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Membrane proteins endocytosed at the cell surface as vesicular cargoes are sorted
at early endosomes for delivery to lysosomes for degradation or alternatively recycled
to different cellular destinations. Cargo recycling is orchestrated by multimolecular
complexes that include the retromer, retriever, and the WASH complex, which promote
the polymerization of new actin filaments at early endosomes. These endosomal actin
pools play a key role at different steps of the recycling process, from cargo segregation
to specific endosomal subdomains to the generation and mobility of tubulo-vesicular
transport carriers. Local F-actin pools also participate in the complex redistribution of
endomembranes and organelles that leads to the acquisition of cell polarity. Here, we
will present an overview of the contribution of endosomal F-actin to T-cell polarization
during assembly of the immune synapse, a specialized membrane domain that T cells
form at the contact with cognate antigen-presenting cells.

Keywords: vesicular trafficking, endosome, WASH complex, retromer, retriever, polarized recycling, actin
dynamics

INTRODUCTION

Surface expression of plasma membrane (PM)-associated receptors is dynamically regulated
through constitutive or ligand-dependent endocytosis. Receptor internalization, which occurs in
a clathrin-dependent or clathrin-independent manner (Doherty and McMahon, 2009), results in
their targeting to the endocytic pathway. This pathway is orchestrated by a series of intracellular
membrane-bound compartments that allow for the sorting of these molecules, referred to as
cargoes, for one of two alternative fates: delivery to lysosomes or vacuoles for degradation by the
endosomal sorting complex required for transport (ESCRT) and the multivesicular bodies (MVBs)
compartment (Vietri et al., 2020) or targeting to the trans-Golgi network (TGN) or to the PM
for reuse (Johannes and Wunder, 2011; Hsu et al., 2012). In this second route, the cargo is first
recognized by a retrieval complex and routed away from the degradative pathway, then is pinched
off from the endosome as a vesicle and coupled to cytoskeletal motor proteins for delivery to the
target compartment (Burd and Cullen, 2014; Wang et al., 2018).

Sorting of endosomal cargo for recycling relies on a number of multiprotein complexes spatially
and temporally regulated. The two main complexes responsible for endosomal retrieval are the
retromer complex (Burd and Cullen, 2014) and the more recently identified retriever complex
acting together with the CCC complex (Phillips-Krawczak et al., 2015; McNally et al., 2017). The
Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complex plays essential roles in
both retromer- and retriever-dependent pathways by promoting branched actin polymerization on
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endosomes (Gomez and Billadeau, 2009; Phillips-Krawczak et al.,
2015; McNally et al., 2017). These complexes are not only
important for the trafficking of molecules from the PM to
the compartments of destination but also play a key role in
polarized recycling of specific molecules to specialized areas of
the cell as observed, for example, in T lymphocytes undergoing
immune synapse (IS) formation. Indeed, upon T-cell receptor
(TCR) engagement, endosomal trafficking is redirected toward
the contact area of the T cell with the antigen-presenting cell
(APC) by local F-actin pools that act in concert with microtubules
and endosomal traffic regulators (Soares et al., 2013; Martín-
Cófreces and Sánchez-Madrid, 2018; Onnis and Baldari, 2019).
Here, we will review the role of the main molecular complexes
involved in endosomal cargo recycling and the related actin
dynamics, with a focus on polarized recycling to the T-cell IS.

SORTING OF RECYCLING CARGO AT
EARLY ENDOSOMES BY THE
RETROMER, RETRIEVER, AND CCC
COMPLEXES

Endosomes are cellular hubs where internalized cargoes are
sorted toward different trafficking pathways. Some cargoes
are routed to the PM by recycling endosomes, a process
known as endosome-to-plasma membrane recycling; others are
transported to the TGN through an endosome-to-TGN retrieval
or retrograde transport. Cargo recycling back to the cell surface
can occur either via a fast recycling pathway controlled by the
small GTPase Rab4 or via a slow recycling pathway in a Rab11-
dependent manner (Galvez et al., 2012; Wandinger-Ness and
Zerial, 2014; Figure 1A).

Endosomal sorting is accompanied by endosomal maturation.
Early endosomes (EEs) are the main sorting station in the cell.
EEs are characterized by specific markers such as Rab5 and early
endosome antigen 1 (EEA1) and by the presence of large domains
enriched in phosphatidylinositol(3,4,5)-triphosphate (PIP3) and
sortin nexin (SNX) family members. A remarkable mosaicism in
the EE membrane has emerged with the finding that cargoes,
once they have reached the EEs, are targeted for degradation
or recycling through the formation of specialized membrane
subdomains that allow for cargo sorting and routing to the
respective trafficking pathways through the local recruitment
of specific molecular assemblies (Sönnichsen et al., 2000;
Puthenveedu et al., 2010). The molecular machinery essential for
cargo sorting in the recycling pathway is represented by three
main complexes: retromer, retriever, and the CCC complex.

