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A B S T R A C T   

Oxidative and endoplasmic reticulum (ER) stress are involved in mediating high-fat diet (HFD)-induced insulin 
resistance. As the ER-localized methionine sulfoxide reductase B3 (MsrB3) protects cells against oxidative and ER 
stress, we hypothesized that MsrB3 might be associated with HFD-induced insulin resistance. To test this hy-
pothesis, we examined the effect of MsrB3 deficiency on HFD-induced insulin resistance using MsrB3 knockout 
(KO) mice. Mice were fed a control diet or HFD for 12 weeks and insulin sensitivity was measured using a 
hyperinsulinemic-euglycemic clamp. HFD consumption increased the body weight of both wild-type and MsrB3 
KO mice, and no significant difference was observed between the genotypes. The HFD increased oxidative stress 
and induced insulin resistance in the skeletal muscle of wild-type mice, but did not affect either in MsrB3 KO 
mice. The unfolded protein response (UPR) was increased in MsrB3 KO mice upon consumption of HFD, but not 
in wild-type mice. Mitochondrial oxidative phosphorylation proteins and the levels of superoxide dismutase 2 
and glutathione peroxidase 1 were increased in MsrB3 KO mice upon HFD consumption. The respiratory control 
ratio was reduced in wild-type mice consuming HFD but not in MsrB3 KO mice. The levels of calcium/ 
calmodulin-dependent protein kinase kinase β, phosphorylated AMP-activated protein kinase, and peroxisome 
proliferator-activated receptor gamma coactivator 1α were increased in MsrB3 KO mice following HFD con-
sumption. These results suggest that MsrB3 deficiency inhibits HFD-induced insulin resistance, and the increased 
mitochondrial biogenesis and antioxidant induction might be the mechanisms underlying this phenomenon.   

1. Introduction 

Obesity is a pandemic due to an increasingly sedentary lifestyle and 
dietary changes. The increased prevalence of chronic conditions such as 
type 2 diabetes and cardiovascular diseases is closely associated with the 
obesity pandemic [1]. Increased fat mass in obese subjects induces in-
sulin resistance, which is an independent risk factor for obesity-related 
chronic diseases [1]. The accumulation of fat mass increases reactive 
oxygen species (ROS) production, which is a key factor in inducing in-
sulin resistance in obese subjects [2]. 

ROS are produced as a byproduct of normal cellular metabolism, and 
physiological ROS levels are maintained by a balance between ROS 
production and a detoxifying antioxidant system. Increased ROS 

production or reduced antioxidant capacity results in ROS accumula-
tion, which causes tissue damage, called oxidative stress. A large body of 
evidence suggests that oxidative stress contributes to the development of 
insulin resistance by interfering with insulin signaling pathways [3]. In 
addition, oxidative stress induces endoplasmic reticulum (ER) stress, 
which is closely linked to insulin resistance [4]. 

The ER is a cellular organelle involved in post-translational protein 
modifications, such as folding, glycosylation, and oligomerization [5]. 
Misfolded proteins are retro-translocated to the cytoplasm for protea-
somal degradation, i.e., ER-associated protein degradation (ERAD) [6]. 
The accumulation of unfolded or misfolded proteins in the ER induces 
the generation of ER stress, which activates signaling pathways to sus-
tain ER homeostasis, called unfolded protein response (UPR) [7]. The 
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UPR results in reduced protein synthesis but increases chaperone pro-
duction and ERAD, leading to the re-establishment of ER function [7]. 
When the UPR is overwhelmed by persistent ER stress, cells undergo 
apoptosis [7]. Because redox status is a critical factor for proper protein 
folding, increased oxidative stress can induce ER stress [8]. Many pre-
vious studies have reported positive correlations between UPR and in-
sulin resistance. Glucose-regulated protein 78 (GRP78) is an ER 
chaperone that is involved in protein folding and initiation of the UPR by 
binding to misfolded proteins. GRP78 expression is known to be 
increased in the skeletal muscle of glucose-intolerant patients with 
obesity and was positively correlated with fasting glucose levels [9]. The 
expression of ER stress markers in adipocytes is higher in obese human 
subjects than that in lean controls, and is correlated with body mass 
index and fat mass [10]. 

