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ABSTRACT

We developed an algorithm, HMZDelFinder, that uses
whole exome sequencing (WES) data to identify
rare and intragenic homozygous and hemizygous
(HMZ) deletions that may represent complete loss-
of-function of the indicated gene. HMZDelFinder was
applied to 4866 samples in the Baylor-Hopkins Cen-
ter for Mendelian Genomics (BHCMG) cohort and
detected 773 HMZ deletion calls (567 homozygous
or 206 hemizygous) with an estimated sensitivity
of 86.5% (82% for single-exonic and 88% for multi-
exonic calls) and precision of 78% (53% single-
exonic and 96% for multi-exonic calls). Out of 773
HMZDelFinder-detected deletion calls, 82 were sub-
jected to array comparative genomic hybridization
(aCGH) and/or breakpoint PCR and 64 were con-
firmed. These include 18 single-exon deletions out of
which 8 were exclusively detected by HMZDelFinder
and not by any of seven other CNV detection tools
examined. Further investigation of the 64 validated
deletion calls revealed at least 15 pathogenic HMZ
deletions. Of those, 7 accounted for 17-50% of
pathogenic CNVs in different disease cohorts where
7.1-11% of the molecular diagnosis solved rate was
attributed to CNVs. In summary, we present an al-
gorithm to detect rare, intragenic, single-exon dele-

tion CNVs using WES data; this tool can be useful
for disease gene discovery efforts and clinical WES
analyses.

INTRODUCTION

Copy number variants (CNVs) contribute to a substantial
fraction of human genetic variation and are increasingly
implicated in disease associations and human gene and
genome evolution (1). CNVs have been found to be causal
for many human disease phenotypes, including dozens of
genomic disorders and hundreds of known Mendelian dis-
ease traits (2,3). Homozygous and hemizygous (HMZ)
whole- and partial-gene deletions often result in null alleles
and a complete loss of gene function (4). Although HMZ
deletions constitute only a subset of all clinically relevant
CNVs, they can play a major role in the discovery of novel
Mendelian genes (5-9). In addition, heterozygous deletions
involving recessive disease genes are an important part of
an individual’s recessive carrier status (10) and also directly
contribute to disease by introducing compound heterozy-
gous states where a deletion on one chromosome homo-
logue coincides in genomic position with a loss of function
or hypomorphic single nucleotide variant (SNV) allele on
the other homologue (11-15).

Whole exome sequencing (WES) targets approximately
1% of the human genome (exons) coding for protein and
it is enriched for disease-associated variants. The WES ap-
proach directly detects SN'Vs and very short (<50 bp) inser-
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tions or deletions (InDels), and also provides an opportu-
nity for the detection of larger CNVs (16). The read depth
information from WES data is a potential indicator of copy
number information. However, unavoidable biases in exome
capture technology and variability in sequencing efficiency
in WES data of individual genomes present a challenge for
inferring undistorted copy number information from simple
summaries of sequencing data.

Current available tools for the detection of CNVs from
WES data (17,18) are capable of identifying CNVs encom-
passing three or more exons, but can have high false positive
rates (19). Distortions in read depth that vary by capture re-
gion and hybridization make detection of deletions and du-
plications as small as a single exon a difficult challenge; the
former ‘single-exon HMZ CNV detection’ being the focus
of the work presented here.

CNV calling methods from WES data try to remove the
systematic experimental variations in capture and sequenc-
ing by normalization approaches. CNV-calling algorithms
apply different normalization methods that include: (i) prin-
cipal component analysis in XHMM (17), (ii) singular value
decomposition in CoNIFER (18), (iii) a generalized ad-
ditive model in CoNVex (ftp://ftp.sanger.ac.uk/pub/users/
pv1/CoNVex/Docs/CoN Vex.pdf), (iv) log-linear decompo-
sition in CODEX (20), (v) selection of a highly correlated
reference sample set for each sample in CANOES (21) and
CLAMMS (22) and (vi) comparison of each exon’s depth to
its gene’s median depth in ExonDel (23). These normaliza-
tion methods enable a more linear correlation between read
depth and inferred copy number. The drawbacks include a
requirement for large sample collections as input, which can
present computational challenges, and an increased risk of
removing true signal from the data, which affects detection
of small and rare CNVs.

Inherent depth-of-coverage fluctuations can be overcome
by using excessive depth of coverage (for instance >850x)
(24). However, this costly approach cannot be implemented
retrospectively in the analyses of large-scale WES studies,
which typically vary in average depth of coverage between
40x and 100x in both research and clinical diagnostic labo-
ratories (25).

Here, we developed a new algorithm, HMZDelFinder, to
identify intragenic rare variant HMZ deletion CNVs poten-
tially contributing to Mendelian disease. This algorithm ex-
tracts different data sources from WES. These data include:
(1) read count information from BAM files and (ii) zygos-
ity information from VCEF files. The read count informa-
tion from BAM files is jointly called from all the samples in
the cohort, which enables potential exonic rare HMZ dele-
tions to be identified, whereas it allows exclusion of exons
with a low depth-of-coverage. The VCF files are used to cull
B-allele frequency information per exome, which enables
the identification of regions of absence of heterozygosity
(AOH) consistent with inherited copy number neutral ge-
nomic segments in which rare homozygous deletions may be
embedded; i.e. identity by descent. Joint sample calling per
exon aims to reduce false-negative calls for small (e.g. sin-
gle exon) CNVs whereas information about AOH genomic
intervals is anticipated to potentially further reduce false-
positive calls.

We applied HMZDelFinder to the analysis of WES data
from 4866 subjects (including 2580 males and 2286 females)
enrolled in the Baylor—Hopkins Center for Mendelian Ge-
nomics (BHCMG) cohort. We identified 773 deletion calls
including 567 homozygous and 206 hemizygous (i.e. X-
chromosome in males) deletion CNVs with an estimated
sensitivity of 86.5% (82% for single-exonic calls and 88% for
multi-exonic calls) and precision of 78% (53% single-exonic
calls and 96% for multi-exonic calls) as informed by or-
thogonal experimental validation of selected genomic dele-
tion calls. Additional evaluation, performed on 50 samples
from the 1000 Genomes Project (1000GP) data and analyses
of inheritance using trio data confirmed the high sensitiv-
ity and precision of HMZDelFinder. Finally, the compar-
ison of HMZDelFinder to other CNV calling algorithms
(CoNIFER (18), CoNVex (ftp://ftp.sanger.ac.uk/pub/users/
pv1/CoNVex/Docs/CoNVex.pdf), XHMM (17), ExonDel
(23), CANOES (21), CLAMMS (22) and CODEX (20)) re-
vealed that HMZDelFinder performed quantitatively bet-
ter with respect to the detection of rare and small intragenic
HMZ deletions; particularly those spanning only a single
exon. The HMZDelFinder-detected rare intragenic CNV
can have utility in research gene discovery efforts (14,15,26),
and may be relevant to clinical genomic diagnostics.

