, in some cases, they are
associated with opportunistic infections in humans, especially in immunocompromised patients with
HIV/AIDS [110,116]. In susceptible patients, C. albicans can enter the bloodstream by translocation
across the mucosa of the gastrointestinal tract [115]. The research conducted by Lum et al. [110]
indicated that hybrid peptides KU2 and KU3 containing a mixed backbone of KABT-AMP and Uperin
3.6, demonstrated anticandidal activity against C. albicans 90,028 with MIC values in the range of
16–128 mg/L (0.016–0.128 mg/mL). Cyclotides are a large family of plant-derived peptides characterized
by a broad range of biological roles, e.g., antiviral activities against viruses involved in human
diseases, such as human immunodeficiency virus (HIV), influenza H1N1, and dengue (DENV) [117].
Other plant-derived peptides that can inhibit HIV reverse transcriptase activity are phaseococcin and
sesquins isolated from runner bean seeds (Phaseolus coccineus) and ground beans (Vigna sesquipedalis),
respectively [118,119].

5.1. Peptides from Edible Insects

Recently, bioactive peptides have been extracted through enzymatic hydrolysis of vegetable
proteins e.g., from soya, pea, chickpea, or other popular high-protein plant seeds [78,120]. Nevertheless,
new sources of peptides are gaining in popularity, and edible insects are one of the most widely studied
sources. Insect consumption is becoming increasingly popular in Europe, and scientists supporting
the development of entomophagy as well as producers are trying to make this type of food more
attractive to consumers. Therefore, recently, there has been a stronger focus on the pro-health aspect of
insects than on their nutritional effect [121]. Since they are a good source of protein, insects can be
expected to be a good source of bioactive peptides as well. The research on insect-derived bioactive
peptides is relatively new. Nongonierma and FitzGerald [121] indicated that the first publication
describing the generation of bioactive peptides from edible insects was published by the University
of Ghent in Belgium in 2005 [122]. Bioactive peptides derived from insect proteins are characterized
by a wide range of properties such as antioxidant, antimicrobial, antidiabetic, anti-inflammatory,
and ACE-inhibitory activities [123]. Insect species that produce bioactive peptides are representatives
of the orders Orthoptera, Coleoptera, Lepidoptera, Blattodea, Isoptera, and Hymenoptera [121].

One of the first and most frequently studied insect peptides were derived from the protein of
the species Bombyx mori, and ACE inhibitory properties have been mostly identified [121,124,125].
The ACE-inhibitory peptides identified from protein of B. mori pupae were e.g., KHV [126], ASL [127],
and GNPWM [124] (Table 4). Peptides showing this activity were also identified in cricket
(Gryllodes sigillatus), mealworm (Tenebrio molitor), and locust protein (Schistocerca gregaria) [44,128].
Peptides inhibiting the activity of other enzymes, e.g., DPP-IV [128], α-glucosidase [44,129],
and lipase [44], were identified in insect protein as well. Generally, insects are a source of
bioactive peptides with in vitro inhibitory activity against selected enzymes such as ACE, lipase,
and α-glucosidase, which may be involved in the pathogenesis of metabolic syndrome. Moreover,
the heat treatment of insects has a significant impact on the extraction of bioactive peptides through
enzymatic hydrolysis [44].

Table 4. Peptide sequence with ACE inhibitor active.

Sequence of Peptide Source of Peptide Activity Reference

KHV Bombyx mori ACE inhibitory Jia et al. [126]
ASL Bombyx mori ACE inhibitory Wu et al. [127]

GNPWM Bombyx mori ACE inhibitory Tao et al. [124]
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Another group is insect bioactive peptides reducing inflammation [130]. These peptides have
the ability to inhibit lipoxygenase and cyclooxygenase-2 activity. Dual 5-LOX/COX inhibitors induce
an enhanced anti-inflammatory effect and act by blocking the formation of both prostaglandins and
leukotrienes without affecting lipoxin formation. In addition, such combined inhibition prevents
damage to the gastrointestinal mucosa [21,131]. However, there are very few studies in this area.