Methionine sulfoxide reductases, which catalyze the reduction of 
methionine sulfoxide to methionine, function as antioxidant enzymes; 
they consist of MsrA and MsrB in mammals [11]. While MsrA, specific 
for methionine-S-sulfoxide, is coded a single gene, MsrB, specific for 
methionine-R-sulfoxide, is coded by three genes whose products localize 
in different subcellular compartments (MsrB1 in the nucleus and cyto-
plasm, MsrB2 in the mitochondria, and MsrB3 in the mitochondria and 
ER) [11,12]. In rodents, MsrB3 might localize only to the ER [11,13]. 
MsrA-deficient mice show aggravated oxidative stress and insulin 
resistance following high-fat diet (HFD) consumption [14], whereas 
MsrB1 deficiency does not influence oxidative stress or insulin resistance 
in HFD-fed mice [15]. However, there are no reports regarding the roles 
of MsrB2 or MsrB3 in HFD-induced insulin resistance. 

We had previously reported that MsrB3 protects the cells from ER 
stress as well as oxidative stress [16–18]. Because the dysregulation of 
ER is closely associated with insulin resistance, it is possible that the 
modulation of MsrB3 would affect insulin sensitivity. We hypothesized 
that MsrB3 deficiency might accelerate insulin resistance by increasing 
oxidative stress and ER stress. To examine the role of MsrB3 in 
HFD-induced insulin resistance, we fed MsrB3 knockout (KO) and 
wild-type mice with HFD for 12 weeks and measured the insulin sensi-
tivity using the hyperinsulinemic-euglycemic clamp technique. In 
contrast to our hypothesis, MsrB3 deficiency inhibited the development 
of HFD-induced insulin resistance. 

2. Materials and methods 

2.1. Animals 

The generation of MsrB3 KO mice has been described previously 
[19]. Eight-week-old male C57BL/6 mice were housed in a controlled 
environment with a 12:12-h light:dark cycle. The mice were fed a con-
trol diet (16% of kcal from fat; AIN-93G, Research Diets, New Bruns-
wick, NJ, USA) or HFD (60% of kcal from fat, Research Diets) for 12 
weeks. After the completion of all experiments, the mice were eutha-
nized by intraperitoneal injection of 2,2,2,-tribromoethanol and ter-
t-amyl alcohol (375 mg/kg) and cervical dislocation. Blood was 
collected from the retro-orbital plexus using heparin-coated capillary 
tubes, and the plasma was stored at − 80 ◦C until analysis. Skeletal 
muscles and adipose tissue were excised, weighed, and stored at − 80 ◦C. 
For ER stress induction, mice were injected intraperitoneally with 
tunicamycin (1 mg/kg), fasted for 24 h, and then anesthetized. This 
study was conducted in strict accordance with guidelines and protocols 
approved by the Institutional Animal Care and Use Committee of 
Yeungnam University College of Medicine (YUMC-AEC2016-015). 

2.2. Hyperinsulinemic-euglycemic clamp 

The hyperinsulinemic-euglycemic clamp technique was performed 
as described previously [20]. During the clamp test, human insulin 
(Lilly, USA) was infused at a dose of 24 pmol kg− 1⋅min− 1 and plasma 
glucose levels were maintained at approximately 6 mM by infusion with 

20% glucose. Radiolabeled [3-3H] glucose (0.1 μCi/min; PerkinElmer, 
Waltham, MA, USA) was infused to assess whole-body glucose turnover, 
and 2-deoxy-D-[1–14C] glucose (10 μCi, PerkinElmer) was injected as a 
bolus to measure the tissue glucose uptake. Hepatic glucose production 
(HGP) following insulin stimulation was estimated by subtracting the 
glucose infusion rate (GIR) from the whole-body glucose uptake rate. 
Plasma glucose levels were measured using a GM9 glucose analyzer 
(Analox, Stourbridge, UK), and plasma insulin concentrations were 
measured using an enzyme-linked immunosorbent assay (Merck, 
Kenilworth, NJ, USA). 

2.3. Homeostatic model assessment-insulin resistance (HOMA-IR) 

HOMA-IR was calculated based on the values of fasting glucose and 
insulin as follows: [fasting glucose (mg/dL) × fasting insulin (μU/mL)]/ 
405. 

2.4. H2O2 levels 

H2O2 levels in the gastrocnemius muscle were determined using the 
ferric-sensitive dye xylenol orange (Sigma-Aldrich, St. Louis, MO, USA) 
as previously described [21]. 