MATERIALS AND METHODS
Input data

DNA samples were processed according to protocols pre-
viously described (27). Sequencing was performed in the
Human Genome Sequencing Center (HGSC) using Illu-
mina Hi-Seq (San Diego, CA, USA) instruments after ex-
ome capture with HGSC VCRome (1901 samples) or the
HGSC CORE (2965 samples) designs. To minimize the in-
fluence of differences between the two designs on the results
of the CNV detection method, we identified the intersection
of the capture designs and excluded exons/targets located
outside the regions of overlap. Personal genome sequence
was achieved at an average depth-of-coverage of 95X, with
>92% of the targeted bases having >20 reads. Raw sequence
data were post-processed using the Mercury pipeline (28).
The Mercury pipeline performs conversion of raw sequenc-
ing data (bcl files) to the fastq format using Casava, map-
ping of the short reads against a human genome reference
sequence (GRCh37) by the Burrows—Wheeler alignment,
recalibration using GATK (29) and variant calling using
the Atlas2 suite (30). The Mercury pipeline is available in
the cloud via DNAnexus (http://blog.dnanexus.com/2013-
10-22-run-mercury-variant-calling-pipeline/).

Extraction of read depth from BAM files and preprocessing
of VCFs to identify AOH segments

For input, the algorithm used BAM and corresponding
VCF files generated on 4866 samples (2580 males and 2286
females) sequenced at the BHCMG, part of the Centers
for Mendelian Genomics (31,32). Each individual genome
BAM file was transformed into per-exon read depth (reads
per thousand base pairs per million reads; RPKM) using
a custom R script and the featureCount function imple-
mented in the Bioconductor R package Rsubread (33). VCF
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files, from each individual personal genome, were used to
identify regions of AOH using the following algorithm: first,
from all SNVs that passed quality filters in the single VCF,
we extracted a B-allele frequency (i.e. variant reads/total
reads ratio); next, we transformed this ratio by subtract-
ing 0.5 and taking the absolute value for each data point.
After such a transformation, values > 0.45 were consid-
ered indicative of homozygous variants (expected value is
0.5) corresponding to either alternative or reference alle-
les, whereas lower values likely indicate heterozygous alleles.
Transformed B-allele frequency data were then processed
using circular binary segmentation (CBS) implemented in
the DNAcopy R Bioconductor package (34). In summary,
segments with the mean signal > 0.45 and size >1 kb were
classified as AOH regions and submitted to further CNV
analysis. Since the output of CBS may contain gaps between
segments (i.e. regions with no SNVs that for example may
represent HMZ deletions), the identified AOH regions were
extended to include adjacent gaps.

Overview of the deletion CNV detection analysis pipeline

To identify potential HMZ deletions from WES data, we
developed an algorithm to call such variants jointly across
the entire sample data set. Joint calling allowed for rigor-
ous control data at each captured exon and minimized the
number of false positive calls that could emerge from low
coverage regions. HMZ deletion CNVs were called in all
4866 WES samples (2580 males and 2286 females) using a
procedure consisting of 8 steps (Figures 1 and 2A). First,
the data from WES were transformed into per-exon read
depth values, i.e. each sample was processed to calculate
the RPKM values for each one of its 196,907 exons that
were captured and sequenced. Second, all exons with me-
dian RPKM < 7 were removed from the analysis to avoid
exons that presented with a low average depth-of-coverage
value, ~7% of exons (13,603 out of 196,907) were excluded.
Third, in this next step the algorithm annotated a single
exon as potentially deleted if it presented 0 or a low level
of read depth (RPKM < 0.65) (please refer to the next sec-
tion for details of how we performed selection of the RPKM
threshold value). This filtering step identified 2521 poten-
tially rare deleted exons on average per sample. In the fourth
step, low quality and common deletion CNVs were parsed
from further processing if the frequency found for a particu-
lar HMZ deletion was >0.5% in the BHCMG study cohort.
This step decreased the average number of putative calls
to 10.45 calls per personal genome sample. Fifth, to mini-
mize the influence of low quality samples on algorithm out-
put, we excluded outlier samples with the highest number
of calls (i.e. the top 2% of the highest number of calls) and
then repeated step 4 without these samples, which reduced
the average number of calls to 4.47. In the sixth step, calls
from consecutive exons were merged and then calls <50 bp
were excluded. After this step the average number of pu-
tative HMZ deletions was 3.36. In the penultimate seventh
step, potential CNV calls identified in a given sample were
then intersected with AOH regions (determined by CBS)
larger than 1 kb as defined in the previous section. Calls that
do not overlap with any AOH region were parsed from fur-
ther analysis as potential false positives (FPs). This is due
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to the expectation that rare, pathogenic homozygous dele-
tions are likely to be located within larger AOH regions, be-
cause of the inheritance of common haplotype block from
both parents (see also Supplementary Text for further jus-
tification of AOH filtering step). This step resulted in 2903
potential deletions (0.6 calls per sample on average). In the
final eighth step, a z-RPKM value was derived for each in-
dividually identified deleted exon. The z-RPKM derivation
occurred as follows: for a given deleted exon, from its orig-
inal RPKM value the average RPKM in this exon across
all samples was subtracted and divided by the standard de-
viation. The final score for a deletion CNV was computed
as an average z-RPKM across all of its exons. This filtering
step resulted in 773 best quality calls (0.16 calls per sample
on average) having z-RPKM lower or equal to —1.5. The
z-score threshold was determined based on the analysis of
validation results described below. The final call set of 773
was used for evaluation of algorithm performance and com-
parison to other CNV calling methods.

Selection of RPKM threshold value

To determine the optimal RPKM threshold (used in step 3
of the analysis pipeline described above), we analyzed the
global distribution of RPKMs for all exons in all samples.
For every exon (design target), we calculated the 0.5% quan-
tile of all RPKM values for this exon (i.e. the maximum
RPKM of the 0.5% of the lowest RPKM values in the exon).
We found that the density distribution function derived for
these values across all exons (Figure 2B) is bi-modal. The
first mode corresponds to the population of exons with poor
coverage in a significant fraction of study samples (i.e. in
>0.5% of individuals). This could be due to technical arte-
fact, repetitive sequences or because of the existence of com-
mon variant, and therefore likely non-pathogenic, heterozy-
gous or homozygous deletions. We set the RPKM threshold
at the local minimum between two modes (RPKM = 0.65)
of the aforementioned distribution. Such a selection of the
threshold forces our algorithm to include all of the poorly
covered or commonly deleted exons (i.e. corresponding to
the first mode of the distribution) into the first set of poten-
tial deletion calls generated in step 3. However, since these
calls are present in >0.5% of the cohort, they can be jointly
removed in step 4 of the algorithm, because they exceed the
frequency cut-off value. Note that if the RPKM threshold
would be lower, then only a part of these low quality calls
originating from non-informative exons would be identified
in the step 3 and as a potential consequence they could pass
the frequency filter and increase the false positive rate of
the algorithm. Similarly, the selection of higher threshold
would result in additional false negative calls.

