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Abstract

Background: The Plasmodium species that infect rodents, particularly Plasmodium berghei and
Plasmodium yoelii, are useful to investigate host-parasite interactions. The mosquito species that act
as vectors of human plasmodia in South East Asia, Africa and South America show different
susceptibilities to infection by rodent Plasmodium species. P. berghei and P. yoelii infect both
Anopheles gambiae and Anopheles stephensi, which are found mainly in Africa and Asia, respectively.
However, it was reported that P. yoelii can infect the South American mosquito, Anopheles
albimanus, while P. berghei cannot.

Methods: P. berghei lines that express the green fluorescent protein were used to screen for
mosquitoes that are susceptible to infection by P. berghei. Live mosquitoes were examined and
screened for the presence of a fluorescent signal in the abdomen. Infected mosquitoes were then
examined by time-lapse microscopy to reveal the dynamic behaviour of sporozoites in haemolymph
and extracted salivary glands.

Results: A single fluorescent oocyst can be detected in live mosquitoes and P. berghei can infect A.
albimanus. As in other mosquitoes, P. berghei sporozoites can float through the haemolymph and
invade A. albimanus salivary glands and they are infectious in mice after subcutaneous injection.

Conclusion: Fluorescent Plasmodium parasites can be used to rapidly screen susceptible
mosquitoes. These results open the way to develop a laboratory model in countries where
importation of A. gambiae and A. stephensi is not allowed.

Background natural mammalian host of P. berghei is the African tree rat
Plasmodium berghei is one of the most commonly studied =~ Grammomys surdaster and its natural mosquito vector is
Plasmodium species, particularly for elucidating the inter-  Anopheles dureni [6,7]. P. berghei is a species of choice for
actions between the parasites and their hosts [1-5]. The  studies employing genetic manipulations due to the rela-
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tive ease of parasite transfection and the function of many
parasite genes has already been investigated in this species
[8]. Recently, a method has been developed in P. berghei
that will now permit the inactivation of essential genes
specifically at pre-erythrocytic stages of the parasite [9].
Furthermore, the use of fluorescently labeled parasites has
given unprecedented insights into the behaviour of these
parasites within living insects and mice [10-13]. Although
there are differences between the rodent and human-
infecting Plasmodium parasites at the genomic, antigenic
and cellular level [14,15], it is nonetheless clear that the
rodent parasites are useful for elucidating the molecular
basis of the core biology of Plasmodium, which often can-
not be addressed with human parasites.

Plasmodium spp that infect humans are transmitted by a
range of different mosquito species. While one of the
main malaria vectors in Asia is Anopheles stephensi, the
main vector in Africa is Anopheles gambiae. Both mosquito
species are commonly used in laboratory experiments to
study host-parasite interactions [16]. Far less common are
studies using the main South American malaria vector,
Anopheles albimanus [1]. This might be partly due to the
facts that P. berghei has been reported to not infect A. albi-
manus [17] and that Plasmodium yoelii sporozoites gener-
ated in A. albimanus have been described as being non-
infectious to the rodent host [18]. Since A. gambiae, A.
stephensi and A. albimanus are all amenable to genetic
modification [19-21], an A. albimanus — P. berghei system
would be an interesting addition to the existing laboratory
models. In addition, establishment of such a model, or
similar models for other parasite species, would be valua-
ble for host-vector-parasite interaction studies in coun-
tries where importation of A. gambiae and A. stephensi is
not allowed. Here, using a fluorescent parasite line, A.
albimanus mosquitoes were screened to check whether it
was permissive for P. berghei development. It was found
that P. berghei was able to infect A. albimanus and to
develop into infectious sporozoites within this mosquito
species.