2.5. Western blotting 

The antibody against MsrB3 has been described previously [19]. The 
antibodies against oxidative phosphorylation (OXPHOS) proteins, 
peroxisome proliferator-activated receptor gamma coactivator 1 alpha 
(PGC1α), and 4-hydroxynonenal (4HNE) were obtained from Abcam 
(Cambridge, UK). The antibody against Gpx1 was obtained from 
AbFrontier (Seoul, Korea). The antibodies against activating transcrip-
tion factor 4 (ATF4), superoxide dismutase 2 (SOD2), ubiquitin (Ub), 
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were pur-
chased from Santa Cruz Biotechnology (Dallas, TX, USA). The antibody 
against Grp78 was obtained from Enzo (Farmingdale, NY, USA). The 
antibodies against phosphorylated Akt (pAkt), Akt, phosphorylated 
AS160 (pAS160), phosphorylated GSK3β (pGSK3β), GSK3β, phosphor-
ylated eIF2α (p-eIF2α), eIF2α, calcium/calmodulin-dependent protein 
kinase kinase β (CaMKKβ), phosphorylated liver kinase B1 (pLKB1), 
LKB1, phosphorylated AMP-activated protein kinase (pAMPK), and 
AMPK were obtained from Cell Signaling (Danvers, MA, USA). Western 
blotting was performed as described previously [21]. Skeletal muscle 
samples were homogenized in lysis buffer and then 30 μg of protein was 
separated by sodium dodecyl sulfate-polyacrylamide gel electropho-
resis. The resolved proteins were transferred onto PVDF membranes 
(Merck), and then the membranes were blocked and probed with pri-
mary antibodies. After probing with the appropriate secondary anti-
bodies, protein presence was detected with chemiluminescence 
detection reagent (Merck) and then quantified using a LAS-4000 image 
analyzer and Multi Gauge 3.0 software (Fujifilm, Japan). 

2.6. Quantitative real time polymerase chain reaction (qRT-PCR) 

The gene expression of MsrB3 was measured by qRT-PCR using a 
Real-Time PCR 7500 System and Power SYBR Green PCR Master Mix 
(Applied Biosystems, Foster City, CA, USA), as previously described 
[20]. The gene expression was normalized by ribosomal protein lateral 
stalk subunit P0 (36B4). The following primer sequences were used: 
36B4 (forward, 5′-CACTGGTCTAGGACCCGAGAA-3′; reverse, 
5′-GGTGCCTCTGGAGATTTTCG-3′) and MsrB3 (forward, 
5′-GGTGGAAACCAGCTGTTCTC-3′; reverse, 5′-GGATGCTGAGTT-
GATGCAGTA -3′). 

2.7. Mitochondrial respiration 

Mitochondrial function was measured using an Oxytherm oxygen 
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electrode (Hansatech Instruments, Norfolk, UK), as previously described 
[22]. Briefly, skeletal muscle samples were minced with scissors and 
homogenized using a motorized Glass/Teflon Potter Elvehjem homog-
enizer. The homogenates were centrifuged at 700×g for 10 min at 4 ◦C, 
and the supernatant was removed and centrifuged at 10 500×g for 10 
min at 4 ◦C. The pellets were suspended and used to measure mito-
chondrial oxygen consumption and protein concentration. The mito-
chondrial suspension (50 μL) was added to the Oxytherm chamber 
containing 500 μL of respiration buffer at 37 ◦C under conditions of 
constant stirring. Pyruvate and malate (5 mM and 2.5 mM, respectively) 
were added to aid complex I-mediated oxygen consumption, which was 
followed by the addition of ADP (250 μM) for state 3 respiration. Then, 
5 μM oligomycin was added to inhibit ATP synthase activity (state 4 
respiration). The oxygen consumption rate was standardized based on 
protein levels. The respiratory control ratio was determined by dividing 
state 3 consumption by state 4 consumption. 

2.8. Statistical analysis 

The values are presented as the mean ± SE. Statistical analyses were 
performed using Prism version 7 (Graph Pad Software, Inc., La Jolla, CA, 
USA). Differences among the four groups were analyzed via two-way 
analysis of variance (ANOVA) followed by Tukey’s HSD post hoc test 
unless otherwise specified. Differences between the two groups were 
assessed using an unpaired Student’s t-test. A p-value less than 0.05 (p <
0.05) was considered significant. 