In order to estimate the influence of selected threshold
(RPKM < 0.65) on the sensitivity of HMZDelFinder, we
computationally characterized 5 large experimentally iden-
tified homozygous deletions in 5 samples from 4 families
(one deletion was shared between two individuals from the
same family) spanning in total 86 exons. This control CNV
‘call set” was validated as homozygous by polymerase chain
reaction (PCR) or array comparative genomic hybridiza-
tion (aCGH) (Supplementary Table S1). The presence of
HMZ deletions in a given exon is determined independently
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Figure 1. HMZDelFinder algorithm workflow. Different filtering steps were used for data processing of BAM files shown on the left. The number of calls
after each filtering step are displayed in red and italicized. The specific BAM and VCF processing steps in the algorithm are: (i) Normalized read depth
(RPKM) values are calculated for each exon captured with HGSC VCRome or the HGSC CORE designs. (ii) Low quality exons with their median RPKM
values <7 are further removed from the analysis. (iii) Exons with low read numbers are identified (RPKM < 0.65). The threshold was set to 0.65 based
on the density distribution of 0.5% quantile of RPKM values for each exon. (iv) Common deletions are subtracted from the list of potential calls if the
frequency of a particular homozygous and hemizygous (HMZ) deletion >0.5% in the whole cohort. (v) Samples with the highest number of deletions
are removed from the analysis and step (iv) is repeated without these low quality samples. (vi) The consecutive exon deletion calls are merged if they are
at most 10 exons apart from each other. (vii) In AOH filtering step, absence of heterozygosity (AOH) is calculated from VCF files and a representative
AOH plot is displayed in the lower track (above right). In that plot, the y-axis shows the B-allele frequency (i.e. variant/total reads ratio) extracted from
exome data VCF files. This B-allele frequency information is then processed using circular binary segmentation (CBS) implemented in the DNAcopy R
Bioconductor package. The resulting segments (gray in color) in the AOH plot denote AOH regions identified by the above algorithm. As expected, the
AOH regions consist of the variants (points) that have variant/total reads ratio around 1. After the identification of AOH regions from exome sequencing
data, the deletion calls are removed if they do not reside in any AOH region larger than 1 kb. (viii) The final HMZ copy number variant (CNV) deletion
calls are prioritized based on their average z-RPKM values. In the deletion plots, the loci that contain the deleted exons and its neighboring exons are
shown. Y-axis displays the RPKM values on a log scale. The dashed vertical black line indicates the deleted exon. The red vertical line connects RPKM
values at the deleted exon and neighboring exons in the sample. Each black line demonstrates the RPKM information for all of the other samples in the
Baylor-Hopkins Center for Mendelian Genomics (BHCMG) cohort. The lower blue dashed line exhibits the threshold RPKM value used in the study.
The details of the call (i.e. sample name, position, number of exons deleted and z-score) are provided at the top of each plot. The generated deletion plots
are manually inspected further to eliminate potential false positive calls.

from the copy number information retrieved from the ad- Sensitivity of the algorithm to the minimal size of AOH
jacent exons. Therefore, for multi-exonic deletions, it is ex- threshold

pected that the algorithm makes a call in every exon within
the deletion. The threshold RPKM < 0.65 resulted in 84 out
of 86 exons being called (Supplementary Figure S2). This
experiment enabled us to estimate the false negative rate as
~2.3% and supported the notion that this selected thresh-
old presents a minimum impact on algorithm sensitivity.

We empirically examined different thresholds for the mini-
mal size of AOH region that can be used for filtering and we
found virtually no difference in the number of calls overlap-
ping with AOH regions when the minimal AOH size varies
between 1 kb and 100 kb (Supplementary Figure S3). This
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Figure 2. HMZDelFinder algorithm yield and RPKM threshold value se-
lection. (A) Bar graph documenting number of HMZ deletion calls after
each filtering step. (B) Distribution of 0.5% quantiles of RPKM values
across all the BHCMG samples is calculated for each exon from the cap-
ture target. The first mode of the distribution likely includes poorly covered
and commonly deleted exons in our cohort. We selected an RPKM thresh-
old between these two modes (at RPKM = 0.65) to initially annotate all
of these exons as potentially deleted (step 3). In step 4, common deletions
are subtracted from the list of deletion calls if the frequency of a particular
HMZ deletion >0.5% in the whole cohort.

may suggest that homozygous deletions are usually sur-
rounded by AOH genomic intervals that are larger than 100
kb. On the other hand, this may also stem from the limited
resolution of AOH that depends on the availability and the
number of SNV variants in the VCF files from that partic-
ular genomic interval interrogated.

Tests on 1000GP data

We selected 50 sample data sets from the 1000GP for
which both WES data and genome-wide CNV calls
based on the low-coverage and trio-phased data sets
were available. The consensus BED file containing
the chromosomal positions of targets used for ex-
ome sequencing was downloaded from the following
URL:  (ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phasel/
analysis_results/supporting/exome_pull_down/20120518.

analysis_exome_targets.consensus.annotation.bed) and
BAM files were obtained from (ftp:/ftp.1000genomes.
ebi.ac.uk/voll/ftp/phasel/data/). The integrated genotype
data including the information about deletion CNVs
were retrieved from the UCSC genome browser (ftp:
//hgdownload.cse.ucsc.edu/gbdb/hg19/1000Genomes/).

From the set of CNYV calls obtained from whole genome
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sequencing (WGS) data, we extracted all deletions (i.c.
with ‘SVTYPE = DEL’ in INFO column) for which at
least one sample was homozygous or hemizygous. Next,
we selected the subset of deletions that overlap with the
targets included in the consensus BED file, so they could
be potentially detected using WES data. We removed the
deletion calls that were observed more than 3 times in the
1000GP data set (i.e. maximum frequency = 6%) and the
calls within low-copy repeats (LCRs). On the same data
set of 50 samples, we also implemented seven CNV calling
algorithms including: CoNIFER (18), CoNVex (ftp:/ftp.
sanger.ac.uk/pub/users/pv1/CoNVex/Docs/CoNVex.pdf),
XHMM (17), ExonDel (23), CANOES (21), CLAMMS
(22) and CODEX (20).

Orthogonal validation of CNV calls from BHCMG cohort

To evaluate results predicted by HMZDelFinder in the
BHCMG cohort, we selected 196 HMZ deletion calls in
90 samples (see Results for details). The genomic coordi-
nates for each predicted deletion were used to select probes
included in the design of three custom high-density Agi-
lent arrays (all in the 8 x 60K format, with ~200 bp per
probe coverage, AMADID 077567, 077569 and 080031).
Hybridization controls were gender matched (HapMap in-
dividual NA10851 as male control and HapMap individual
NAT15510 as female control). Scanned array images were
processed using Agilent Feature Extraction software (ver-
sion 10) and extracted files were analyzed using Agilent
Genomic Workbench (version 7.0.4.0). Array designs were
based on the February 2009 genome build (GRCh37/hgl9
assembly).

We performed long-range PCR using primers spanning
deletion breakpoints validated by aCGH to confirm and
more accurately map the experimentally identified CNVs.
PCR reagents and concentrations have been described pre-
viously (35). The thermal cycler was programmed as fol-
lows: 94°C x 1 min; 30 cycles of 94°C x 30 s followed
by 68°C x 7 min; 72°C x 10 min. PCR primers are listed
in the Supplementary Methods. Breakpoint PCR products
were treated with ExoSAP-IT (Affymetrix) according to the
manufacturer’s instructions, then sequenced by Sanger di-
deoxynucleotide sequencing (Baylor College of Medicine
Sequencing Core, Houston, TX, USA).