Insects are known to be one of the major sources of antimicrobial peptides (AMP). One of the
insect defense mechanisms against pathogens and parasites results in the synthesis of AMPs or
polypeptides produced by the fat body (equivalent to the mammalian liver) and certain blood cells.
As shown in Drosophila, the response is generated via two separate pathways: the immune-deficiency
(IMD) pathway initiated by Gram-negative bacteria and the Toll-receptor pathway stimulated by
Gram-positive bacteria, yeasts, molds, and fungi [132]. Biologically active peptides have been found
to exhibit antibacterial, antifungal, and antiviral properties. Insect proteins are precursors to such
AMPs as defensins, cecropins, attacins, lebocins, and other proline-rich peptides, e.g., gloverins
and moricins. Generally, insect antimicrobial peptides can be classified into four groups: α-helical
peptides, cysteine-rich peptides, proline-rich peptides, and glycine-rich proteins [133]. Examples of
antimicrobial insect peptides include termicin from termites, drosomycin from Drosophila melanogaster,
heliomicin from the tobacco budworm (Heliothis virescens), and gallerimycin from greater wax moth
larvae (G. mellonella) [132]. The amount of AMPs in insects varies significantly in different species
and may have various types of activities, such as production of reactive oxygen species, inhibition
of protein synthesis and permeabilization, and rupture or change of the electrochemical gradient of
the membrane [133]. Most insect antimicrobial peptides have high activity against Gram-positive
bacteria but lower activity against fungi, Gram-negative bacteria, and yeasts [132]. They usually have a
similar profile: they are small (30–60 amino acid), strongly cationic (pI 8.9–10.7), heat stable (15 min in
100 ◦C) peptides with no resistance to drugs and no effect on eukaryotic cells [134]. Moreover, different
interactions between antimicrobial peptides may occur, which are greater than additive antimicrobial
effects, e.g., potentiation when one AMP facilitates or enhances the activity of others, or functional
diversification, i.e., combinatorial activity [135].

Antioxidant peptides are the most popular group of insect peptides. The mechanism of the
antioxidant action of peptides is not well understood, but some amino acids, such as H, P, W, and Y,
have antioxidant activities, and antioxidant peptides commonly have these amino acids in their
sequences [133]. As reported by Da Rocha et al. [136], hydrophobic and aromatic amino acids, e.g.,
histidine, methionine, tyrosine, lysine, and cysteine, enhance the potency of antioxidant peptides
through proton-donation ability, electron-donation ability, and/or direct lipid radical scavenging ability.
Moreover, Liu et al. [137] have found that low molecular weight peptides have more amino acids
exposed to interact with free radicals, which improves their antioxidant effect. Hall et al. [138] has
confirmed that the high scavenging capacities of insect hydrolysates can be an effect of the activity of
smaller molecular weight peptides (di- or tripeptides) with better antioxidant potential. Nevertheless,
Zielińska et al. [21] have shown high antioxidant activity of peptides composed of several amino acids
(6–9 amino acids). Generally, the antioxidant activity of edible insect protein hydrolysates or single
peptides was reported to be relatively high compared to that of other food protein hydrolysates [121].

Peptides from various species of edible insects, e.g., crickets (Amphiacusta annulipes, Gryllodes
sigillatus), cockroach (Blaptica dubia, Gromphadorhina portentosa), locust (Locusta migratoria,
Schistocerca gregaria), beetle (Zophobas morio, Tenebrio molitor), or butterfly larvae (Spodoptera
littoralis, Bombyx mori) [21,131,133,139] were reported to have antioxidant activities. The antioxidant
activities of peptides and hydrolysates were evaluated using free radical-scavenging activity (ABTS and
DPPH methods), ion chelating activity, and reducing power assays. Alcalase™, thermolysin, or other
proteases and simulated gastrointestinal digestion hydrolysates yielded antioxidant activity [121].
Furthermore, it has been shown that the heat treatment of insects before hydrolysis positively influences
the antioxidant properties of peptides derived from their proteins [21,131]. To conclude, the bioactive
potential of edible insect peptides appears to be similar or higher than that of other common food
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proteins. Therefore, these peptides with antioxidant, antimicrobial, anti-inflammatory, antidiabetic,
and antihypertensive properties provide a wide range of applications for insect protein.