3. Results 

3.1. MsrB3 deficiency decreases susceptibility to diet-induced insulin 
resistance 

Feeding HFD for 12 weeks resulted in increased body weight and 
reduced skeletal muscle mass in both wild-type and MsrB3 KO mice. 
However, no significant differences were observed between the two 

Fig. 1. Body weight, skeletal muscle weight, adipose tissue mass, and plasma levels of glucose and insulin in wild-type and MsrB3 knockout (KO) mice following 
consumption of a control diet or high-fat diet for 12 weeks. (A) Body weight. (B) The weights of gastrocnemius and soleus muscles. (C) Retroperitoneal fat mass. (D) 
Plasma glucose levels. (E) Plasma insulin levels. (F) Homeostatic model assessment-insulin resistance (HOMA-IR). Skeletal muscle and fat masses are standardized 
based on the body weight. Results are presented as means ± SE (n = 7–9 in each group). *p < 0.05 and **p < 0.01. 
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genotypes in either the control or HFD groups (Fig. 1A and B). HFD 
tended to increase retroperitoneal fat mass in both genotypes (Fig. 1C). 
The levels of plasma glucose were not significantly altered in response to 
HFD or MsrB3 deficiency (Fig. 1D). The HFD significantly increased 
plasma insulin levels in wild-type mice but not in MsrB3 KO mice. 
Accordingly, HOMA-IR was increased by HFD in wild-type mice, showed 
no significant difference with respect to that in MsrB3 KO mice. Plasma 
insulin levels and HOMA-IR were not significantly different between the 
two genotypes in either the control or HFD groups (Fig. 1E–F). 

Next, a hyperinsulinemic-euglycemic clamp was used to identify the 
tissue responsible for the development of insulin resistance. During the 
clamp test, plasma glucose levels were maintained at ~6.1 mM in the 
control diet and HFD-fed mice. Plasma insulin levels were 1105 ± 43.84 
and 1088 ± 99.20 pM in wild-type and Msr3 KO mice, respectively, in 
the control diet group, and 1351 ± 122.89 and 1399 ± 109.59 pM, 
respectively, in wild-type and MsrB3 KO mice in the HFD group. GIR was 
significantly reduced in wild-type mice following HFD consumption, 
whereas it was not significantly decreased by HFD in MsrB3 KO mice. No 
significant difference was observed between wild-type and MsrB3 KO 
mice in either the control or HFD groups (Fig. 2A). The HFD also 
significantly reduced whole-body glucose turnover in wild-type mice 
but not in MsrB3 KO mice. Whole-body glucose turnover was not 
significantly different between the two genotypes in either the control or 
HFD groups (Fig. 2B). HFD significantly reduced skeletal muscle glucose 
uptake in wild-type mice but not in MsrB3 KO mice. No significant 
difference was observed between the two genotypes in either the control 
or HFD groups (Fig. 2C). Hepatic glucose production was not signifi-
cantly different between the groups (Fig. 2D). These data suggest that 
HFD consumption for 12 weeks induces insulin resistance in the skeletal 
muscle of wild-type mice but not in that of MsrB3 KO mice. 

3.2. MsrB3 deficiency increases resistance against oxidative stress due to 
HFD 

HFD consumption for 12 weeks did not alter the protein levels of 
MsrB3 in the skeletal muscle of wild-type mice (Fig. 3A). Further, HFD 
increased hydrogen peroxide (H2O2) levels in the skeletal muscle of 
wild-type mice (p = 0.0545), but did not affect hydrogen peroxide levels 
in the skeletal muscle of MsrB3 KO mice. Hydrogen peroxide levels were 
not significantly different between wild-type and MsrB3 KO mice in 
either the control diet or HFD group (Fig. 3B). 

The levels of 4HNE, an oxidative stress marker, were also increased 
by HFD in wild-type mice, whereas they were not significantly altered in 
MsrB3 KO mice. The 4HNE levels did not significantly differ between the 
two genotypes in either the control or HFD groups (Fig. 3C). The protein 
levels of SOD2 and Gpx1 were significantly increased by HFD in MsrB3 
KO mice but not in wild-type mice. The Gpx1 protein levels were 
significantly higher in HFD-fed MsrB3 KO mice than those in HFD-fed 
wild-type mice. There was no difference in SOD2 protein levels be-
tween the two genotypes (Fig. 3D and E). These results suggest that HFD 
consumption for 12 weeks increases oxidative stress in wild-type mice 
but not in MsrB3 KO mice. 