Testing genetic model for inheritance of homozygous deletion
CNVs

To experimentally test the inheritance model for presumed
homozygous deletions identified by HMZDelFinder, we se-
lected the following families from the BHCMG cohort: ten
trios (proband and unaffected parents) and three quartets
(two unaffected parents and two affected siblings). In or-
der to estimate the actual copy number state for the selected
deletion calls and test the carrier status of parental samples,
we performed digital droplet PCR (ddPCR) experiments for
all individuals that had DNA available in these 13 families.

ddPCR was performed using the QX200™ AutoDG™
Droplet Digital™ PCR System from Bio-Rad following the
manufacture’s protocols. Briefly, a 20 pl mixture was con-
structed for each PCR reaction, containing 10 .l of 2x Q200
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ddPCR EvaGreen Supermix, 0.25 wl of each primer (10
wM) and 20 ng of genomic DNA. The reaction mixture
was subjected to automatic droplet generation, followed by
PCR reaction and droplet reading. Cycling conditions for
PCR are as the following: 5 min at 95°C, 40 cycles of 30 s at
95°C/1 min at 64°C/1 min at 72°C, 5 min at 4°C, 5 min at
90°C and finally infinite hold at 4°C. Ramp rate was set for
2°C per second for all steps. These data were analyzed using
QuantaSoft™ Software from Bio-Rad, and concentrations
of positive droplets (number of positive droplets per wl of
reaction) were obtained for each PCR reaction. Primers to
a control gene, RPPH 1, were also included for each sample.

Determining performance of other CNV calling algorithms
to detect HMZ deletions

To compare our results with other CNV calling tools, we
implemented seven algorithms, including: CoNIFER (18),
CoNVex  (ftp://ftp.sanger.ac.uk/pub/users/pv1/CoNVex/
Docs/CoNVex.pdf), XHMM (17), ExonDel (23), CA-
NOES (21), CLAMMS (22) and CODEX (20) on a
selected BHCMG data set including all samples with
validated HMZ deletions and the 1000GP data set using
default parameters. In addition, for algorithms that require
control data (all except ExonDel), the control samples
were selected from the BHCMG cohort. All deletion calls
from CoNIFER, CoNVex, XHMM and ExonDel were
compared to HMZDelFinder output. For CANOES,
CLAMMS and CODEX that are able to distinguish HMZ
from heterozygous deletions, only HMZ deletion calls were
compared to HMZDelFinder output.

Alternative splicing analysis

Using the Bioconductor R transcript annotation package
TxDb.Hsapiens.UCSC.hgl9. knownGene, we downloaded
all the information regarding the gene ids, gene names, tran-
script ids, transcript names and exon ids from the UCSC
gene annotation table. For each potential deletion call and
for each exon within such deletion, we determined the num-
ber of alternatively spliced transcripts, in which this exon is
included. Next, we calculated the ratio of this number to the
number of all transcripts of the associated gene. To gener-
ate a control data set, we computed the same ratios for all
of the exons from the capture target regions.

RESULTS
Evaluation of the algorithm performance using 1000GP data

For evaluation of the algorithm performance,
HMZDelFinder was applied to 50 samples extracted from
1000GP data using its default parameters as described in
Materials and Methods. The 1000GP Consortium reported
7674 HMZ deletion calls in the set of 50 samples that
map to 1180 different genomic intervals. In the 50 samples
there were no HMZ deletions with frequency < 0.5%.
Therefore, we relaxed the maximum frequency cut-off from
0.5% to 6% for the low quality/common deletion calls that
were parsed from the analysis (step 4 of the algorithm as
described in the Materials and Methods section). Since we
focused on the detection of non-pathogenic and relatively

common deletions (with frequency up to 6%), the AOH
filtering step was not used. In total, 6 homozygous deletions
in 6 individuals were reported by the 1000GP Consortium
from which HMZDelFinder was able to detect all of them
(Supplementary Table S4 and Figure S5). In addition,
HMZDelFinder identified one deletion on chromosome X,
i.e. a hemizygous deletion CNV, in a male subject spanning
ZNF630 (Supplementary Figure S5G) that was not re-
ported in the set of calls reported by the 1000GP. Analysis
of this segment in the database of genomic variants (36)
indicates that this particular deletion (nssv470162) was
previously detected in the same individual using a SNP
array further supporting the HMZDelFinder result.

On the same 50 sample data set we tested seven other
CNV calling algorithms (CoNIFER, CoNVeX, XHMM,
ExonDel, CANOES, CLAMMS and CODEX; Supplemen-
tary Table S4). None of the algorithms detected all of the
six homozygous deletions detected by HMZDelFinder. The
next most sensitive algorithm was CLAMMS, which de-
tected five out of the six homozygous deletions — it missed
a deletion that included six exons.

Evaluation of the algorithm performance using BHCMG
data

The HMZDelFinder for calling rare and intragenic dele-
tion CNV was implemented on WES data from 4866 sam-
ples (2580 males and 2286 females) in the BHCMG co-
hort (Figures 1 and 2). To measure the performance of
the algorithm, we selected 196 deletion calls from 90 sam-
ples tested by aCGH/PCR. Out of 196 deletion calls, 74
were confirmed as HMZ deletions in 62 different sample
genomes (see Supplementary Text and Supplementary Fig-
ure S6 for details on how we used empirical evidence to
fine tune HMZDelFinder and the selection criteria for dele-
tion calls and samples to be used for experimental valida-
tion). The fine-tuned HMZDelFinder was implemented for
the BHCMG cohort and gave as output 2903 calls. Out of
those, there were 134 deletion calls in 68 samples that un-
derwent experimental validation, from which 72 had been
confirmed (Supplementary Table S7). This allows an esti-
mate of the algorithm precision as 53.7%.

To further optimize the analysis of the deletion calls and
toward efforts to increase algorithm precision, we calcu-
lated z-score values as described in the Materials and Meth-
ods section. The z-score can be used to prioritize the list
of deletion calls per sample. We evaluated this approach on
the above-mentioned set of 72 true positive, 2 false negatives
and 62 false positive calls validated by aCGH and/or PCR.
We computed the sensitivity and false discovery rate (FDR
= FP/(TP+FP), where TP stands for true positives) on the
data filtered with different z-score cut-off values ranging
from —0.7 to —3.8. These data show that by applying fil-
tering (z-score < —1.5), the total number of calls can be re-
duced to 773. There were 82 deletion calls in 55 samples
that underwent independent experimental validation. Out
of those, 64 calls were confirmed. Using this filtering, the
precision (1-FDR) of the algorithm increased from 53.7%
to 78% (64 confirmed HMZDelFinder detected deletions
out of 82 deletion calls), while still keeping the sensitiv-
ity at 86.5% (64 confirmed HMZDelFinder detected dele-
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tions out of 74 confirmed deletions) (Supplementary Figure
S8A). The precision for the single and multi-exonic calls was
53% and 96%, respectively (see Supplementary Figure S§B
and C). This set of 773 best-quality calls optimized for max-
imum sensitivity and precision were used for further analy-
sis.