5.2. Peptides from Seafood By-Products

Proteins from fishery and seafood products are well recognized and have been confirmed to have
high nutritive values, which can provide health benefits [140–142]. The demand for seafood is rising
all over the world, driven by the increase in the population as well as awareness of the health benefits
associated with seafood consumption [140]. Significant amounts of seafood are discarded annually
during industrial scale processing operations. Additionally, processing of these products generates
enormous amounts of by-products (50–80%) [140,143,144]. The discarded remnants, which seem to
be inedible (e.g., heads, skin, viscera, scales, bones, etc.), contain as much as 60% protein on a dry
weight basis [140,145,146], which are a rich source of constituents with bioactive effects [140,143,147].
Therefore, it is advisable to search for health-promoting ingredients in waste from the seafood and
fishing industries [148,149].

It has been proved that seafood proteins exhibit various bioactivities including
antioxidant [150–156], neuroprotective [157], antidiabetic [158], ACE inhibitory [159–161],
DPP-IV inhibitory [162], immunomodulatory [163,164], antibacterial [165–170], cholecystokinin release
regulating [171], antiproliferative [172,173], and anticancer activities [155,174]. ACE inhibitory
and antioxidant peptides are two the most frequent types of peptides obtained from various
seafood by-products. Two peptides, GASSGMPG and LAYA, have been purified from Pacific cod
(G. macrocephalus) skin gelatin via pepsin hydrolysis [161]. Molecular docking has shown the potential
of these peptides as ACE inhibitors with potential use in preparation of functional food targeted
at lowering blood pressure and reducing the risk of CVDs [161]. The same result was reported
for the IVDR, WYK, and VSAVI peptides obtained from olive flounder (P. olivaceus) surimi [175]
and the LSGYGP peptide obtained from tilapia (O. niloticus) skin gelatin protein hydrolysate [176].
The LWHTH peptide obtained from the tunicate (S. clava) in in silico simulations was found to
bind to the active site of ACE, making the ACE–LWHTH complex stable. Furthermore, LWHTH
significantly reduced blood pressure in hypertensive rats [160]. The reported ACE inhibitory peptides
identified from fish and seafood by-products have molecular weight ranging from 300 to 3000 Da,
with the majority having from 2 to 13 amino acids in the sequence [177]. The activity of other
enzymes was reported to be inhibited by seafood by-product peptides, e.g., peptides obtained
from Atlantic salmon (S. salar) contributed to DPP-IV inhibition [159,162]. A bluefin leatherjacket
(N. septentrionalis) by-product (head protein) was a source of three antioxidant peptides (WEGPK,
GPP, GVPLT) [152]. Peptides showing antioxidant activity were also identified in N. septentrionalis
skin (GSGGL, GPGGFI, FIGP) [153], skipjack tuna (K. pelamis) bones (GPDGR, GADIVA, GAPGPQMV,
AGPK, and GAEGFIF) [150], tilapia (O. niloticus) skin (GIV, GAP*GF, GFA*GPA, SGNIGFP*GPK,
GIPGPIGPP*GRP) [178], thornback ray (R. clavata) skin (GIPGAP) [154], and grass carp (C. idella)
skin (PYSFK, GFGPEL, VGGRP) [157,179]. Seafood by-product-derived collagen peptides are specific
protein fragments with health-promoting properties. They support the immune system and prevent
cardiovascular and nervous diseases [180,181]. In food, seafood-derived collagen is used as a functional
and nutritional ingredient for the development of health-enhancing foods.

Studies on seafood protein hydrolysates and peptides have reported effective anticancer
activity [177,182]. A study of purified oyster peptides proved their anticancer activity against a
colon cancer cell line (HT-29) [155]. Hydrolysates prepared from rainbow trout (O. mykiss) protein with
the use of Flavourzyme and Alcalase enzymes showed their antioxidant and anticancer potentials [183].
Polypeptides extracted from oyster shells were found to inhibit tyrosinase activity [144].

The research focused on the characterization and isolation of antimicrobial peptides from fish
processing by-products is less profuse than the investigations of antioxidant peptides. Antimicrobial
peptides are chains of amino acids mostly with molecular weight below 10 kDa and containing less than
50 amino acids [184]. Most antimicrobial peptides from seafood have antibacterial activities against both
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Gram-negative and Gram-positive strains [167] due to their content of pardaxin, misgurin, cathelicidins,
defensins, hepcidin, NK-lysin, piscidin, and trematocine with highly promising activities [168–170].
Potentially, these antimicrobial peptides are new candidates for the development of antibiotics in the
pharmaceutical industry as well as antimicrobial agents for food production. These antimicrobial
peptides can be used as antibacterial, antiviral, antifungal, immunomodulatory, and antitumor
agents [167,184].