Retromer
The retromer complex was first identified in Saccharomyces
cerevisiae as a heteropentameric assembly consisting of a SNX
heterodimer composed of vacuolar protein sorting (VPS), VPS5
and VPS17, and a heterotrimer composed of VPS26, VPS29, and
VPS35, also known as “core” (Gallon and Cullen, 2015; Simonetti
and Cullen, 2019; Figure 1C). SNXs are a large family of proteins
containing a PX (phox homology) domain, which is responsible

for binding to specific phosphoinositides (PIs) (Carlton and
Cullen, 2005; Teasdale and Collins, 2012). In addition to the PX
domain, SNXs may contain other domains and, on this basis,
can be classified into five subfamilies: the SNX-PX subfamily,
whose members are only endowed with a PX domain (e.g.,
SNX3) (Strochlic et al., 2007); the SNX-BAR subfamily, whose
members comprise a BAR (Bin/Amphiphysin/Rvs) domain
(e.g., the yeast VPS5-VPS17 and mammalian SNX1/2-SNX5/6)
(Rojas et al., 2007; Wassmer et al., 2007); the SNX-FERM
subfamily, whose members comprise PDZ (PSD95/Dlg/ZO) and
FERM (protein 4.1/ezrin/radixin/moesin) domains (e.g., SNX27)
(Temkin et al., 2011; Steinberg et al., 2013); the SNX–PXA–
RGS–PXC (PX-associated domain A/regulator of G-protein
signaling/PX-associated domain C) subfamily with a central PX
domain flanked by several conserved domains (e.g., SNX13,
SNX14, SNX19, and SNX25); and the SNX–MIT subfamily
characterized by a microtubule interacting and transport domain
(e.g., SNX15) (Teasdale and Collins, 2012). The core complex
of retromer is conserved across all eukaryotes (Seaman, 2007),
while the exact composition of the SNX dimer in mammals is less
defined, with SNX1/SNX2 and SNX5/SNX6 as the mammalian
orthologues of VPS5 and VPS17, respectively (Griffin et al., 2005;
Wassmer et al., 2007). In mammals, the SNX dimer is responsible
for the recruitment of the retromer to endosomes (Griffin et al.,
2005), while the core complex is thought to participate in cargo
binding and is therefore referred to as the “cargo recognition
complex” (CRC) (Strochlic et al., 2007; Harterink et al., 2011;
Temkin et al., 2011; Zhang et al., 2011; Steinberg et al., 2013).

Recent studies have revealed that SNXs play a central role
in cargo recognition (Lucas et al., 2016). While some cargoes
have been reported to directly bind to the CRC, recognition of
other cargoes that recycle to the TGN or to the PM is mediated
by SNX3 or SNX27 cargo adaptors, respectively (Strochlic et al.,
2007; Harterink et al., 2011; Zhang et al., 2011). The retromer
can directly interact with SNX3, resulting in the generation
of a binding site for a canonical ØX(L/M) motif (where Ø
is an aromatic amino acid) present in a variety of receptors,
including the cation-independent mannose 6-phosphate receptor
(CI-MPR) (Rojas et al., 2007; Seaman, 2007), the glycoprotein
sortilin (Seaman, 2007; Canuel et al., 2008), the divalent metal
transporter DMT1–II (Tabuchi et al., 2010), the G-protein-
coupled receptor Wntless (Harterink et al., 2011; Zhang et al.,
2011), and others. On the other hand, SNX27 recognizes,
through its FERM and PDZ domains, the cytosolic domain
of integral membrane proteins containing NPXY motifs or a
carboxy-terminal class I PDZ-binding motif. Examples of this
type of cargo include the β2 adrenergic receptor (β2AR), the
glucose transporter GLUT1, the copper transporter ATP7A,
and the glutamate receptors (Lauffer et al., 2010; Ghai et al.,
2013; Steinberg et al., 2013; Gallon et al., 2014; McGough
et al., 2014; Clairfeuille et al., 2016; Shinde and Maddika,
2017). Following retromer recruitment to endosomal membranes
and cargo recognition via either SNX27 or SNX3, SNX-BAR
proteins induce membrane deformation, generating endosomal
tubules for cargo recycling to either the PM or the Golgi
apparatus (Carlton and Cullen, 2005; Burd and Cullen, 2014;
Figure 1B).
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FIGURE 1 | Overview of endosomal sorting and associated molecular machineries. (A) Following internalization, transmembrane proteins can be delivered to the
degradative pathway through late endosomes and finally lysosomes or can be destined for recycling. Delivery of cargo back to the cell surface can occur directly
through the fast recycling pathway or indirectly through the slow recycling pathway involving the pericentrosomal recycling compartment. Some cargo proteins can
undergo retrograde transport from endosome to the Trans Golgi Network (TGN). (B,C) Multiprotein complexes involved in the retrieval and recycling of cargo proteins
on (B) endosomes and the (C) components of each complex.