Comparison with other CNV detection methods

To compare HMZDelFinder output with other CNV
detection tools, we processed WES data from the 62
BHCMG samples in which 74 HMZ deletions were con-
firmed by aCGH/PCR. The set of calls generated by
HMZDe¢lFinder was compared with the output from
CoNIFER (18), CoNVex (ftp://ftp.sanger.ac.uk/pub/users/
pvl/CoNVex/Docs/CoNVex.pdf), XHMM (17), ExonDel
(23), CANOES (21), CLAMMS (22) and CODEX (20). De-
tailed comparisons of HMZ CNVs detected by these seven
algorithms are presented in Supplementary Table S7 and
the subset of those deletions, which were found to con-
tribute to patients’ phenotypes is shown in Table 1.

WES analyses using CoNIFER, CoNVex, XHMM,
ExonDel, CANOES, CLAMMS, CODEX and
HMZDelFinder detected 16 (22%), 29 (39%), 39 (53%),
7 (9%), 4 (5%), 21 (28%), 48 (65%) and 64 (86.5%) out of
those 74 validated deletions, respectively (Figure 3A and
B). Single-exon deletions were particularly underrepre-
sented as CoNVex detected 4 (18%), CANOES detected
3 (14%), CLAMMS detected 4 (18%), CODEX detected
3 (14%), XHMM detected 2 (9%) out of 22 validated in
our cohort (Figure 3C); whereas HMZDelFinder detected
18 (82%) single-exon deletions (Figure 3C). None of the
validated single-exon deletion calls were identified by
CoNIFER or ExonDel, despite the fact that the latter
has been specifically developed to detect homozygous
deletions at the single exon level. The ExonDel algorithm
detects CNVs based on the distribution of the median
read depth information across all the exons in a given
sample, in contrast, HMZDelFinder performs joint-calling
of read depth information per exon retrieved from multiple
samples. ExonDel generated an average number of 394.7
calls per exome on which 7 out of 74 validated deletions (0
of 22 single-exon deletions) were partially detected.

Sensitivity of the algorithm to the cohort size

HMZDelFinder is tailored to find rare and intragenic vari-
ant events. To analyze the impact of the cohort size on the
deletion detection rate, we implemented HMZDelFinder
using subsets of the BHCMG cohort (4866 samples in to-
tal including 2580 males (53%) and 2286 (47%) females)
consisting of different sample sizes, i.e. using the WES data
from 100, 200, 500, 1000, 2000, 3000, 4000 and 4866 indi-
viduals. WES data from the 62 samples with the 74 HMZ
validated deletions were included in all of these data sub-
sets. The remaining samples in each subset were selected
randomly from the entire BHCMG cohort. The gender ra-
tio was kept equivalent in each subset, 53% males and 47%
females, to that of the total BHCMG cohort. This analyti-
cal approach enabled estimation of the sensitivity and preci-
sion as samples were processed together with cohorts of dif-
ferent sizes (Supplementary Figure S9). While the precision
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is mostly stable across the set of experiments, we observed
an increase in the sensitivity, from 46% to 72%, when the
number of samples is enlarged from 200 to 300. This reflects
the main limitation of using small cohorts while searching
for rare and pathogenic CNVs using HMZDelFinder. This
could be exemplified by the lack of ability to detect HMZ
deletions that occur more than once in the set of validated
62 samples and therefore are relatively too common to pass
the maximum frequency threshold. Furthermore, sensitiv-
ity increases to 74% for the cohort size of 500 samples and
finally achieves 86.5% for 1000 samples.

Consanguinity rate in the BHCMG cohort

Rare and pathogenic homozygous deletions are likely to
be located within larger AOH regions due to the inheri-
tance of a shared haplotype block from both parents (in-
herited by descent - IBD). To identify consanguineous fam-
ilies in the BHCMG cohort, the fraction of the genome
with genomic intervals presenting large regions of AOH (>5
Mb) was calculated for each sample. To differentiate the in-
dividuals with a relatively high coefficient of consanguin-
ity and consanguineous families from non-consanguineous
families, we determined a threshold for the fraction of the
genome covered by AOH regions as >2% of the genome
based on the training data of samples in BHCMG cohort
with parents who are first-degree and second-degree rela-
tives. Based on these calculations, ~13% of samples from
the BHCMG cohort (654 out of 4866) could be considered
as consanguineous; given that the cumulative size of AOH
regions larger than 5 Mb exceeds 2% of their genomes.

Inheritance of predicted CNV calls

For algorithmically identified homozygous deletion CNVs,
we investigated a selected sample set in which DNA was
available for both parents for empirical ‘wet-bench’ exper-
imental verification of Mendelian expectations. We con-
firmed the presence of homozygous deletions in 16 out of 16
affected individuals in 13 families by ddPCR (Figure 4). Im-
portantly, ddPCR experiments also experimentally demon-
strated that, consistent with Mendelian recessive expecta-
tions, the parents of these 16 individuals are heterozygous
carriers of the experimentally analyzed exonic deletion calls.
In particular, we determined that among all parental sam-
ples the relative positive droplet ratios (target genes com-
pared to control genes) varied between 43-55%, i.e. the ra-
tios were close to the expected value (50%) for heterozygous
deletion carriers. In summary, these experimental valida-
tions confirmed the homozygous deletions of 16 homozy-
gous deletion calls originally identified by HMZDelFinder
as well as fulfilment of Mendelian expectations — the het-
erozygous deletions in parents of these 13 families (Figure
4).

Investigation of small, rare exonic deletions in 4866 BHCMG
samples

After algorithm optimization, HMZDelFinder detected
773 deletions, comprising either homozygous (567) or hem-
izygous (2006) calls, thus yielding an average of 0.16 dele-
tions per genome (Figure 5A). The length of these deletions
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Table 1. Algorithm performance of WES-CNV tools compared to HMZDelFinder for validated pathogenic calls

# of Exons

Deleted/ CNV Size
Sample ID Gene Total (kb) CoNIFER CoNVex XHMM ExonDel CANOES CLAMMS CODEX
BAB4090 BBS9 1/23 0.14 N [0] N[117] N 6] N [413] N [0] N3] N[4]
BAB4091 BBS9 1/23 0.14 N [0] N [324] N[9] N [417] N [0] N [6] N [6]
BAB6555 BBSY 1/23 0.1 N [0] Y,0.1[146]  N[184] N [146] N2 N[2] N [9]
BABG6557 BBS9 1/23 0.1 N[2] N [158] N [66] N [157] N [0] N[2] N3]
BAB4984 DOCKS* 18/63 214 Y,344 [5] Y,210 [249] Y.,359 [21] Y.41 [424] N [0] N [5] Y.212 [4]
BAB4985 DOCKS* 18/63 214 Y,350 [6] Y214 [197] Y,359 [26] Y,39 [496] N [0] Y,90 [5] Y212 [4]
BAB4212 WWOX 3/9 46 N3] Y46 [554] Y46 [26] N [747] N[] Y38 [6] Y.46 [6]
BAB3498 SNX14 25/29 64 Y,80 [3] Y,64 [304] Y,64 [26] N [426] N [4] Y,42[7] Y,64 [9]
BABS5029 AP4EI** 23/24 193 Y,467 [2] Y,193 [372] Y,193 [18] N [627] N[1] Y,146 [5] Y,196 [8]
BABS5866 DMD 2/79 2.6 N[1] N [451] Y,93[12] N [143] N[2] N [6] Y,2.6 [5]
BAB5867 DMD 2/79 2.6 N2] N [156] Y,2.6[9] N[137] N[2] N[7] Y.2.6[7]
LAT0248 RIPPLYI 2/4 0.8 N 6] N [264] N[32] N [220] N [0] N[3] Y,0.8 2]
BAB3747 CNTNAP2  1/24 0.17 N [5] N [28] N[5] N [525] N [3] Y,0.17 [7] N[9]
BAB3748 CNTNAP2  1/24 0.17 N[4] N [448] N [26] N [672] N[4] Y,0.17 7] N[8]
BABG6883 GRID2 2/16 26 N[1] N [18] Y,26 [125] Y,25[282] N[1] Y,26 [6] Y,26 [9]