Given the diversity and complexity of seafood by-products, these results suggest that peptides
extracted from seafood and their by-products can be used as ingredients for functional foods with
great potential to improve consumer health. All described peptides are shown in Table 5.

Table 5. Bioactive peptides obtained from seafood by-products.

Sequence of Peptide Source of Peptide Activity Reference

Seafood by-products

GASSGMPG
LAYA Pacific cod (G. macrocephalus) ACE inhibitory Ngo et al. [161]

IVDR
WYK

VSAVI
olive flounder (P. olivaceus) surimi ACE inhibitory Oh et al. [175]

LSGYGP tilapia (O. niloticus) skin ACE inhibitory Chen et al. [176]

LWHTH tunicate (S. clava) ACE inhibitory Kang et al. [160]

YP Atlantic salmon (S. salar) DPP-IV inhibitory Neves et al. [159]

WEGPK
GPP

GVPLT
Bluefin leatherjacket (N. septentrionalis) head antioxidant Chi et al. [152]

GSGGL
GPGGFI

FIGP
N. septentrionalis skin antioxidant Chi et al. [153]

GPDGR
GADIVA

GAPGPQMV
AGPK

GAEGFIF

skipjack tuna (K. pelamis) bones antioxidant Yang et al. [150]

GIV
GAP*GF

GFA*GPA
SGNIGFP*GPK

GIPGPIGPP*GRP

tilapia (O. niloticus) skin antioxidant Thuanthong et al. [178]

GIPGAP thornback ray (R. clavata) skin antioxidant Lassoued et al. [154]

PYSFK
GFGPEL
VGGRP

grass carp (C. idella) skin antioxidant Cai et al. [157]
Cai et al. [179]

Plants and seeds

ADGF
AGGF

AWDPE
DWDPK

ETTL
SGAF

Wild hazelnut (C. heterophylla) antioxidant Liu et al. [185]

LAYLQYTDFETR pecan meal antioxidant Hu et al. [186]

SMRKPPG peony (P. suffruticos) seed antioxidant Zhang et al. [187]

5.3. Peptides from Seeds and Plants

The development of natural antioxidants from plant sources has become more important in the
food and biological research arena. Studies conducted over the last five years have discovered various
new peptides from different plant sources.

Plum (P. domestica) seeds are cheap sources of highly antioxidant and ACE inhibitory peptides [188].
Flaxseed (L. usitatissimum) protein and flaxseed-derived peptides from flaxseed meal have been
documented to have physiological activity, e.g., angiotensin-converting enzyme (ACE) inhibition,
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antibacterial activity, antidiabetic effect, and antioxidant capacity [189]. Wild hazelnut (C. heterophylla)
was a source of six peptides (ADGF, AGGF, AWDPE, DWDPK, ETTL, and SGAF) with excellent
antioxidant activity [185]. A peptide (LAYLQYTDFETR) purified from pecan meal exhibited appreciable
scavenging activities against the ABTS radical, DPPH radical, and hydroxyl radical (67.67%, 56.25%,
and 47.42%, respectively) at 0.1 mg/mL [186]. A novel antioxidative peptide SMRKPPG was successfully
purified and identified from peony (P. suffruticos) seed protein hydrolysate; the peptide exhibited
effective antioxidative capacity in vitro [187]. The protein hydrolysate purified from amaranth
(Amaranthus) seeds was shown to have antioxidant activity and anticancer potential against breast
cancer cells [190]. Chia (S. hispanica) seeds are known for their high antioxidant capacity, which is
related to the high content of phenolic compounds [191]. Moreover, antioxidant properties were
evaluated in chia expeller peptides [192].