Retriever
Not all cargoes transiting through the endosomal system require
retromer for their trafficking (Steinberg et al., 2012; Kvainickas
et al., 2017; Simonetti et al., 2017). Recently, McNally et al. (2017)
identified and characterized a new protein complex, named
retriever, required for sorting of a subgroup of transmembrane
proteins. Retriever is a heterotrimer consisting of VPS26C
(DSCR3), VPS35L (C16orf62), and VPS29, the latter shared with
the retromer complex (Figure 1C). To fulfill its function in cargo
recycling, the retriever, similar to retromer, needs to couple to
an SNX protein, namely, SNX17 (Figure 1B). SNX17 interacts
through its C-terminal tail with the VPS26C subunit of retriever,
which is important for endosomal localization, while its FERM
domain binds NPxY/NxxY motif-containing cargo proteins, such
as the heterodimeric β1 integrins, the low-density lipoprotein
receptor-related protein 1 (LRP1), the low-density lipoprotein
receptor (LDLR), the epidermal growth factor receptor (EGFR),
and others (Stockinger et al., 2002; Burden et al., 2004; Böttcher
et al., 2012; Steinberg et al., 2012; Farfán et al., 2013; McNally
et al., 2017). Interestingly, the interaction of retriever with SNX17
is not required for its association with endosomes. Similar to
retromer, the retriever is not predicted to bind membranes; its
endosomal recruitment depends on interactions with another
complex, the CCC complex (McNally et al., 2017).

The CCC Complex
The CCC complex consists of coiled-coil domain-containing
proteins 22 (CCDC22) and 93 (CCDC93) and 10 members of
the copper metabolism MURR1 domain-containing (COMMD)

protein family (Maine and Burstein, 2007; Figure 1C). The CCC
complex colocalizes with the retromer, retriever, and the WASH
complex on endosomes (Phillips-Krawczak et al., 2015). CCC
deficiency in human and mouse cells causes defective recycling
of both SNX17/retriever-dependent (Bartuzi et al., 2016; McNally
et al., 2017; Fedoseienko et al., 2018) and SNX27/retromer-
dependent cargoes (Vonk et al., 2011; Phillips-Krawczak et al.,
2015), indicating that CCC is required for both retromer-
and retriever-dependent protein trafficking. Similar to retromer
(Harbour et al., 2012), the CCC complex itself does not associate
with endosomes but relies on its interaction with a component
of the WASH complex, FAM21, for its correct localization
(Phillips-Krawczak et al., 2015).

THE WASH COMPLEX AND CORTACTIN
COORDINATE F-ACTIN NUCLEATION AT
ENDOSOMES

The WASH complex is a pentameric complex composed of
WASH1 (WASHC1), Strumpellin (WASHC5), the Strumpellin
and WASH-interacting protein SWIP (also known as KIAA1033
or WASHC4), FAM21A/C (family with sequence similarity 21A
and C, also known as WASHC2A/C), and coiled-coil domain
containing protein 53 (CCDC53 or WASHC3) (Derivery et al.,
2009; Gomez and Billadeau, 2009; Jia et al., 2010; Alekhina
et al., 2017; Figure 1C). Among these, FAM21 is an important
structural component of the WASH complex for its key role
in interacting with other protein complexes through its long,
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unstructured C-terminal tail containing multiple functional
binding sites consisting of 21 copies of the LFa motif, rich
in leucine, phenylalanine, and several acidic residues (Derivery
and Gautreau, 2010). FAM21 associates with multiple VPS35
retromer subunits (Harbour et al., 2012; Jia et al., 2012; Helfer
et al., 2013), as well as with the CCDC93 subunit of the CCC
complex (Phillips-Krawczak et al., 2015), thereby coupling both
retromer and retriever to endosomes. FAM21 also contains two
regions within its tail that are able to bind with intermediate
affinity to PI3P and with strong affinity to PI(3,5)P2 (Singla
et al., 2019). Moreover, FAM21 can associate with the CAPZα/β
heterodimer, known as capping protein (CP). CP binds to
the barbed end of the actin protofilament, thereby controlling
filament growth by inhibiting monomer addition or loss from
that end. FAM21 interacts directly with CAPZ and impairs its
actin-capping activity (Hernandez-Valladares et al., 2010).

WASH1 is another important component of the WASH
complex that serves as nucleation-promoting factor (NPF) by
activating Arp2/3-dependent actin polymerization on endosomal
membranes (Derivery et al., 2009; Gomez and Billadeau, 2009;
Jia et al., 2010). Arp2/3 is a heptameric protein complex,
so called because of its two main components, actin-related
proteins (Arp) 2 and 3. It is the first actin nucleator
identified in eukaryotic cells and is highly conserved among
species (Pizarro-Cerdá et al., 2017). The ability of WASH to
activate the Arp2/3 complex is finely tuned by ubiquitination
(Hao et al., 2013). The E3 ubiquitin ligase TRIM27 and its
enhancer MAGE-L2 are recruited by the retromer subunit
VPS35 to WASH1, resulting in its K63-linked polyubiquitination,
which leads to a conformational change that enhances actin
nucleation (Hao et al., 2013). WASH ubiquitination is further
regulated by the USP7 enzyme, which has a dual activity:
to promote WASH ubiquitination by preventing TRIM27
auto-ubiquitination and degradation and, concomitantly, to
limit WASH ubiquitination through its direct deubiquitination
(Hao et al., 2015).