Methods

Mosquito infection

For all infections, P. berghei (strain NK65 or ANKA) lines
expressing the green fluorescent protein were used that
allowed the detection of oocysts and sporozoites in living
mosquitoes and dissected organs [11,22,29]. A. stephensi
(strain Sda500), A. gambiae (strain Yaoundé) and A. albi-
manus (strain STECLA) mosquitoes were reared at the
Center for Production and Infection of Anopheles (CEPIA)
of the Institut Pasteur using standard procedures. Mosqui-
toes were fed on P. berghei-infected mice (parasitaemia
>1%) 3-5 days (A. stephensi and A. gambiae) or 3-8 days
(A. albimanus) after emergence, kept at elevated humidity
(70% relative humidity) for up to 6 weeks in dedicated
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incubators or rooms at 21°C and feed on 10% (w/v)
sucrose solution with or without supplements (see text)
and received one additional non-infected blood meal
after 1 or 2 weeks. The mosquitoes were allowed to lay
their eggs on wet filter paper deposited in a plastic Petri
dish.

Observation of infected mosquitoes

Whole mosquitoes or isolated midguts were observed at
10-18 days (A. stephensi and A. gambiae) or 10-26 days
(A. albimanus) after the infectious blood meal. Sporo-
zoites were isolated from infected salivary glands 15-22
days (A. stephensi) and 15-35 days (A. albimanus) after the
infectious blood meal. Infected salivary glands were dis-
sected and kept on ice in phosphate buffered saline, or tis-
sue culture medium (RPMI) with or without 5% foetal
calf serum. While no difference in the movement of spo-
rozoites in PBS or RPMI was observed, the addition of FCS
stimulated motility in both media [11]. For screening,
mosquitoes were anaesthetized on ice and investigated
under a Nikon SMZ 1500 fluorescent stereomicroscope.
For longer visual observations, mosquitoes were immobi-
lized on glass slides with small droplets of super glue.
Immobilized mosquitoes and isolated midguts in glass-
bottom well dishes (Mattek, USA) were photographed on
a Nikon SMZ 1500 fluorescent stereomicroscope with an
attached Nikon Coolpix digital camera. For example, the
images of Figure 1a were exposed for 0.5 seconds to reveal
the fluorescence with a long pass FITC filter and the white
light adjusted to appropriately illuminate the back-
ground. Depending on fluorescent intensity exposures
were varied from 0.25 to 4 seconds. Infected mosquitoes,
sporozoites within isolated salivary glands and isolated
sporozoites were imaged as described previously [11].
Images and movies were analysed and processed with the
Adobe software package and Image].

Infection of mice

All experiments using mice were approved by the commit-
tee of Institut Pasteur and were performed according to
the applicable guidelines and regulations. For infection by
mosquito bite or by intra-dermal injection, C57Bl/6 mice
(Janvier, France) were anaesthetised with ketamine-xyla-
zine. Rodents were injected in the food pad with 3 ul PBS
containing sporozoites with a modified Hamilton micro-
syringe (Precision Instruments, USA).

Results and discussion

Mosquitoes were screened from day 10 after the infectious
blood meal for the presence of fluorescent oocysts in the
midgut. In A. stephensi and A. gambiae a fluorescent signal
in the abdomen could readily be detected in intact mos-
quitoes (Figure 1a and data not shown). Dissection of the
mosquitoes revealed that the fluorescence originating
from even a single oocyst can be detected in intact mos-
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Detecting development of oocysts in Anopheles midguts. (A) Abdomen and dissected midgut of an infected A. stephensi mos-

quito with green fluorescent P. berghei. Note that single oocysts can be detected in the intact mosquito, while multiple oocysts
give a blurred signal. (B) Oocyst derived fluorescence detected in a well infected living A. albimanus mosquito (left) and an iso-
lated midgut (right) 26 days post infection. In the mosquito the fluorescence appears blurred due to the opaque nature of the
abdomen's chitin. (C) Four representative photographs from midguts of infected A. albimanus, A. gambiae and A. stephensi mos-

quitoes. The days after the infectious blood meals are indicated.

quitoes. Detection was facilitated if the mosquitoes were
given a blood meal prior to observation, which expanded
the abdomen and thus decreased its opacity. In the vast
majority of A. albimanus, there was no fluorescent signal.
However, a small number of mosquitoes showed a weak
fluorescence signal in their abdomen. To investigate if
indeed a small number of A. albimanus were allowing the
development of P. berghei, female mosquitoes were first
observed intact and then dissected at various times (see
methods) after the infecting blood meal. Less than 4% of
A. albimanus were infected with one or more (maximum
30) oocysts, although typically all females in a cage had
taken a potentially infectious blood meal (Table 1, Figure
1). In control experiments, between 50 and 95% of A.
stephensi were infected with several dozen to over one
hundred oocysts, and the salivary glands of infected A.

stephensi usually contained over 10,000 sporozoites per
gland.