3.3. MsrB3 deficiency enhances UPR following HFD consumption 

Next, we assessed UPR by measuring the expression of Grp78, p- 
eIF2α, and ATF4, and levels of ubiquitination. HFD did not significantly 
alter Grp78 protein levels in wild-type mice, but it significantly 
increased Grp78 protein levels in MsrB3 KO mice. Grp78 protein levels 
were significantly higher in HFD-fed MsrB3 KO mice than those in HFD- 
fed wild-type mice (Fig. 4A). HFD seems to increase the levels of p-eIF2α 
in MsrB3 KO mice (Fig. 4B). HFD also increased the ATF4 protein levels 
in MsrB3 KO mice but not in wild-type mice (Fig. 4C). The levels of 

Fig. 2. Glucose metabolism during the hyperinsulinemic-euglycemic clamp test in wild-type and MsrB3 knockout (KO) mice following the consumption of a control 
diet or high-fat diet for 12 weeks. (A) Glucose infusion rate (GIR). (B) Whole-body glucose turnover. (C) Soleus muscle glucose uptake. (D) Insulin-stimulated hepatic 
glucose production (HGP). Results are presented as means ± SE (n = 7–9 in each group). *p < 0.05 and **p < 0.01. 
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ubiquitinated protein were increased by HFD in MsrB3 KO mice but not 
in wild-type mice. The ubiquitinated protein levels were significantly 
higher in HFD-fed MsrB3 KO mice than those in HFD-fed wild-type mice 
(Fig. 4D). These results suggest that MsrB3 deficiency enhances UPR 
following HFD consumption. 

3.4. MsrB3 deficiency increases mitochondrial OXPHOS proteins 
following HFD consumption 

ER stress is closely linked to changes in mitochondrial functions [23]. 
We measured the levels of proteins involved in mitochondrial OXPHOS. 

The levels of complex I and II proteins were similar in wild-type mice 
following HFD consumption, while they were increased upon HFD 
consumption in MsrB3 KO mice. The levels of complex I and II proteins 
were significantly higher in HFD-fed MsrB3 KO mice than those in 
HFD-fed wild-type mice (Fig. 5A and B). The levels of complex III, IV, 
and V proteins tended to increase in response to HFD consumption in 
MsrB3 KO mice but not in wild-type mice (Fig. 5C–E). The mitochondrial 
respiratory control ratio was reduced upon HFD consumption in 
wild-type mice, but was not affected in MsrB3 KO mice (Fig. 5F). These 
results suggest that MsrB3 deficiency increases the expression of mito-
chondrial OXPHOS proteins and sustains mitochondrial function 

Fig. 3. The levels of oxidative stress 
markers and antioxidant enzyme in the 
gastrocnemius muscle of wild-type (WT) 
and MsrB3 knockout (KO) mice 
following the consumption of a control 
diet or high-fat diet for 12 weeks. (A) 
MsrB3 protein levels. (B) Hydrogen 
peroxide (H2O2) levels. (C) 4-hydroxy- 
2-nonenal (4HNE). (D) Superoxide dis-
mutase 2 (SOD2) protein levels. (E) 
Glutathione peroxidase 1 (Gpx1) pro-
tein levels. Protein levels were normal-
ized with those of glyceraldehyde-3- 
phosphate dehydrogenase (GAPDH). 
Results are presented as means ± SE (n 
= 6–11 in each group). *p < 0.05, **p 
< 0.01, and ***p < 0.001.   
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following HFD consumption. 
To examine the mechanism by which HFD increased mitochondrial 

OXPHOS proteins in MsrB3 KO mice, we measured the protein levels of 
CaMKKβ, pAMPK and PGC1α as AMPK/PGC1α is known to regulate 
mitochondrial biogenesis. While the levels of CaMKKβ were not signif-
icantly altered upon HFD consumption in wild-type mice, they were 
significantly increased upon HFD consumption in MsrB3 KO mice. The 
protein levels of CaMKKβ were significantly higher in HFD-fed MsrB3 
KO mice than those in HFD-fed wild-type mice (Fig. 6A). The levels of 
pAMPK protein were increased in MsrB3 KO mice but not in wild-type 
mice upon consumption of HFD (Fig. 6B). The protein levels of PGC1α 
were higher in HFD-fed MsrB3 KO mice than those in HFD-fed wild-type 
mice (Fig. 6C). These results suggest that MsrB3 deficiency enhances 
CaMKKβ/AMPK/PGC1α signaling in response to the HFD. 