6. Conclusions

Biologically active peptides are the object of many studies, since nowadays, food is regarded not
only as a dietary and nutrient source but also as a source of bioactive compounds that may provide
health benefits and inhibit development of diseases. Bioactive peptides have different activities,
with the main ACE inhibitor, antioxidant, antidiabetic, antiobesity, or antimicrobial effects (Figure 3).
They can be obtained from several sources, also from new foodstuffs or residues from food production.
Although much is known about the structure and activity of peptides, further studies on the relationship
between their structure and activity must be continued. Furthermore, in addition to determination of
their structure and activity in vitro, their therapeutic effect should be accurately determined, which will
certainly be studied comprehensively in the future. The study results reported by researchers,
nutritionists, and food manufacturers may improve the biodigestibility and bioavailability of food
ingredients, such as peptides, and yield new functional foods supporting the pharmacotherapy of
many civilization diseases.
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83. Jakubczyk, A.; Karaś, M.; Złotek, U.; Szymanowska, U. Identification of potential inhibitory peptides of
enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented
bean (Phaseolus vulgaris L.) seeds. Food Res. Int. 2017, 100, 489–496. [CrossRef] [PubMed]

84. Liang, L.; Cai, S.; Gao, M.; Chu, X.; Pan, X.; Gong, K.; Xiao, C.; Chen, Y.; Zhao, Y.; Wang, B.; et al. Purification
of antioxidant peptides of Moringa oleifera seeds and their protective effects on H2O2 oxidative damaged
Chang liver cells. J. Funct. Foods 2019, 64, 103698. [CrossRef]

85. Phongthai, S.; Rawdkuen, S. Fractionation and characterization of antioxidant peptides from rice bran protein
hydrolysates stimulated by. Cereal Chem. 2019, 97, 316–325. [CrossRef]

86. Nwachukwu, I.D.; Aluko, R.E. Structural and functional properties of food protein - derived antioxidant
peptides. J. Food Bioc. 2019, 43, e12761. [CrossRef] [PubMed]

87. Lu, X.; Zhang, L.; Sun, Q.; Song, G.; Huang, J. Extraction, identification and structure-activity relationship
of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Res. Int. 2018, 116,
707–7016. [CrossRef] [PubMed]

88. Najafian, L.; Babji, A.S. Purification and Identification of Antioxidant Peptides from Fermented Fish Sauce
(Budu) Purification and Identification of Antioxidant Peptides from. J. Aquat. Food Prod. Technol. 2018, 8850,
1–12.

89. Yang, J.; Huang, J.; Dong, X.; Zhang, Y.; Zhou, X.; Huang, M.; Zhou, G. Purification and identification of
antioxidant peptides from duck plasma proteins. Food Chem. 2020, 126534. [CrossRef]

90. Wu, D.; Sun, N.; Ding, J.; Zhu, B.; Lin, S. Evaluation and structure-activity relationship analysis of antioxidant
shrimp peptides. Food Funct. 2019, 10, 5605–5615. [CrossRef]

91. García-Mora, P.; Martín-Martínez, M.; Bonache, M.A.; González-Múniz, R.; Peñas, E.; Frias, J.; Martínez-, C.
Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with
dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chem. 2016, 221, 464–472.
[CrossRef]

92. Zhang, B.; Wang, H.; Wang, Y.; Yu, Y.; Liu, J.; Liu, B.; Zhang, T. Identification of antioxidant peptides derived
from egg-white protein and its protective effects on H2O2-induced cell damage. Int. J. Food Sci. Technol.
2019, 54, 2219–2227. [CrossRef]

93. Sheng, J.; Yang, X.; Chen, J.; Peng, T.; Yin, X.; Liu, W.; Liang, M.; Wan, J.; Yang, X. Antioxidative E ff ects and
Mechanism Study of Bioactive Peptides from Defatted Walnut (Juglans regia L.) Meal Hydrolysate. J. Agric.
Food Chem. 2019, 67, 3305–3312. [CrossRef] [PubMed]

94. Matsui, R.; Honda, R.; Kanome, M.; Hagiwara, A.; Matsuda, Y.; Togitani, T. Designing antioxidant peptides
based on the antioxidant properties of the amino acid side-chains. Food Chem. 2018, 245, 750–755. [CrossRef]

95. Agrawal, H.; Joshi, R.; Gupta, M. Purification, identification and characterization of two novel antioxidant
peptides from finger millet (Eleusine coracana) protein hydrolysate. Food Res. Int. 2018, 120, 697–707.
[CrossRef] [PubMed]