Close examination by epi-fluorescence microscopy of
immobilized A. albimanus allowed the occasional detec-
tion of sporozoites within the haemolymph. Only a few
A. albimanus salivary glands were found that contained
sporozoites, usually in very small numbers (less than 10).
In contrast, in A. stephensi mosquitoes, numerous Sporo-
zoites were readily detected in the haemolymph from as
early as day 11 after infection (Figure 2a, b). Time-lapse
analysis of immobilized A. stephensi mosquitoes showed
that the sporozoites were passively flowing within the
haemolymph (Figure 2c and Additional Files 1, 2, see also
[23]). Sporozoites were found in any part of the body that
was bathed by the haemolymph including the palps, the
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Table I: Evaluation of infected A. albimanus mosquitoes fed on sucrose solution with or without supplemented PABA and Pen/Strep. In
total 14 infections were performed with mosquitoes fed on sugar (3 of these resulted in no infected midguts) and 20 infections with
mosquitoes fed on PAPA+Pen/Strep. During each infection between 50 and 250 mosquitoes were investigated. Data shown are mean

* standard deviation.

Sugar Sugar with PABA+Pen/Strep

Infected mosquitoes 39 +43% 192 £9.7%

Range, number of infections 0-16.6%,n=14 4.4 —44%,n =20

% of infected midguts with < 5 oocysts 80.3 £ 25.3 49.5 £ 18.1

% of infected midguts with 5-20 oocysts 9.1 £168 28.1 £ 14.4

% of infected midguts with 20 — 50 oocysts 10.6 £ 23.9 73+75

% of infected midguts with > 50 oocysts 0 53%9.1
Mosquitoes with sporozoites in the haemolymph but no more oocysts in the midgut 0 94 + 12.3%

labium, the antennae, the legs, wings, abdomen and tho-
rax (Figure 2d, Additional Files 1, 2). Examination of sev-
eral thousand haemolymph sporozoites did not yield any
evidence of active gliding motility by these sporozoites. It
is, therefore, concluded that, at least in the A. stephensi —
P. berghei system, sporozoites are passively transported by

the haemolymph and eventually attach to the salivary
glands and that very few P. berghei sporozoites are found
in A. albimanus.

It had been previously shown that the efficiency of P. fal-
ciparum, P. yoelii and P. berghei development in A. stephensi

