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Abstract: Under healthy conditions, the cornea is an avascular structure which allows for transparency
and optimal visual acuity. Its avascular nature is maintained by a balance of proangiogenic
and antiangiogenic factors. An imbalance of these factors can result in abnormal blood vessel
proliferation into the cornea. This corneal neovascularization (CoNV) can stem from a variety of
insults including hypoxia and ocular surface inflammation caused by trauma, infection, chemical
burns, and immunological diseases. CoNV threatens corneal transparency, resulting in permanent
vision loss. Mainstay treatments of CoNV have partial efficacy and associated side effects, revealing
the need for novel treatments. Numerous natural products and synthetic small molecules have shown
potential in preclinical studies in vivo as antiangiogenic therapies for CoNV. Such small molecules
include synthetic inhibitors of the vascular endothelial growth factor (VEGF) receptor and other
tyrosine kinases, plus repurposed antimicrobials, as well as natural source-derived flavonoid and
non-flavonoid phytochemicals, immunosuppressants, vitamins, and histone deacetylase inhibitors.
They induce antiangiogenic and anti-inflammatory effects through inhibition of VEGF, NF-κB,
and other growth factor receptor pathways. Here, we review the potential of small molecules, both
synthetics and natural products, targeting these and other molecular mechanisms, as antiangiogenic
agents in the treatment of CoNV.

Keywords: corneal neovascularization; angiogenesis; inflammation; natural products; small molecules;
natural molecules; drug discovery

1. Introduction

As the main refractive surface of the anterior aspect of the eye, the cornea plays a key role in
optimal visual acuity (Figure 1). Corneal transparency is fundamental to its optical function and
is possible due to its avascular structure. Under healthy conditions, the avascular nature of the
cornea is maintained by a balance of proangiogenic and antiangiogenic factors. The cornea releases
proangiogenic factors such as vascular endothelial growth factor (VEGF), platelet-derived growth
factor (PDGF), basic fibroblast growth factor (b-FGF), and interleukins (ILs) that are sequestered and/or
counterbalanced by local antiangiogenic factors that include angiostatin, pigment epithelium-derived
factor (PEDF), and soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) that maintain the
corneal angiogenic privilege [1]. An imbalance of these factors allows for the abnormal proliferation of
preexisting blood vessels (hemangiogenesis) and lymph vessels (lymphangiogenesis) into the corneal
stroma, a process referred to as corneal neovascularization (CoNV).
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Figure 1. Schematic representation of the human eye and routes of administration for preclinical 
corneal drug delivery. (A) Noninvasive topical administration (eye drops), (B) subconjunctival 
injection given underneath the conjunctiva lining the eyelid, (C) systemic administration as 
intravenous injection, intraperitoneal injection or implanted osmotic pump, and (D) oral 
administration (gavage). 

CoNV arises due to a variety of insults including hypoxic injury and ocular surface inflammation 
due to trauma, infection, chemical burns, and immunological disease [2]. The increased vascular 
permeability of these new vessels leads to chronic corneal edema, lipid exudation, inflammation, and 
scar formation, thus compromising corneal transparency and potentially resulting in permanent 
vision loss [2]. The exact incidence and prevalence of CoNV are unknown, but CoNV is present in 
many cases of corneal disease, which is the 4th leading cause of blindness globally after cataract, 
glaucoma and age-related macular degeneration according to the World Health Organization [3]. 
CoNV is also a common complication of corneal infections such as chlamydial infection, which is 
estimated to blind 4.9 million people due to scarring and vascularization [4].  

Several medical and surgical options for treating CoNV exist. The mainstay treatment for CoNV 
is to suppress the inflammatory response with administration of topical steroids such as 
dexamethasone. Steroids suppress actively proliferating corneal vessels through their anti-
inflammatory properties, which include inhibition of cell chemotaxis, proinflammatory cytokines, 
and prostaglandin synthesis [5]. However, steroids only provide incomplete suppression of CoNV 
[6] and are associated with major side effects such as corneal thinning, ocular hypertension, cataracts, 
and increased risk of infection [7]. Additional CoNV therapies consist of off-label use of anti-VEGF 
antibodies, such as bevacizumab, which has shown efficacy in treatment of other vascular ocular 
diseases such as age-related macular degeneration [8]. Bevacizumab has shown promising results in 
treating CoNV; however, partial efficacy, resistance, and side effects consisting of corneal thinning 
and reduced epithelial healing [9,10] have limited its use. Thus, there is need for safer and more 
effective therapies for CoNV.  

Figure 1. Schematic representation of the human eye and routes of administration for preclinical corneal
drug delivery. (A) Noninvasive topical administration (eye drops), (B) subconjunctival injection given
underneath the conjunctiva lining the eyelid, (C) systemic administration as intravenous injection,
intraperitoneal injection or implanted osmotic pump, and (D) oral administration (gavage).

CoNV arises due to a variety of insults including hypoxic injury and ocular surface inflammation
due to trauma, infection, chemical burns, and immunological disease [2]. The increased vascular
permeability of these new vessels leads to chronic corneal edema, lipid exudation, inflammation,
and scar formation, thus compromising corneal transparency and potentially resulting in permanent
vision loss [2]. The exact incidence and prevalence of CoNV are unknown, but CoNV is present in many
cases of corneal disease, which is the 4th leading cause of blindness globally after cataract, glaucoma
and age-related macular degeneration according to the World Health Organization [3]. CoNV is also a
common complication of corneal infections such as chlamydial infection, which is estimated to blind
4.9 million people due to scarring and vascularization [4].