Y: pathogenic call detected; N: pathogenic call not detected; followed by corresponding CNV size; [ ]: the number of HMZ+heterozygous deletions (CoNIFER, CoNVex,
XHMM, ExonDel) or the number of HMZ deletions (CANOES, CLAMMS, CODEX) detected in total for a given sample; * deletion includes CBWDI; ** deletion includes

TNFAIPSL3.
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Figure 3. Comparative analysis of HMZDelFinder and seven other CNV calling algorithms for empirically verified deletion CNVs. (A) Horizontal barplot
shows the fractions of calls detected by HMZDelFinder, CODEX, XHMM, CoNVex, CLAMMS, CoNIFER, ExonDel and CANOES out of 74 confirmed
HMZ deletions by array comparative genomic hybridization (aCGH) and/or polymerase chain reaction (PCR). (B) The Venn diagram depicts the number
of calls detected by the top five performing algorithms (HMZDelFinder, CODEX, XHMM, CoNVex and CLAMMS) out of the 74 validated deletions
by aCGH and/or PCR. (C) Out of the 22 experimentally validated single-exon deletions, the Venn diagram shows the number of calls detected by top five
performing algorithms (HMZDelFinder, CODEX, XHMM, CoNVex and CLAMMSY). Of note, HMZDelFinder detected 18/22 single-exon deletions.

ranges from 51 bp (1 exon) to 371.1 kb (39 exons) with a
median length of 179 bp (Figure 5B). Importantly, 572 out
of 773 calls (~74%) correspond to single-exon deletions. To
evaluate the frequency of those potential HMZ deletions in
our cohort we compared the genomic coordinates of those
773 calls with high resolution CNV data extracted from an
array containing 42 million oligos performed in 450 indi-
viduals comprised of samples with European, African and

East Asian ancestry (37), 1000GP pilot phase data (38,39)
and Deciphering Developmental Disorders data (40). Our
analysis revealed that 85.9% were rare variant CNVs (MAF
< 1%)and 14.1% of 773 identified CNVs reside in a genomic
interval containing a common CNV (MAF > 1%) (Figure
50).



Nucleic Acids Research, 2017, Vol. 45, No. 4 1641

BAB4090  BAB4091

BAB3498

SNX14, Brain malformation BBS9, Bardet-Biedl syndrome PKD1L3, Arthrogryposis
BAB3499 BAB3497 BAB4093 BAB4092 BAB3946 BAB3945
17 0.90 17 093 4 D——O 0.95
0.8 7 0.8 1 0.8
067 061 0.6 0.49 0.49
041 04 1 04 1 BaB3944
0.2
0
1]

Relative positive droplet ratios

0.2 1 0.2 1
o - 0 -
BAB3498 BAB3499 BAB3497 NA10851 BAB4090 BAB4091 BAB4093 BAB4092 NA10851 BAB3944  BAB3946  BAB3945  NA10851
BBS9, Bardet-Biedl syndrome CNTNAP2, ID HSD17B4, Oligohydramnios
@ BAB6559  BAB6558 BAB3750  BAB3749 BAB3974 BAB3973
-3 17 0.94 1 1 0.96
e 1 0.94
o 08 4 0.8 1
[}
‘_O:- 0.8
£ 06 054 o 0.6 1 055 o517 0.6 0.55 0.53
[
£ 04 1 BAB65S5 BAB6556 BAB6SS7 0.4 - BAB3747 BAB3748 0.4
3 - BAB3972
[=]
8 0.2 1 0.2 1 0.2
[
> o 0 0 0 .
.g 0 - = 0 e e 0 0.01
E BAB6555 BAB6556 BAB6557 BAB6559 BAB6558 NA10851 BAB3747 BAB3748 BAB3750 BAB3749 NA10851 BAB3972 BAB3974 BAB3973 NA10851

BCMO1, Kabuki-like syndrome BLM, Corpus callosum abnormality WDR85, Dubowitz syndrome

é BAB4705 BAB4704 BAB4902 BAB4901 BAB5238  BAB5237
e 1] 0.92 1 0.90 1
@
s 0.8 1 0.8 0.8 1 0.73
o
T 0.6 1 0.52 0.52 0.6 0.54 0.6 1
[ 0.46
2
E 04 4 0.4 0.4 1
2 BAB4703 BAB4897 BAB5235 BAB5236
Q.
g 0.2 1 0.2 0.2 1
o 0 A:lo
E o 0 0
2 BAB4703 BAB4705 BAB4704  NA10851 BAB4897  BAB4902  BAB4901  NA10851 BAB5235 BAB5236 BAB5238 BAB5237 NA10851
OR5P2, Muscular atrophy SFI1, Congenital blindness KLK15, Brain malformation
3
-§ 1 - BAB6811 BAB6810 o0 1 BAB7743  BAB7742 g5 1 - BAB5968  BAB6061 0.97
@
= 0.8 0.8 0.8 1
2
.6 1 0.54 . . 6
S 0.6 0.53 0.6 0.48 0.47 0.6
>
£ 04 1 0.4 0.4 1
[7]
g_ 02 1 BAB6807 BAB6808 0.2 BAB7740 BAB7741 02 - BAB5966 BAB5967
[ B : .
> 0
. 0 0
5 o 0 0
K BAB6807 BAB6808 BAB6811 BAB6810 NA10851 BAB7740 BAB7741 BAB7743 BAB7742 NA10851 BAB5966 BAB5967 BAB5968 BAB6061 NA10851

GRID2, Brain malformation

11 BAB6886 BAB6885 0.93
0.8 1
0.6 1 0.52
0.46
0.4 1
0-2 15ABs884 BAB6SS3
0

BAB6884 BAB6883 BAB6886 BAB6885 NA10851

Figure 4. Examining inheritance of homozygous deletions experimentally by ddPCR. The segregation of HMZDelFinder-detected deletion calls is con-
firmed by digital droplet PCR (ddPCR) in 16 individuals in 13 families. Each family is presented with its pedigree structure using standardized symbols
(squares = males; circles = females; filled symbols show affected individuals). The gene and the proband’s phenotype are depicted above each pedigree.
Each bar graph shows the relative positive droplet ratios (target gene compared to control gene) in each available family member (blue vertical bar =
ddPCR counts in control DNA; grey = counts in mother; black = father; pink = counts observed in affected child with homozygous deletion). The af-
fected individuals with the deletion calls detected by HMZDelFinder are experimentally verified to have homozygous deletion CNV (the relative positive
droplet ratios &~ 0) and the parents are confirmed to be heterozygous carriers (relative positive droplet ratios ~ 0.5).
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gene, 65.1% of them encompass a gene with a recessive inheritance pattern as shown in the barplot (AR: Autosomal recessive, XLR: X-linked recessive,

AD: Autosomal dominant, XLD: X-linked dominant).