3.5. MsrB3 deficiency has no effect on tunicamycin-induced insulin 
resistance 

Tunicamycin is known to induce UPR by inhibiting glycosylation, 

leading to the development of insulin resistance in cell culture and ex 
vivo [24]. In contrast, administration of tunicamycin to mice results in 
reduced blood glucose levels in vivo [25]. Therefore, to confirm the 
development of insulin resistance in response to tunicamycin, we 
injected tunicamycin intraperitoneally in wild-type mice and measured 
the fasting plasma glucose and insulin levels to calculate HOMA-IR. 
Although tunicamycin did not affect plasma glucose levels, it signifi-
cantly increased plasma insulin levels. Accordingly, HOMA-IR was 
significantly increased in response to tunicamycin administration. 
Tunicamycin reduced the levels of phosphorylated AS160 in the skeletal 
muscle and those of phosphorylated GSK3β in the liver (Supplementary 
Fig. S1). These results suggest that tunicamycin induces insulin resis-
tance in the liver and skeletal muscle in mice. 

Tunicamycin administration in wild-type mice significantly reduced 
both mRNA and protein levels of MsrB3 in the skeletal muscle (Fig. 7A 
and B), suggesting that tunicamycin inhibits MsrB3 expression at the 
transcriptional level. Tunicamycin was administered to wild-type and 
MsrB3 KO mice after they were fed a control diet or HFD for 12 weeks. 
The HFD increased fasting plasma glucose and insulin levels in both 

Fig. 4. The expression of proteins involved in unfolded protein response in the gastrocnemius muscle of wild-type (WT) and MsrB3 knockout (KO) mice following 
consumption of a control diet or high-fat diet for 12 weeks. (A) Glucose-regulated protein 78 (GRP78). (B) Phosphorylated eukaryotic translation initiation factor 2α 
(p-eIF2α). (C) Activating transcription factor 4 (ATF4). (D) Ubiquitinated (Ub) protein levels. Protein levels were normalized with those of glyceraldehyde-3- 
phosphate dehydrogenase (GAPDH). Results are presented as means ± SE (n = 9–11 in each group). *p < 0.05 and **p < 0.01. 
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Fig. 5. The levels of proteins involved in mitochondrial oxidative phosphorylation and respiratory control ratio in the gastrocnemius muscle of wild-type and MsrB3 
knockout (KO) mice following consumption of a control diet or high-fat diet for 12 weeks. (A) Complex I. (B) Complex II. (C) Complex III. (D) Complex IV. (E) 
Complex V. (F) Respiratory control ratio. Protein levels were normalized with those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Results are presented as 
means ± SE (n = 6–12). *p < 0.05 and **p < 0.01. 
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wild-type and MsrB3 KO mice, but no difference was observed between 
the two genotypes in the control and HFD groups (Fig. 7C and D). 
Accordingly, HOMA-IR was increased in both groups upon HFD con-
sumption, but it was not affected by MsrB3 deficiency (Fig. 7E). Tuni-
camycin did not affect the levels of antioxidant enzymes or 
mitochondrial OXPHOS proteins in either genotype following HFD 
consumption (Fig. 8). These results suggest that MsrB3 deficiency does 
not affect tunicamycin-induced insulin resistance. 

4. Discussion 

In previous studies, MsrA deficiency aggravated HFD-induced insulin 
resistance, whereas MsrB1 deficiency had no effect on diet-induced in-
sulin resistance. In the present study, the effect of MsrB3 deficiency on 
HFD-induced insulin resistance was examined. HFD consumption for 12 
weeks in wild-type mice resulted in the development of insulin resis-
tance and increased oxidative stress, but no difference in UPR was 
observed in the skeletal muscle. In contrast, MsrB3 deficiency resulted in 
inhibition of HFD-induced insulin resistance development and ROS 
accumulation in the skeletal muscle. Furthermore, MsrB3 deficiency 
increased UPR and the protein levels of mitochondrial OXPHOS and 
antioxidant enzymes. These results suggest that MsrB3 deficiency re-
duces susceptibility to diet-induced insulin resistance, which may be 
mediated by increased mitochondrial biogenesis and antioxidant 

induction. 
High levels of oxidative stress are observed in the plasma and insulin- 