Another activator of the Arp2/3 complex that has been
described to associate with endosomes is cortactin (Kaksonen
et al., 2000; Lladó et al., 2008). Cortactin controls a wide range
of processes including the maturation of late endosomes and
lysosomes, the retrograde transport to the Golgi apparatus,
and actin dynamics at endosomes. Cortactin is a class
II NPF that promotes actin assembly both by inducing
Arp2/3-dependent actin polymerization and by binding and
stabilizing pre-existing branched F-actin nucleated by the WASH
complex. Cortactin is in turn regulated by PI(3,5)P2, which
directly interacts with its actin-binding domain, preventing
F-actin binding and leading to the inhibition of cortactin-
mediated branched F-actin nucleation and stabilization (Hong
et al., 2015). Interestingly, the ability of PIs to regulate
F-actin dynamics is not limited to PI(3,5)P2. For instance,
PI(4,5)P2, the best characterized actin regulator, interacts with
and modulates N-WASP and actin-binding proteins such as
cofilin, CAPZ, filamin, vinculin, talin, and others (Yin and
Janmey, 2003). On the other hand, PI(3,4,5)P3 regulates the
activation of the WASP family member WAVE2 to control
lamellipodial protrusion (Suetsugu et al., 2006), highlighting

a pleiotropic role of PIs in actin cytoskeleton regulation
(Saarikangas et al., 2010).

CYTOSKELETAL REGULATION OF
ENDOSOMAL TRAFFICKING

Endosome sorting and maturation is accompanied by continuous
membrane remodeling that requires the participation of both
the actin and microtubule cytoskeletons. F-Actin is implicated
in this process starting from the earliest steps, participating in
defining endosomal subdomains to establish cargo destination.
F-Actin associates with recycling microdomains and prevents the
loss of recycling cargo to the degradative machinery (Simonetti
and Cullen, 2019). In addition, F-actin polymerization at
endosomes is essential for cargo sorting to recycling endosomes.
Until recently, cargo recycling was believed to occur through
sequence-independent “bulk” flow, as in the case of the
transferrin receptor (Maxfield and McGraw, 2004). However,
a large variety of cargoes have been demonstrated to recycle
through a sequence-dependent pathway tightly regulated by
actin dynamics (Puthenveedu et al., 2010; Temkin et al.,
2011; Burd and Cullen, 2014). Cargoes to be recycled through
this pathway are first recognized by a retrieval complex
(retromer or retriever) and then packaged into tubulo-vesicular
transport carriers enriched in F-actin and actin-related proteins
(Puthenveedu et al., 2010). At this stage, microtubules join
the game, with the microtubule-associated motor dynein and
its partner dynactin, allowing for the extension of the nascent
carriers. The WASH complex participates also in this step,
exploiting its ability to interact with tubulin to stabilize the
carriers on microtubule tracks. Subsequently, WASH-dependent
F-actin nucleation at the apical portion of the tubular carriers
provides the pushing force necessary for membrane fission.
Following their detachment, F-actin regulates the short-distance
mobility of tubular carriers mainly through actin motors
such as myosin (Derivery et al., 2009; Harbour et al., 2010;
Figure 2). This is exemplified by the β2AR receptor, which
is recycled via tubular profiles enriched in F-actin and actin-
related machineries (Bowman et al., 2016). A key role in this
process is played by cortactin, which participates in the signaling
cascade that regulates recycling (Vistein and Puthenveedu,
2014), the actin binding protein filamin A (FLNa) responsible
for cargo entry into the tubular recycling domains (Pons
et al., 2017), and other actin regulators including formins
(Gong et al., 2018).

Following sorting at EEs, other recycling cargoes, such as
the CI-MPR or sortilin, undergo retrograde trafficking to the
TGN (Tu et al., 2020). In this process, cargoes are recognized
by the SNX3–retromer complex, SNX-BARs, or clathrin and the
adapter protein AP1, confined to specific endosomal subdomains
and, following endosomal fission, transported by tubulo-vesicular
transport carriers toward the TGN along microtubule tracks (Lu
and Hong, 2014; Cheung and Pfeffer, 2016; Saimani and Kim,
2017). Once they arrive close to the TGN compartment, cargoes
are captured by TGN-localized golgin proteins, such as golgin-
97, golgin-245, GCC88, and GCC185 (Lowe, 2019). This process
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FIGURE 2 | Recycling of receptors through actin-rich tubular domains. Sequence-dependent recycling of cargoes is tightly regulated by actin dynamics at the
surface of endosomes. The retrieving machineries (retromer or retriever), together with the WASH complex, allow for the entry of the receptors into tubular profiles
enriched in F-actin and actin-related proteins. Microtubule motors drive the stabilization and extension of the tubular profiles and branched F-actin contributes to
vesicle fission.

also involves TBC1D23, a protein that acts as a bridging protein
by binding simultaneously to golgins and to the WASH complex
subunit FAM21 on endosomal vesicles (Shin et al., 2017). Finally,
carrier fusion with the Golgi membrane is mediated by four
different vSNARE–tSNARE complexes (Lu and Hong, 2014).