Discovery of potential pathogenic gene deletions in patients
with Mendelian disorders

To examine for a potential disease contribution for these
computationally predicted HMZ intragenic deletions, we
investigated whether genes disrupted or encompassed by
these deletions are associated with a disease phenotype in
OMIM (http://www.omim.org). Our analysis revealed that
20% (158) of 773 predicted deletions encompass at least
one gene, which is associated with a disease trait in the
OMIM database (http://www.omim.org) (Figure 5D). Of
these, 65.1% (103 out of 158 HMZ deletions) encompass
a gene, in which the phenotype is associated with a reces-
sive inheritance pattern in OMIM. Of the 206 hemizygous
deletions, 42 (20.3%) deletions occurred in a gene associated
with a known X-linked recessive disease.

From the list of 64 validated calls predicted by
HMZDelFinder, a subset of homozygous deletions (N =
12) likely explain or contribute to the subjects assessed phe-
notypes in 8 families (Figure 6, Table 1). These potentially
disease associated variants/genes include: (i) DOCKS (2 pa-
tients (14), Hyper-IgE recurrent infection syndrome, auto-
somal recessive, MIM #243700, (41)), (ii)) SNXI14 (1 pa-
tient (26), autosomal recessive cerebellar ataxia and intel-

lectual disability, MIM #616354, (8)), (iii)) WIWOX (1 pa-
tient, epileptic encephalopathy, early infantile with micro-
cephaly, MIM #616211, (42)), (iv) AP4EI (1 patient (26),
spastic quadriplegic cerebral palsy 4, MIM #613744), (v)
CNTNAP2 (2 patients (26), cortical dysplasia-focal epilepsy
syndrome, MIM #610042), (vi) BBSY (4 patients, Bardet-
Biedl syndrome 9, MIM #615986), and (vii) GRID2 (1
patient (15), spinocerebellar ataxia, autosomal recessive
18, MIM #616204). For hemizygous deletions (N = 3),
HMZDe¢lFinder detected DMD (2 patients (26), Becker
muscular dystrophy, MIM #300376, which was an inciden-
tal finding and explained a part of patients’ phenotypes) and
a novel candidate disease gene RIPPLYI (Figure 7).

Novel candidate Mendelian genes

RIPPLY] is anovel candidate disease gene for a heterotaxy
syndrome. We recently identified RIPPLY2 SNV mutations
in association with a novel syndrome consisting of hetero-
taxy and segmentation defects of the cervical vertebrae clin-
ically diagnosed as Klippel-Feil syndrome (MIM #613702)
(43). Recent studies reveal that 8-11% of congenital scol-
iosis, a common/complex trait, in the Chinese population
is explained by a simple Mendelian recessive model at the
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Figure 6. Pedigree structures of 10 families with 15 confirmed HMZ deletions initially identified by HMZDelFinder. All of the 15 known disease gene
deletions are subjected to aCGH or deletion CNV breakpoint junction PCR for orthogonal confirmations of the bioinformatically identified deletion calls.
The presence and zygosity of 15/15 known disease gene deletions are confirmed by at least one orthogonal experimental validation platform. The gene
and cohort names are indicated next to the pedigrees. In a subset of the families that carry BBS9, DOCKS, DMD and CNTNAP2, the gene deletions are

confirmed in an another affected family member in addition to the probands.

TBX6 locus. This recessive model consists of one rare vari-
ant null allele (due to either a 16p11.2 deletion CNV or a
loss of function allele caused by a nonsense/frameshift SNV
of TBX6) in combination with a hypomorphic allele consist-
ing of a noncoding upstream SNV haplotype that is a com-
mon variant in the Chinese population. These congenital
scoliosis patients have vertebral segmentation defects (11).
RIPPLY1 and RIPPLY?2 act to regulate 7B X6 during somi-
togenesis and development of the embryo’s body plan.

To facilitate novel disease gene discovery, we integrated
BHCMG SNV and CNYV data. In this way, we found a num-
ber of candidate genes in which we observe a HMZ point
mutation or HMZ deletion in subjects with similar pheno-
types. This integrative approach led to the identification of
a hemizygous splicing mutation in RGN (OMIM #300212)
and a hemizygous deletion in exon 4 of RGN in two un-
related male subjects presenting osteoporosis. The protein
encoded by this gene is a highly conserved, calcium-binding
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Figure 7. Hemizygous partial deletion RIPPLY1, a novel candidate heterotaxy gene, in a male patient with heterotaxy. (A) Whole exome sequencing (WES)
read count data (RPKM) are plotted for subject LAT0248 (red line) and all other BHCMG subjects (black lines) in the region of chromosome X containing
RIPPLYI1. Near-zero RPKM values suggest a hemizygous deletion of the final exon of RIPPLY] and possibly also the penultimate exon. (B) The minimum
CNV size estimated from RPKM data (“WES_dels’) is shown along with breakpoint sequence data (“Your Sequence from Blat Search’) and the RIPPLY1
gene structure. (C) PCR with primers spanning the deletion breakpoint confirms the deletion and demonstrates that it was inherited from the proband’s
mother. (D) Breakpoint sequencing demonstrates that the final two exons of RIPPLY1 are deleted and offers clues concerning the mutational mechanism
generating this CNV. Note the 22 bp insertion that matches near-upstream sequence (underline).

protein and anticipated to have an important role in calcium
homeostasis. The aggregate data suggest RGN as a potential
candidate causative gene for osteoporosis.

HMZ. deletions are overrepresented in alternatively spliced
exons

We performed alternative splicing analysis on the exons in-
cluded in the predicted 773 deletion calls. This analysis re-
vealed that 18% of deleted exons are observed in less than
one-fourth of their associated genes alternatively spliced
transcripts; whereas when we considered all of the targeted
exons in the genome this number was 12% (Binomial test,
P-value = 1.043 x 107%) (Supplementary Figure S10). This
analysis suggests that a larger than expected fraction of
HMZ deletions identified in this BHCMG disease cohort
affect exclusively an alternative transcript.

DISCUSSION

CNVs have been causally associated with a significant num-
ber of inherited genetic and genomic disorders (3,35,44).

These pathogenic CNVs include a substantial number of
exonic deletions that have been shown to contribute to vari-
ous diseases including both genomic disorders and common
complex traits (2,44-46). Studies by Boone et al. (10,35),
Retterer et al. (48) and Feng et al. (24) have reported that
pathogenic exonic deletions may occur more commonly in
the human genome than recognized by currently utilized
molecular diagnostic techniques. Likewise, the analysis of
tiling oligonucleotide microarray data of genomes from in-
dividuals not selected for rare phenotypes reveals that each
person carries >1000 CNVs over 500 bp in size and approx-
imately 2% of these deletions encompass exon-level dele-
tions (37). Multiplex ligation-dependent probe amplifica-
tion and targeted aCGH (35,49-58) data indicate that exon-
level deletions can be the molecular cause of diverse ge-
netic diseases, nonetheless detection of exon-deletion CNV
genome-wide, in a cost effective and unbiased manner, re-
mains a challenge. Additionally, the sheer volume of WES
data generated in the past few years provide an invaluable
resource for rare variant CNV detection, including smaller
exon-level and even single-exon intragenic deletions. The ex-



panded use of WES in clinical diagnostics (25,59,60) and
research (31,32,61,62) for the detection of exon-level SNVs
and small InDels renders it a powerful tool for genome-wide
rare variant assessment (14,15,26). In addition, the versatil-
ity of WES for large and rare CNV detection suggests its
future usage as a potential comprehensive mutation detec-
tion assay in clinical and research labs. However, it requires
investment in data analysis tools in order to diminish its lim-
itations regarding CNV detection (63).