568 nm

A. stephensi

A. stephensi

- W A. albimanus

Figure 2

In vivo imaging of sporozoites in the haemolymph. (A) Left panel: An A. stephensi mosquito immobilized on a glass-slide for
microscopy observation. Note the fluorescent signal at the base of the wings indicating haemolymph sporozoites (arrowhead).
Right panel: An enlarged view of an A. stephensi mosquito viewed from the abdominal side indicating the fluorescent signal from
sporozoites in the salivary gland (arrow) and from sporozoites in the veins of the wing (arrowhead). (B) Detection of individual
sporozoites in the haemolymph. A vein of the wing imaged with a red filter (568 nm excitation) shows the auto-fluorescent
mosquito tissue. The same region imaged with 488 nm excitation light shows the specific green fluorescence of the sporozoites
(arrows) as well as the auto-fluorescent tissue. See also movie |. (C) Three time-lapse images taken 3 seconds apart show the
passive movement of sporozoites within the haemolymph of the mosquito tibia. The color image represents three images
taken 3 seconds apart, pseudo-colored and overlayed to illustrate the movement of the sporozoites (see also movie 2). (D)
Unusually many sporozoites (green) in the haemolymph of an A. albimanus thorax at 26 days post infection.
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can be increased by adding para-aminobenzoic acid
(PABA) to the sugar water prior to the infectious blood
meal [24,25]. It is also known that, as the presence of bac-
teria in the midgut of mosquitoes inhibits the infectivity
of P. falciparum to A. gambiae, A. stephensi and A. albi-
manus, Plasmodium infection rates can be increased by
adding antibiotics [25-27]. Therefore, in attempts to
increase the efficiency of P. berghei development in A. albi-
manus, the sucrose solution was supplemented with 0.5 g/
1 PABA and 0.1 g/1 penicillin/streptomycin (Pen/Strep). In
this case, a higher number of A. albimanus females were
infected by P. berghei and a higher number of oocysts per
mosquito gut was found (Table 1). While in the absence
of PABA and Pen/Strep, rarely more than one mosquito in
a cage of 200 females was seen that had more than five
oocysts, infection rates exceeding 20% were regularly
achieved in the presence of supplements (Table 1). Of
these infected mosquitoes, over 49% had more than five
oocysts, while 22% showed more than 20 (Table 1).

A closer examination revealed that P. berghei oocysts
developed over a longer period of time (between 5 and 10
days delay) in A. albimanus than in A. stephensi midguts
(Figure 1), which resulted in a delayed detection of fluo-
rescent sporozoites in the haemolymph of A. albimanus. In
virtually all A. albimanus mosquitoes with at least five
oocysts some sporozoites could be detected in their
haemolymph (Figure 2d). Nonetheless, the number of
sporozoites within the salivary glands of these mosquitoes
was usually very low. Occasionally, however, salivary
glands were found that were infected by several hundred
and sometimes several thousand sporozoites (Figure 3a).

To analyse P. berghei sporozoites in the A. albimanus sali-
vary glands, the latter were incubated in cell culture
medium containing foetal calf serum and visualized by
time-lapse microscopy. Sporozoites within the glands
were able to move (Figure 3a). Their main movement pat-
tern was the "back-and-forth" type of motility previously
observed for P. berghei sporozoites in A. stephensi salivary
glands, in the absence or presence of serum [11]. Next, it
was investigated if the sporozoites would be able to glide
on a solid substrate, a prerequisite for infectivity to the
mammalian host [28]. When incubated in medium con-
taining foetal calf serum, P. berghei sporozoites isolated
from infected A. albimanus glands moved on glass slides in
a manner indistinguishable from P. berghei sporozoites
isolated from infected A. stephensi glands (Figure 3b).

Next, the infectivity to the mammalian host of sporo-
zoites isolated from A. albimanus salivary glands was
investigated. Injection of 2,000 such sporozoites into the
skin of mice caused red blood cell infection as determined
by blood smear analysis (Figure 3¢). This showed that P.
berghei sporozoites, isolated from infected A. albimanus,

http://www.malariajournal.com/content/5/1/23

were capable of invading both mosquito and mammalian
tissues and to differentiate into red blood cell invading
forms. However, in two separate experiments, intra-der-
mal injection of 20,000 sporozoites obtained from the
haemolymph of A. albimanus mosquitoes failed to induce
infection. Mice remained uninfected, which confirms that
Plasmodium sporozoites undergo a maturation process in
the salivary glands of Anopheles [29]. Qualitatively similar
results were obtained by an infection of A. albimanus with
P. berghei ANKA parasites expressing the green fluorescent
protein [30].