96. Li, T.; Shi, C.; Zhou, C.; Sun, X.; Ang, Y.; Dong, X.; Huang, M.; Zhou, G. Purification and characterization
of novel antioxidant peptides from duck breast protein hydrolysates. LWT Food Sci. Technol. 2020, 109215.
[CrossRef]

97. Sun, X.; Acquah, C.; Aluko, R.E.; Udenigwe, C.C. Considering food matrix and gastrointestinal e ff ects in
enhancing bioactive peptide absorption and bioavailability. J. Funct. Foods 2020, 64, 103680. [CrossRef]

98. Song, W.; Kong, X.; Hua, Y.; Li, X.; Zhang, C. Antioxidant and antibacterial activity and in vitro digestion
stability of cottonseed protein hydrolysates. LWT Food Sci. Technol. 2020, 118, 108724. [CrossRef]

99. Xu, F.; Zhang, J.; Wang, Z.; Yao, Y.; Atungulu, G.G.; Ju, X.; Wang, L. Absorption and Metabolism of Peptide
WDHHAPQLR Derived from Rapeseed Protein and Inhibition of HUVECs. J. Agric. Food Chem. 2018, 66,
5178–5189. [CrossRef]

100. Jiang, Y.; Sun, J.; Yin, Z.; Li, H. Evaluation of antioxidant peptides generated from Jiuzao (residue after Baijiu
distillation) protein hydrolysates and their effect of enhancing healthy value of Chinese Baijiu. Soc. Chem. Ind.
2019, 100, 59–73. [CrossRef]

http://dx.doi.org/10.1016/j.foodchem.2020.126689
http://www.ncbi.nlm.nih.gov/pubmed/32259732
http://dx.doi.org/10.1016/j.jchromb.2019.121893
http://www.ncbi.nlm.nih.gov/pubmed/31841977
http://dx.doi.org/10.1016/j.foodres.2017.07.046
http://www.ncbi.nlm.nih.gov/pubmed/28873712
http://dx.doi.org/10.1016/j.jff.2019.103698
http://dx.doi.org/10.1002/cche.10247
http://dx.doi.org/10.1111/jfbc.12761
http://www.ncbi.nlm.nih.gov/pubmed/31353492
http://dx.doi.org/10.1016/j.foodres.2018.09.001
http://www.ncbi.nlm.nih.gov/pubmed/30716998
http://dx.doi.org/10.1016/j.foodchem.2020.126534
http://dx.doi.org/10.1039/C9FO01280J
http://dx.doi.org/10.1016/j.foodchem.2016.10.087
http://dx.doi.org/10.1111/ijfs.14133
http://dx.doi.org/10.1021/acs.jafc.8b05722
http://www.ncbi.nlm.nih.gov/pubmed/30817142
http://dx.doi.org/10.1016/j.foodchem.2017.11.119
http://dx.doi.org/10.1016/j.foodres.2018.11.028
http://www.ncbi.nlm.nih.gov/pubmed/31000288
http://dx.doi.org/10.1016/j.lwt.2020.109215
http://dx.doi.org/10.1016/j.jff.2019.103680
http://dx.doi.org/10.1016/j.lwt.2019.108724
http://dx.doi.org/10.1021/acs.jafc.8b01620
http://dx.doi.org/10.1002/jsfa.9994


Foods 2020, 9, 846 24 of 28

101. Tonolo, F.; Fiorese, F.; Moretto, L.; Folda, A.; Scalcon, V.; Grinzato, A.; Ferro, S.; Arrigoni, G.; Bindoli, A.;
Feller, E.; et al. Identification of New Peptides from Fermented Milk Showing Antioxidant Properties:
Mechanism of Action. Antioxidants 2020, 9, 117. [CrossRef]

102. He, R.; Wang, Y.; Yang, Y.; Wang, Z.; Ju, X.; Yuan, J. Rapeseed protein-derived ACE inhibitory peptides
LY, RALP and GHS show antioxidant and anti-inflammatory effects on spontaneously hypertensive rats.
J. Funct. Foods 2019, 55, 211–219. [CrossRef]