Despite the availability of several CNV calling tools
to identify large CNVs, detection of rare and intragenic
CNVs from WES data is a challenge. Other CNV detection
algorithms including CoNIFER (18), CoNVex (ftp://ftp.
sanger.ac.uk/pub/users/pv1/CoNVex/Docs/CoN Vex.pdf),
XHMM (17), CANOES (21), CLAMMS (22) and CODEX
(20) are optimized to identify mainly heterozygous CNVs
encompassing at least three consecutive exons. There
remain limitations for the detection of single exon-level
deletion CNV from WES data in currently utilized analysis
tools because there is only one data point for each exon. We
constructed an analytical tool, HMZDelFinder to enable
small sized CNV detection from WES data by developing
an algorithm to identify rare, potentially encompassing
only a single exon, HMZ deletions. First, utilization of
RPKM values for each exon of all samples contributes
extensively to the normalization of experimental raw data
by exon length and total read number. In addition, the joint
calling implemented in HMZDelFinder described here
enables evaluation of the distribution of 4866 sample data
points for each single exon simultaneously. Examination of
this distribution for each exon allows detection of outlier
exons (RPKM < 0.65) and development of further filtering
steps eliminates low-coverage exons from the analysis, for
instance exons with high GC content that may have evaded
capture or those encompassing LCRs. In this manner, we
reduce the batch effect inherent to WES data analysis (47).
Furthermore, the large sample size of the BHCMG cohort
(4866 samples) has elevated the power of the tool, dimin-
ishing the limitations to retrieving single exon-level CNV
information from WES data. As a result HMZDelFinder
could identify 18/22 experimentally validated single-exon
deletions while the other programs identified at most 4
(CoNVex and CLAMMS; see Figure 3 and Supplementary
Table S7).

In addition to the importance of the joint calling ap-
proach for individual exons across multiple samples, the
AOH information was a key to filter the false positive calls.
The Clan Genomics hypothesis posits that pathogenic vari-
ants tend to arise in the recent history of a family or the
more extended clan. In the case of recessive disorders, an
intragenic heterozygous deletion that arose in an autosomal
recessive disease gene may occur at a locus a few genera-
tions later in the form of a homozygous CNV due to con-
sanguinity. In this scenario, it is likely that the deletion is
inherited as a part of a larger haplotype block common to
both parents that is visible in the proband as an AOH re-
gion surrounding the homozygous deletion. Similarly, if the
affected child inherits two heterozygous deletions of differ-
ent sizes that arose independently in each parental ancestor,
then the overlapping part of these deletions will form a ho-
mozygous CNV and the non-overlapping deletion intervals
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will constitute the AOH region on one or both sides of this
CNV (64). Thus, large AOH regions may surround many
rare pathogenic homozygous deletions (see e.g. Supplemen-
tary Figure S11). This assumption was used to calculate
B-allele frequency information from the VCF files and ex-
tracted additional information content from the WES data,
which added further strength to the exonic read depth in-
formation provided by BAM files. Both parameters were
shown here to efficiently refine (i.e. an observed 5-fold re-
duction) the list of potentially pathogenic CNVs and de-
crease false-positive calls.

Application of HMZDelFinder to the analysis of the
BHCMG cohort enabled identification of pathogenic HMZ
deletions in 15 individuals (Figure 6). Out of these, 7
pathogenic HMZ deletions in 7 individuals were shown to
be causative of the subject’s clinical phenotype in three dis-
tinct disease cohort studies, i.e. primary immunodeficiency
disorders, Mendelian neurological disorders and neuroge-
netic disorders (14,15,26), where CNVs contributed to 11%,
7.1% and 9.1%, of the molecular diagnoses, respectively. Im-
portantly, HMZDelFinder detected alleles accounted for
17-50% of pathogenic CNVs reported in those studies. In
addition, we identified two potential novel disease genes:
RIPPLY]I, anovel candidate gene for heterotaxy, and RGN,
a candidate gene for osteoporosis. We also identified a num-
ber of HMZ deletion calls that are not clearly associated
with the patient’s clinical phenotype. Those deletions pre-
sumably encompass genes that do not cause the expressed
disease phenotype or they affect disease genes that are toler-
ant to loss of function variants. For the non-validated calls,
one possibility is that they affect non-pathogenic or non-
functional alternative isoforms of their associated gene. In
fact, our analysis revealed that 18% of 773 deletion calls
map to minor isoform exons (Supplementary Figure S10).

The evaluation of HMZDelFinder performance was lim-
ited to BHCMG and 1000GP cohorts due to the lack of
other data sets that could be used as a reference for rare
and small CNV detection from WES data. In particular,
the validated CNV data set from the BHCMG cohort is
a subset of HMZDelFinder deletion calls, which may lead
to a bias in comparison of the algorithm performance ver-
sus that of other tools. Therefore, we performed additional
evaluation on 50 samples from 1000GP data using deletion
calls generated from WGS data as a potential ‘gold stan-
dard’ to test novel approaches to detect CNVs from ex-
ome. HMZDelFinder was able to detect 6 out of 6 rare ho-
mozygous deletions, including a single-exon deletion in 3
patients, reported by the 1000GP Consortium. Moreover,
HMZDelFinder identified a hemizygous deletion spanning
ZNF630 in the sample NA18856 that was not reported
by the 1000GP Consortium (Supplementary Figure S5G).
Such deletion was previously reported in this HapMap sam-
ple as inferred by SNP array and reported in database of ge-
nomic variants. Interestingly, the SNP array data indicate
that one out of two deletion breakpoints maps to a non-
unique sequence, whereas the second one maps to a LCR.
Based on this observation we suggest that deletions with one
or two breakpoints within LCRs are likely more difficult to
be detected by the analysis of low coverage WGS, which
usually rely on breakpoint detection using read pair and
split-read data. Because of the poor mappability of reads
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within LCRs, this information may be unavailable resulting
in false negative calls.

Utilization of WES data as a single comprehensive as-
say for both the detection of point mutations, InDels and
CNVs is urgently needed (65). First, using a single method
for detection of a more comprehensive set of variants facili-
tates the integration of the results. Integration of SN'Vs and
CNVs may lead to a higher diagnostic yield such as 58% di-
agnostic rate of intellectual disability (66—68). It also may
stimulate an elevated rate of novel disease gene discovery
as exemplified in the BHCMG sample set by allowing de-
tection of different classes of variant types. Among these
classes, HMZ deletions play an important role in patho-
genesis of recessive and X-linked disorders. In summary, we
demonstrated that our tool facilitates identification of rare
variant HMZ deletions, even those encompassing just a sin-
gle exon, which may contribute to a patients’ clinical phe-
notype and are likely to be missed by other CNV calling
approaches.
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