sensitive tissues of patients with obesity and type 2 diabetes. In exper-
imental animals, catalase, glutaredoxin, peroxiredoxins [2,3,6], and 
MsrA knockout increases oxidative stress and insulin resistance [26], 
whereas overexpression of SOD2 and peroxiredoxin 4 reduces oxidative 
stress and prevents the development of HFD-induced insulin resistance 
[27,28]. Treatment with antioxidants, such as tempol, hemin, and 
vitamin C, improves insulin resistance [26]. However, the modulation of 
antioxidant enzymes is not always followed by altered levels of oxidative 
stress. Loss of MsrB1 and selenoprotein W does not affect oxidative stress 
or insulin sensitivity in either control diet- or HFD-fed mice [15,21]. In 
the present study, MsrB3 deficiency did not significantly alter oxidative 
stress compared with that in wild-type mice following consumption of a 
control diet. However, interestingly, while the HFD increased oxidative 
stress in the wild-type mice, it failed to increase oxidative stress in the 
MsrB3-deficient mice compared with that in the respective control 
diet-fed mice. Accordingly, the HFD did not significantly alter insulin 
sensitivity in MsrB3-deficient mice. Increased expression of antioxidant 
enzymes, Gpx1 and SOD2, may counteract oxidative stress in MsrB3 
knockout mice. Compensatory overexpression of other antioxidant en-
zymes has been observed in MsrB1 knockout and Gpx1 knockout mice 
[29]. 

AMPK is involved in a variety of physiological functions, including 

Fig. 6. The protein levels of CaMKKβ, pAMPK, and PGC1α in the gastrocnemius muscle of wild-type (WT) and MsrB3 knockout (KO) mice following consumption of a 
control diet or high-fat diet for 12 weeks. (A) Calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ). (B) Phosphorylated AMP-activated protein kinase 
(pAMPK). (C) Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). Protein levels of CaMKK and PGC1α were normalized with those of 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Results are presented as means ± SE (n = 9–11 in each group). *p < 0.05, ***p < 0.001, and ****p < 0.0001. 
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metabolism, inflammation, redox regulation, and mitochondrial 
biogenesis [30]. We observed increased levels of pAMPK in HFD-fed 
MsrB3 KO mice. Thus, activation of AMPK in HFD-fed MsrB3 KO mice 
increased the expression of the antioxidant enzymes Gpx1 and SOD2, 
which in turn may inhibit the accumulation of hydrogen peroxide. 
Accordingly, AMPK activation induces the expression of antioxidant 
enzymes, including Gpx1 and SOD2, in human mesenchymal stem cells 
[31], in human umbilical vein endothelial cells [32], and in the lungs 
and kidneys of mice [33,34]. Nrf2 plays an important role in the in-
duction of antioxidant enzymes by AMPK [34,35]. We previously 
observed that deficiency of MsrB3 induces Nrf2 activation in human 
dermal fibroblasts [36]. AMPK is activated in response to increased AMP 
levels and increased expression of upstream kinases such as CaMKKβ and 
LKB1 [37]. MsrB3-deficient mice exhibited increased CaMKKβ protein 
levels following HFD consumption in this study. Previously, we had also 
observed increased intracellular calcium levels in MsrB3-deficient can-
cer cells [38]. Therefore, we assumed that HFD consumption would 
increase intracellular calcium levels, leading to the activation of 
CaMKKβ and AMPK in MsrB3-deficient mice. 

We observed increased levels of PGC1α and mitochondrial OXPHOS 
proteins in the HFD-fed MsrB3 KO mice. AMPK has been shown to 
enhance mitochondrial biogenesis by regulating PGC1α expression in a 
variety of cells and tissues, including the skeletal muscle [33,39,40]. 
Numerous studies suggest that mitochondrial abnormalities are closely 
associated with insulin resistance [41]. In patients with obesity and type 
2 diabetes, reductions in mitochondrial number and size are accompa-
nied by reduced electron transport chain activity in the skeletal muscle 
[42]. Lipid infusion or HFD reduces the expression of genes required for 
mitochondrial oxidative phosphorylation and oxygen consumption in 
the skeletal muscle of humans [43,44]. Functional and morphological 
abnormalities of the mitochondria result in increased ROS generation 
and reduced beta-oxidation, leading to the development of insulin 
resistance [45]. Enhanced mitochondrial OXPHOS protein levels or ac-
tivities are associated with improved insulin resistance [46,47]. There-
fore, it is possible that enhanced mitochondrial biogenesis mediated by 
AMPK/PGC1α involves in the inhibition of HFD-induced insulin resis-
tance in MsrB3 KO mice. 