103. Ballatore, M.B.; Bettiol, R.; Braber, N.L.V.; Aminahuel, C.A.; Rossi, Y.E.; Petroselli, G.; Erra, R.; Cavaglieri, L.R.;
Montenegro, M.A. Antioxidant and cytoprotective effect of peptides produced by hydrolysis of whey protein
concentrate with trypsin. Food Chem. 2020, 319, 126472. [CrossRef] [PubMed]

104. Minkiewicz, P.; Iwaniak, A. BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int. J. Mole
2019, 20, 5978. [CrossRef] [PubMed]

105. Salas, C.E.; Badillo-Corona, J.; Ramírez-Sotelo, G.; Oliver-Salvador, M.D.C. Biologically Active and
Antimicrobial Peptides from Plants. BioMed Res. Int. 2015, 2015, 1–11. [CrossRef] [PubMed]

106. Amadou, I.; Le, G.-W.; Amza, T.; Sun, J.; Shi, Y.-H. Purification and characterization of foxtail millet-derived
peptides with antioxidant and antimicrobial activities. Food Res. Int. 2013, 51, 422–428. [CrossRef]

107. Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H. The antimicrobial peptides and their
potential clinical applications. Am. J. Transl. Res. 2019, 11, 3919–3931. [PubMed]

108. Bahar, A.A.; Ren, D. Antimicrobial Peptides. Pharmaceuticals 2013, 6, 1543–1575. [CrossRef]
109. Pelegrini, P.B.; Del Sarto, R.P.; Silva, O.N.; Franco, O.L.; Grossi-De-Sá, M.F. Antibacterial Peptides from

Plants: What They Are and How They Probably Work. Biochem. Res. Int. 2011, 2011, 1–9. [CrossRef]
110. Lum, K.Y.; Tay, S.T.; Le, C.F.; Lee, V.S.; Sabri, N.H.; Velayuthan, R.D.; Hassan, H.; Sekaran, S.D. Activity of

Novel Synthetic Peptides against Candida albicans. Sci. Rep. 2015, 5, 1–12. [CrossRef]
111. Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [CrossRef]
112. Barreto-Santamaría, A.; Hernando, C.; Gabriela, A.-P.; Chonny Herrera, D.S.; Pérez, W.H.; Patarroyo, M.E.

A New Synthetic Peptide Having Two Target of Antibacterial Action in. Front. Microbiol. 2016, 7, 1–11.
[CrossRef]

113. Oliver-Salvador, M.D.E.L.C.; Ariza-Ortega, T.D.J.; Zenón-briones, Y.; Luis, J. Angiotensin-I-converting
enzyme inhibitory, antimicrobial, and antioxidant effect of bioactive peptides obtained from different
varieties of common beans (Phaseolus vulgaris L.) with in vivo antihypertensive activity in spontaneously
hypertensive rats. Eur. Food Res. Technol. 2014, 239, 785–794.

114. Cusimano, M.G.; Spinello, A.; Barone, G.; Schillaci, D.; Cascioferro, S.; Magistrato, A.; Parrino, B.; Arizza, V.;
Vitale, M. A Synthetic Derivative of Antimicrobial Peptide Holothuroidin 2 from Mediterranean Sea Cucumber
(Holothuria tubulosa ) in the Control of Listeria monocytogenes. Mar. Drugs 2019, 17, 159. [CrossRef]

115. Tong, Y.; Tang, J. Candida albicans infection and intestinal immunity. Microbiol. Res. 2017, 27–35. [CrossRef]
[PubMed]

116. Satana, D.; Genc, G.E.; Erturan, Z. The antifungal susceptibilities of oral Candida spp isolates from
HIV-infected patients. Afr. J. Microbiol. Res. 2010, 4, 466–470.

117. Boas, L.; Campos, M.; Lorrayne, R.; Berlanda, A. Antiviral peptides as promising therapeutic drugs. Cell. Mol.
Life Sci. 2019, 17, 1–18.

118. Ngai, P.H.K.; Ng, T.B. Phaseococcin, an antifungal protein with antiproliferative and anti-HIV-1 reverse
transcriptase activities from small scarlet runner beans. Biochem. Cell Biol. 2005, 220, 212–220. [CrossRef]

119. Wong, J.H.; Ng, T.B. Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory
activities toward tumor cells and HIV-1 reverse transcriptase. Peptides 2005, 26, 1120–1126. [CrossRef]
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