INTERPLAY BETWEEN Rab GTPases
AND MOLECULAR COMPLEXES
IMPLICATED IN ACTIN-MEDIATED
MEMBRANE TRAFFICKING

Membrane trafficking is orchestrated by a variety of Rab GTPases
that control different steps of the process, from cargo sorting to
vesicle budding, motility, and fusion, through the recruitment
of effector molecules, including the actin regulators mentioned
in the previous paragraphs (Stenmark, 2009). Rab proteins are
important regulators of retromer-mediated vesicular transport,
not only in mammals but also in other organisms. For example,
the core complex of retromer was found to interact with the

GTP-bound form of Rab7 (Rab7-GTP) in yeast, plants, and
mammalian cells (Rojas et al., 2008; Liu et al., 2012; Zelazny
et al., 2013), leading to retromer recruitment to late endosomes
(Priya et al., 2015). Rab32 regulates the retrograde trafficking
of the CI-MPR to the TGN by directly interacting with SNX6
(Waschbüsch et al., 2019), while Rab21 is implicated in cargo
sorting by establishing a complex with WASH and retromer to
regulate endosomal F-actin (Del Olmo et al., 2019). Additionally,
Rab9, together with retromer, WASH, and F-actin, has been
recently reported to form an endosomal retrieval machinery that
regulates selective recycling of the luminal protein Serpentine
in the Drosophila trachea (Dong et al., 2013). Although little
is known about the interplay between Rab GTPases and the
retriever and CCC and WASH complexes, a recent proteomic
study focused on SNARE and Rab proteins identified functional
clusters, such as a correlation between Rab10 and the SNARE
Syntaxin4 (STX4) or between Rab7/Rab21 and the WASH and
CCC complexes (Clague and Urbé, 2020).

Rab GTPases also participate in tethering of the vesicles
carrying recycling cargo to the target membrane through the
recruitment of tethering factors (Stenmark, 2009). Rab32 and
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Rab38 were found to be implicated in the trafficking of the
glucose transporter GLUT1 to the PM by regulating the effector
molecule VARP, which in turn binds to the R-SNARE VAMP7
to facilitate membrane fusion between recycling endosomes
carrying GLUT1 and the PM (Hesketh et al., 2014). SNX1
has been reported to interact with Rab6IP, a Rab6-interacting
protein localized at the Golgi compartment and involved in the
tethering of endosome-derived transport carriers to the TGN
(Miserey-Lenkei et al., 2007). A similar function was observed
for the Drosophila orthologue of TBC1D23, tbc1, a Rab GTPase-
activating protein that couples endosome-derived vesicles to their
target membrane at the TGN (Johnson and Andrew, 2019).

Although the specific identities and roles of Rab GTPases
during receptor recycling are only beginning to be investigated,
these findings underscore a tight functional interplay of these
membrane trafficking regulators with the sorting, transport, and
tethering machineries at all critical steps in receptor recycling.
While the link between these Rabs and the cargo sorting
complexes supports their implication in the local regulation
of F-actin dynamics, the underlying mechanisms remain to be
directly addressed.

ACTIN DYNAMICS IN POLARIZED
ENDOSOMAL TRAFFICKING: FOCUS ON
THE IMMUNE SYNAPSE

The molecular complexes described above and the associated
actin dynamics participate in cell polarization by regulating
the recycling-dependent accumulation of receptors, adhesion
molecules, and signaling mediators at specialized areas of the
PM. This is exemplified by the formation of apical membrane
specializations including primary cilia and apical microvilli of
ciliated cells (Goldenring, 2015), the polarization of epithelial or
neuronal cells (Vergés, 2016), or immune synapse (IS) formation
in T lymphocytes and other immune cells.

The IS can be described as a highly polarized structure that
forms at the T-cell interface with an APC carrying cognate
MHC-bound antigen and allows the communication between the
two cells to ensure efficient TCR signal transduction and T-cell
activation (Dustin and Choudhuri, 2016). The typical “bull’s eye”
structure of the mature IS features three concentric regions,
referred to as supramolecular activation clusters (SMACs) that
can be distinguished based on the specific partitioning of
TCRs, costimulatory molecules, and integrins: the TCR-enriched
central SMAC (cSMAC), the integrin-enriched peripheral SMAC
(pSMAC), and the distal SMAC (dSMAC), where molecules with
large ectodomains and negative regulators of TCR signaling are
confined. IS assembly is coordinated by both the actin and the
microtubule cytoskeletons, which drive the accumulation and
partitioning of the synaptic components throughout the extended
timeframe required for T-cell activation (Ritter et al., 2013;
Martín-Cófreces and Sánchez-Madrid, 2018; Hammer et al.,
2019).