Finally, whether P. berghei sporozoites can be transmitted
to the mammalian host by the natural bite of A. albimanus
mosquitoes during the third week post infection, was
tested when sporozoites were present in the salivary
glands of A. albimanus. Mouse infection was never
induced even when over 10 infected mosquitoes were
allowed to bite. Additionally, when artificial salivation
was induced in immobilized A. albimanus, no ejection of
sporozoites through the proboscis of the mosquitoes
could be detected. Whether this reflects a true natural bar-
rier to sporozoites inside A. albimanus or just the small
number of sporozoites within the salivary glands remains
to be determined. During previous studies using P. berghei
infections of A. stephensi, sporozoites were already being
ejected at day 11 post infection, when mosquitoes were
artificially stimulated to salivate [11]. However, their
numbers were very low (less than five in less than 20% of
mosquitoes) and sporozoites were never observed within
the first minutes during salivation. As those sporozoites
ejected early during salivation are likely to be deposited in
the skin [11,13], it is not surprising that even the com-
bined bites of hundred A. stephensi mosquitoes at day 11
after the infectious blood meal were unable to infect mice.
A similar situation might occur during infections with A.
albimanus, where only very few sporozoites are taking up
residence in the salivary glands and none was observed in
the narrow parts of the salivary ducts.

While the difference between the findings described here
and those of Vaughan et al. [17] might be due to the dif-
ferent strains of mosquitoes (A-2) and parasites (ANKA)
used, it is more likely that the low number of oocysts
developing in the absence of supplements escaped detec-
tion in the earlier study. Indeed, no difference was seen
between fluorescent NK65 and ANKA strains in A. albi-
manus. This shows the advantage of using fluorescent par-
asites, as a single oocyst can be detected by careful
observation in living mosquitoes and easily in dissected
midguts.

Conclusion
The feasibility to screen mosquito species for susceptibil-
ity to a malaria parasite species, using fluorescent parasites
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Figure 3

Infectious sporozoites in A. albimanus. (A) Isolated salivary gland of an infected A. albimanus mosquito at 26 days post infection.
Sporozoites are shown in the left panel, while the movement occurring over 200 seconds is shown in the middle panel. This
panel represents the projected standard deviation between time frames of a movie that spans 200 seconds with one image
taken every 2 seconds. The insets show a typical back-and-forth moving sporozoite (arrowheads indicate ends of sporozoite).
The time between frames is indicated in seconds. The right panel shows a merge of the static sporozoites (green) and the
movement (red). See also movie 3. (B) An isolated sporozoite glides on a glass surface in the presence of 5% foetal calf serum.
The asterix indicates the apical end of the sporozoites at 0 seconds, while the arrowhead indicates the apical end at the respec-
tive time frame. Time between frames is indicated in seconds. Scale bar: 10 um. (C) Blood smear at |3 days after the injection
of 2.000 salivary gland sporozoites shows an early trophozoite.

was demonstrated. Using this methodology, it was found
that the rodent malaria parasite P. berghei is able to infect
the major South American malaria vector A. albimanus
and to develop into infectious sporozoites albeit at low
frequency. This suggests that it should be possible to iso-
late A. albimanus lines that are highly susceptible to P.
berghei infection and that such lines may provide useful
new tools for studying the interaction between a model

malaria parasite and a major malaria-transmitting mos-
quito.
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Additional material

Additional File 1

Movie 1. Sporozoites in the haemolymph of the mosquito wing. Two spo-
rozoites are stuck in a vein of an Anopheles stephensi wing. Other spo-
rozoites pass by with the flow of the haemolymph. 5 frames per second,
movie length: 8 seconds. For best viewing loop the movie. Size: 4.4 MB.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2875-5-23-S1.mov]|

Additional File 2

Movie 2. Sporozoites in the hemolyph of an A. stephensi tibia. A large
number of sporozoites float with the haemolymph in both directions. 1
frame per second, movie length: 74 seconds. Size: 3.3 MB.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2875-5-23-S2.mov]|

Additional File 3

Movie 3. Sporozoites in the salivary gland of an Anopheles albimanus
mosquito. The gland was carefully isolated from an infected mosquito and
placed in RPMI containing 5% foetal calf serum in a glass-bottom well
dish. Note the displacement of sporozoites, mainly in a typical back-and-
forth fashion. 0.1 frames per second, movie length: 100 seconds. For best
viewing loop the movie. Size: 2 MB.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2875-5-23-S3.mov]|
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