ER-stress has been proposed as a mechanism for inducing insulin 

Fig. 7. Effect of tunicamycin on the 
plasma levels of glucose and insulin in 
wild-type (WT) and MsrB3 knockout 
(KO) mice following consumption of a 
control diet or high-fat diet for 12 
weeks. (A) MsrB3 mRNA and (B) pro-
tein levels in the gastrocnemius muscle. 
(C) Plasma glucose levels. (D) Plasma 
insulin levels. (E) Homeostatic model 
assessment-insulin resistance (HOMA- 
IR). Results are presented as means ± SE 
(n = 3–5 in each group). *p < 0.05, **p 
< 0.01, ***p < 0.001, and ****p <
0.0001.   
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resistance, which has mostly been demonstrated in cells in vitro. Many 
previous studies using experimental animals have shown a positive 
relationship between insulin resistance and UPR. Insulin resistance in 
obese rodents is accompanied by increased UPR, whereas ameliorated 
insulin resistance is followed by reduced UPR. In the present study, we 
showed that a chemical ER stress inducer, tunicamycin, induces insulin 
resistance in the skeletal muscle and liver of mice. These data indicate a 
causal relationship between ER stress and insulin resistance in vivo. 

Previously, both HFD and MsrB3 deficiency have been reported to 
induce ER stress [38]. However, we did not observe an alteration in UPR 
upon HFD consumption or in response to MsrB3 deficiency; however, 
HFD consumption in the background of MsrB3 deficiency increased the 
UPR. Interestingly, UPR and insulin resistance were not positively 
correlated in wild-type and MsrB3-deficient mice in this study. In 
addition, MsrB3 deficiency resulted in inhibition of diet-induced insulin 
resistance development, whereas it increased UPR following HFD 

Fig. 8. Effect of tunicamycin on the levels of antioxidant enzymes and proteins involved in mitochondrial oxidative phosphorylation in wild-type and MsrB3 
knockout (KO) mice following a high-fat diet for 12 weeks. (A) Superoxide dismutase 2 (SOD2). (B) Glutathione peroxidase 1 (Gpx1). (C) Complex I. (D) Complex II. 
(E) Complex III. (F) Complex V. Results are presented as means ± SE (n = 4–5 in each group). 
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consumption. ER stress is closely linked to mitochondrial alterations, 
including increases in biogenesis and oxidative phosphorylation, and 
these mitochondrial changes lead to adaptive survival of cells [23]. This 
interaction between the ER and mitochondria is mediated by calcium 
[48]. Consistent with these previous results, increased ER stress in 
HFD-fed MsrB3-deficient mice was accompanied by increases in 
CaMKKβ/AMPK/PGC1α and mitochondrial biogenesis. Therefore, 
although severe ER stress induced by tunicamycin results in the devel-
opment of insulin resistance, mild ER stress due to the HFD in MsrB3 
deficiency seems to reduce susceptibility to insulin resistance. Consis-
tent with our results, some previous studies have reported a beneficial 
effect of UPR on insulin sensitivity. Lipid infusion induces insulin 
resistance and decreases insulin-induced UPR in the adipose tissue of 
healthy human subjects [49]. In patients with type 2 diabetes, 
insulin-mediated UPR is absent in the adipose tissue [49]. HFD-induced 
steatosis and insulin resistance are improved by flaxseed, and are 
accompanied by increased UPR [50]. However, the underlying mecha-
nisms of these inconsistent results regarding the relationship between 
UPR and insulin resistance remain to be explored. 

Although MsrB3 deficiency reduced the susceptibility to HFD- 
induced insulin resistance, MsrB3 deficiency had no effect on 
tunicamycin-induced insulin resistance, suggesting that MsrB3 defi-
ciency does not have a beneficial effect on insulin resistance caused by 
severe ER stress. Furthermore, tunicamycin abolished the increase in 
antioxidant expression and mitochondrial OXPHOS proteins following 
HFD consumption in MsrB3 KO mice. These data indirectly suggest that 
the positive effect of MsrB3 deficiency on diet-induced insulin resistance 
is mediated by mild ER stress, and that severe tunicamycin-induced ER 
stress overwhelms these adaptive changes in MsrB3 KO mice. 

In summary, MsrB3 deficiency inhibits the development of HFD- 
induced insulin resistance in the skeletal muscle, which might be 
mediated by increased mitochondrial biogenesis and antioxidant in-
duction via the CaMKKβ/AMPK/PGC1α pathway. Although the activa-
tion of CaMKKβ/AMPK/PGC1α is possibly linked to ER stress, further 
studies are needed to clarify these mechanisms. 
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