The actin cytoskeleton plays a key role beginning from the
first step of IS formation, which involves the assembly of TCR
microclusters that move centripetally from the periphery to the

center of the IS using F-actin as driving force (Ritter et al., 2013).
In addition, actin promotes the activation of integrins to stabilize
the T cell–APC contact and forms a ring-like seal at the inner side
of the dSMAC (Hammer et al., 2019). However, the role of F-actin
in IS assembly and function extends beyond the rearrangement
and signaling events that occur at the PM. Early upon TCR
activation, the centrosome translocates toward the IS in a process
that is in part regulated by centrosomal F-actin dynamics (Ritter
et al., 2013). Centrosome polarization is coordinated with F-actin
clearance to generate a central F-actin-free area that facilitates
the polarized release of effector molecules, such as cytokines
produced by helper or cytotoxic T cells or the cytotoxic contents
of the lytic granules of CTLs (Hivroz et al., 2012; Ritter et al., 2015;
de la Roche et al., 2016; Kabanova et al., 2018; Herranz et al., 2019;
Sanchez et al., 2019). Synaptic F-actin dynamics is also essential
for the polarized release of vesicles carrying bioactive molecules,
including synaptic ectosomes, which are assembled and released
directly from the PM (Saliba et al., 2019), and exosomes, which
are released upon the fusion of MVBs with the PM (Mittelbrunn
et al., 2015; Bello-Gamboa et al., 2020).

Following polarization, the centrosome rapidly generates a
network of microtubules both irradiating from the centrosome
toward the periphery of the IS and converging from the
periphery toward the center of IS to guide the polarized transport
of vesicular components and organelles (Martín-Cófreces and
Sánchez-Madrid, 2018). The identity of the vesicle-associated
molecules that undergo polarized exocytosis to the IS depends on
the type of T lymphocyte and APC, with helper T cells (CD4+

cells) secreting cytokines at the IS formed with cognate MHC-
II-bearing cell targets to promote their maturation and function
and cytotoxic T lymphocytes (CD8+ cells) releasing the toxic
contents of their lytic granules at the IS formed with MHC-I-
bearing cell targets for specific killing (Hivroz et al., 2012; de la
Roche et al., 2016). Directional vesicular trafficking is, however,
also the main mechanism by which T lymphocytes ensure the
continuous availability of a functional pool of TCRs at the IS
to sustain signaling during cell activation (Soares et al., 2013;
Onnis et al., 2016; Finetti et al., 2017). This is achieved through
the delivery to the synaptic membrane of TCRs associated with a
pool of endosomes that undergo polarized recycling in a process
regulated by both the tubulin and actin cytoskeletons (Martín-
Cófreces and Sánchez-Madrid, 2018; Mastrogiovanni et al., 2020).

TCR Endocytosis in Polarized Recycling
to the IS
Receptor internalization is dependent on local actin
polymerization to provide force for local membrane deformation
and carrier budding (Hinze and Boucrot, 2018). The pathways
that regulate both constitutive and ligand-dependent TCR
internalization have been extensively investigated but are still
debated (see Alcover et al., 2018 for an exhaustive coverage
of TCR endocytosis). Two distinct endocytic routes of TCR
endocytosis have been identified based on the requirement
for the coat protein clathrin (Onnis and Baldari, 2019). In the
clathrin-dependent endocytosis pathway, internalized TCRs are
incorporated into a network of endosomal compartments defined
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by clathrin and the AP2 complex (Dietrich et al., 1994; von Essen
et al., 2002; Crotzer et al., 2004). In the clathrin-independent
endocytosis pathway, which appears as the main player in TCR
recycling, internalized TCRs are incorporated into a dynamic
endocytic network demarcated by the membrane-organizing
proteins flotillins. Although flotillins are not required for TCR
internalization, they are essential for the recycling of internalized
TCRs to the IS and for full T-cell activation (Compeer et al., 2018).
A third pathway involves the arrestin-dependent internalization
of non-engaged, bystander TCRs for polarized recycling to
the IS (Fernández-Arenas et al., 2014). Routing of TCR–CD3
complexes toward these alternative pathways of endocytosis and
their subsequent targeting to recycling or late endosomes for
subsequent degradation is dictated, at least in part, by the type of
posttranslational modifications of the cytosolic domains of the
CD3 complex components (Alcover et al., 2018).

Cargo Sorting and Retrieval in Polarized
Recycling to the IS
Consistent with the role of F-actin in the process of endosome
recycling described in the previous sections, proteins controlling
actin polymerization and branching, such as the Arp2/3
component ARPC2 (Zhang et al., 2017) and WASH (Piotrowski
et al., 2013), together with the retrieval complexes responsible
for cargo recycling, regulate endosomal TCR trafficking and its
polarization to IS. The interaction of retromer with WASH at
EEs promotes F-actin nucleation, allowing for the generation of
TCR carriers that undergo retrograde transport to the IS along
microtubule tracks, to which they become coupled exploiting the
tubulin-binding ability of WASH (Derivery et al., 2009; Gomez
and Billadeau, 2009). We recently identified the ciliary protein
coiled-coil domain containing 28B (CCDC28B) (Cardenas-
Rodriguez et al., 2013), as a new component of the TCR retrieval
machinery essential for polarized TCR recycling. We found
that CCDC28B regulates actin polymerization at EEs carrying
recycling TCRs by recruiting the FAM21–WASH complex to EE-
associated retromer (Capitani et al., 2020; Figure 3). Consistent
with the key role of WASH in regulating the recycling-dependent
events occurring during IS formation, WASH deficiency in T
lymphocytes results in a decrease in the surface levels not only of
the TCR but also of the integrin LFA-1, the costimulatory receptor
CD28, and the glucose transporter GLUT1 due to defective
recycling (Piotrowski et al., 2013). Similarly, we observed
defective TCR accumulation and signaling at the IS of CCDC28B-
deficient cells downstream of early signaling and centrosome
polarization caused by impaired TCR recycling (Capitani et al.,
2020). Additionally, the Arp2/3 subunit ARPC1B was found
to participate in IS formation in cytotoxic T lymphocytes by
inducing receptor recycling to the PM via the retromer and
WASH complexes. These include the TCR and the coreceptor
CD8, as well as GLUT1 (Randzavola et al., 2019).

Recently, the retromer-associated SNX family member,
SNX27, was found to be associated in resting T cells to early
and recycling endosomes, largely through the interaction of
its PX domain with PI3P. Upon T-cell engagement by APC,
SNX27-enriched endosomes rapidly polarize toward the IS,

accumulating at the cSMAC and pSMAC. The polarization
of SNX27+ endosomes toward the IS is also regulated by
PI binding, with the PX domain binding to PI3P-enriched
membrane domains and the FERM domain to PI(4,5)P2- and/or
PI(3,4,5)P3-enriched membrane domains (Rincón et al., 2011;
Ghai et al., 2015). In support of the importance of PIs in
SNX27 function, impaired PIP recognition by the SNX27 FERM
domain affected its localization at the endosomal recycling
compartment and impaired its correct distribution during initial
steps of IS formation (Tello-Lafoz et al., 2014). In addition,
proteomic analysis of the SNX27 interactome in activated T
cells confirmed that SNX27-mediated trafficking involves the
retromer and WASH complexes and also revealed additional
cargoes that associate with SNX27 in polarized recycling to IS
(Tello-Lafoz et al., 2017). Among these are the lipid second
messenger diacylglycerol (DAG) (Rincón et al., 2007); the protein
zonula occludens-2 (ZO-2), a tight junction scaffold protein
recently identified in T lymphocytes; the centromere protein
J (CENPJ), which acts as a microtubule plus-end tracking
protein; and the Rho guanine nucleotide exchange factor 7
(ARHGEF7) (González-Mancha and Mérida, 2020). These results
indicate that other receptors or membrane-associated signaling
components that participate in IS assembly may exploit the
retromer-regulated pathway for EEs sorting and redirection to
the synaptic membrane.

While a role for retromer in IS formation is well established,
less is known about the contribution of retriever and the CCC
complex to this process, although the identification of retriever-
associated SNX17 bound to TCR complexes at the IS suggests that
multiple retrieval complexes coexist during polarized recycling of
endosomal synaptic components. Interestingly, SNX17 silencing
affects TCR and LFA-1 expression at the T-cell surface, suggesting
that SNX17 is required to maintain functional surface pools of
activating receptors and integrins to allow for IS formation and
T-cell activation (Osborne et al., 2015).

Multiple Recycling Pathways Regulate IS
Assembly
In addition to the TCR, two membrane-bound molecules
essential for TCR signaling also undergo polarized recycling to
the IS: the initiating lymphocyte-specific protein tyrosine kinase
Lck (Ehrlich et al., 2002) and the transmembrane adaptor linker
for activation of T cells (LAT) (Bonello et al., 2004). Similar to the
TCR, these molecules form two different pools within the cell,
one associated with the plasma membrane and the other with
the endosomal and Golgi compartments, which are sequentially
delivered to the IS to sustain signaling (Figure 3). The polarized
trafficking of these molecules occurs through distinct routes
within the “classical” recycling pathway regulated by the Rab5
and Rab11. Polarized TCR recycling to the IS involves additional
Rab GTPases, which include Rab8, Rab29, and Rab35 (Finetti
et al., 2015; Onnis et al., 2015; Patino-Lopez et al., 2018) and the
intraflagellar transport (IFT) system components IFT20, IFT54,
IFT57, and IFT88 (Finetti et al., 2009, 2014). Similar to the TCR,
Lck associates with Rab11+ endosomal compartments, and its
transport to the IS and sorting to the cSMAC is regulated by
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FIGURE 3 | Vesicular trafficking in the regulation of IS formation. Upon TCR stimulation, the T-cell receptor, as well as associated signaling molecules (e.g., LAT and
Lck), are delivered to the IS via endosomal vesicles. The polarized trafficking of different molecules occurs through distinct trafficking routes within the “classical”
recycling pathway regulated by the Rab5 and Rab11. TCR-polarized trafficking to the IS involves additional Rab GTPases, some components of the intraflagellar
transport (IFT) system, and the ciliogenesis protein CCDC28B that is essential for WAS-dependent actin polymerization on TCR+ endosomes. Lck associates with
Rab11+ endosomal compartments, and its transport to the IS and sorting to the cSMAC are regulated by the uncoordinated 119 protein (Unc119), the membrane
protein MAL, and Rab11-FIP3. LAT trafficking to the IS occurs through the classical Rab5 and Rab11 route, where anterograde transport is specifically regulated by
GMAP210, IFT20, and VAMP7 and retrograde transport by Rab6 and Syntaxin-16.

a variety of molecules. Among these are the uncoordinated 119
protein (Unc119), which extracts PM-bound Lck by sequestering
its hydrophobic myristoyl group and releases the kinase at the
synaptic membrane under the control of the ARL3/ARL13B
complex (Stephen et al., 2018); the membrane protein MAL
that, together with the formin INF2, generates specific carriers
for Lck targeting to the IS in a Cdc42-Rac1-dependent manner
(Andrés-Delgado et al., 2010; Antón et al., 2011); and the Rab11
effector FIP3 (Rab11 family interacting protein-3), which plays
a key role in the regulation of the subcellular localization and
function of Lck (Bouchet et al., 2017). LAT trafficking to the
IS occurs through the classical Rab5 and Rab11 route, where
anterograde transport is specifically regulated by the golgin
GMAP210, the intraflagellar transport protein IFT20 and the
SNARE VAMP7 and retrograde transport by Rab6 and SNARE
Syntaxin-16 (Larghi et al., 2013; Vivar et al., 2016; Carpier et al.,
2018; Zucchetti et al., 2019; Saez et al., 2021).

Although the role of endosomal actin in IS assembly and T-cell
activation has been well established, the underlying mechanisms
remain to be fully understood. As detailed in Cargo sorting and
retrieval in polarized recycling to the IS, actin polymerization
at TCRs undergoing sorting at early endosomes is mediated
by both the retromer and retrieval complexes through the

WASH-dependent recruitment of Arp2/3. CCDC28B plays a
key role in this process by coupling the FAM21 component
of the WASH complex to the retromer at endosomes carrying
recycling TCRs (Capitani et al., 2020). Interestingly, Rab11+

endosomes indirectly regulate actin dynamics at the synaptic
membrane by allowing for the polarized transport of the Rac
GTPase Rac1, which associates with Rab11 through its effector
FIP3 (Bouchet et al., 2016, 2018). MVBs that are delivered to the
synaptic membrane also contribute to local actin polymerization
through the clathrin-dependent recruitment of proteins that
are implicated in this process, such as dynamin-2, Arp2/3, and
CD2AP (Calabia-Linares et al., 2011). In this emerging scenario,
endosomal and plasma membrane actin dynamics establish a
tight interplay to sustain IS architecture and signaling during
T-cell activation.

CONCLUSION

The striking architecture of the IS was described over 20
years ago. Not surprisingly, rearrangements of TCRs, adhesion
molecules, costimulatory receptors, and membrane-associated
signaling mediators occurring at the region of the T-cell plasma
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membrane at the contact with cognate APC have been extensively
investigated. Only more recently has vesicular trafficking entered
the picture with the finding that intracellular pools of the
TCR and other components of the IS play a key role in this
process beyond the known function of polarized delivery of
effectors in differentiated T cells. From the initial finding that
intracellular TCRs are delivered to the synaptic membrane
through polarized recycling, it has become clear that the TCR
is by no means unique in this respect. A wide array of other
membrane-associated molecules, including receptors such as
CD28 and signaling mediators such as Lck and LAT, have been
demonstrated to undergo polarized recycling (Onnis and Baldari,
2019). Strikingly, with the identification of new regulators of
the traffic of these molecules, achieved with essential input
from the fields of vesicular trafficking and ciliogenesis (Cassioli
and Baldari, 2019), it is now clear that a diversity of recycling
pathways characterized by unique combinations of Rab GTPases
and respective GEFs, v- and t-SNAREs, and tethering proteins
coexist within the classical recycling pathways defined by Rab11
(Onnis et al., 2016).

While a role for microtubules and microtubule motors
for the movement of these endosomes was expected, the
identification of endosomal F-actin as a key player in the
sorting of recycling molecules and their coupling to microtubules
has brought a new layer of complexity to the process
of polarized recycling to the IS. The identification of the
retromer, retriever, and the CCC complex as a different
means to achieve the polymerization of new actin filaments
at endosome subdomains enriched in specific receptors that
are destined for recycling has highlighted a diversity also
at this step of the pathway (Wang et al., 2018; Simonetti

and Cullen, 2019). Further work will be required to unravel
the mechanisms and molecular machineries responsible for
the specificity in the selection of both the receptors to
be sorted for recycling and the respective actin-nucleating
complex on which their transit from early to recycling
endosomes depends. Additionally, how membrane subdomains
are generated at early endosomes to serve as hubs for the
accumulation of individual receptors and associated regulators
remains elusive, as do the fine details of local force generation
for the abscission of vesicles that will mature to recycling
endosomes. We expect that a multidisciplinary approach to
these questions capitalizing on converging new knowledge and
new technologies gleaned from immunology, cell biology, and
biophysics will be crucial to unravel the increasing complexity of
the process of IS assembly.
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