Several medical and surgical options for treating CoNV exist. The mainstay treatment for CoNV is
to suppress the inflammatory response with administration of topical steroids such as dexamethasone.
Steroids suppress actively proliferating corneal vessels through their anti-inflammatory properties,
which include inhibition of cell chemotaxis, proinflammatory cytokines, and prostaglandin synthesis [5].
However, steroids only provide incomplete suppression of CoNV [6] and are associated with major
side effects such as corneal thinning, ocular hypertension, cataracts, and increased risk of infection [7].
Additional CoNV therapies consist of off-label use of anti-VEGF antibodies, such as bevacizumab,
which has shown efficacy in treatment of other vascular ocular diseases such as age-related macular
degeneration [8]. Bevacizumab has shown promising results in treating CoNV; however, partial
efficacy, resistance, and side effects consisting of corneal thinning and reduced epithelial healing [9,10]
have limited its use. Thus, there is need for safer and more effective therapies for CoNV.
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The search for novel drugs that block pathologic neovascularization has led to the study of numerous
natural products and small-molecule inhibitors with varying biological mechanisms. Compared to
large-molecule biologics, small molecules have the advantage of having various administration routes
such as oral and topical (Figure 1). Additionally, they can potentially target multiple pathways and
have favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics [11].
The efficacy of large-molecule biologics and other synthetic anti-VEGF therapies in the treatment of CoNV
has been reviewed in the past [12]. Therefore, in this article, we focus on reviewing the potential of pure
small molecules (excluding natural product extracts and other complex mixtures), both synthetic and
natural products, targeting various molecular mechanisms, as antiangiogenic agents in the treatment
of CoNV.

2. Models of CoNV

A majority of human CoNV cases are associated with ocular surface inflammation. Therefore,
to study corneal hemangiogenesis, lymphangiogenesis, and tissue response to different therapies,
multiple in vitro and in vivo models of CoNV have been developed. Here, we will introduce the
preclinical cell-based assays and animal models of CoNV that will be referenced throughout the review.
In vitro models of angiogenesis use cultured endothelial cells to test cell proliferation, migration,
and tube formation in response to different compounds [13,14]. Human umbilical vein endothelial
cells (HUVECs) are the most frequently used cell type for in vitro studies, although they are not a
perfect surrogate of corneal endothelium. One model used to study angiogenesis in vivo is the corneal
micropocket angiogenesis assay. This requires two adjacent micropocket incisions to be made in the
mid cornea near the limbus for the implantation of a pellet of VEGF or b-FGF to stimulate angiogenesis
while a pellet of the target antiangiogenic agent is inserted in the other micropocket [15]. This model is
used to study the influence of specific molecules/proteins on angiogenesis [16] and is commonly used
as a surrogate to study neovascularization in the context of other pathological processes such as cancer.

Chemical cauterization and suture placement models are the two most commonly used models
for studying CoNV. Both of these model types have an inflammatory component, which mimics closely
the complex nature of CoNV in human disease [16]. Chemical cauterization models induce CoNV by
application of alkali (1N NaOH) or silver/potassium nitrate to the center of mouse, rat, or rabbit cornea
for a short time followed by flushing with saline [17,18]. CoNV can be evaluated at 7–14 days after
the procedure. In the suture-induced model, 7–0 silk or 10–0 nylon sutures are placed intrastromally
in rabbit or rat/mouse cornea respectively. This results in CoNV response 7 days after surgery [16].
Finally, some studies use the corneal de-epithelialization model. In this model, scraping of the corneal
epithelium from limbus to limbus is used to induce CoNV [19].

3. Synthetic Small Molecules

3.1. Tyrosine Kinase Inhibitors

Several proangiogenic factors such as VEGF, PDGF, and b-FGF mediate their angiogenic effect
through interaction with a receptor tyrosine kinase (RTK). Synthetic small-molecule tyrosine kinase
inhibitors (TKIs) interact with RTKs intracellularly and block downstream signaling pathways
that stimulate angiogenesis [20]. Single-target TKIs and multitarget TKIs have shown promising
antiangiogenic potential as both an anti-VEGF therapy and inhibition of multiple other angiogenic
pathways (Table 1).
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Sunitinib is a multitarget TKI that potently inhibits VEGFRs, PDGFRs, c-KIT, and RET, and has
been approved for the treatment of metastatic renal cell carcinoma (RCC) and gastrointestinal stromal
tumors [21]. VEGF exerts its effect through interaction with vascular endothelial growth factor receptors
(VEGFRs) that are RTKs. VEGFR1 and VEGFR2 are the major signal transducers of hemangiogenesis
in CoNV, with VEGFR2 having the strongest hemangiogenic activity. VEGFR-3 on the other hand is
the major contributor to lymphangiogenesis [22]. Oral administration of sunitinib to rats with thermal
cauterization-induced CoNV showed significant reduction in lymphangiogenesis and hemangiogenesis.
Immunostaining indicated decreased corneal F4/80+ cell infiltration and RT-PCR showed decreased
Vegfa expression. This indicates that oral sunitinib was likely functioning through inhibition of VEGFR2
phosphorylation by macrophage secreted VEGF-A [23]. Other studies compared topical administration
of sunitinib to topical bevacizumab. Both treatments were able to inhibit CoNV in a rabbit suture model.
However, sunitinib was 3-fold more potent than bevacizumab, likely because of its inhibition of both
the VEGF and PDGF pathways [24]. Further studies supported sunitinib’s efficacy over bevacizumab
and indicated a greater inhibitory effect when administered topically rather than subconjunctivally [25].
While yellow deposits and iris staining were associated with topical administration and subconjunctival
injections of sunitinib, no other toxicity or ocular side effects were observed in vivo.

AG 1296 is a single-target TKI that is selective for PDGF receptors (PDGFR). The dimeric
ligand PDGF-BB interacts with the RTK, PDGFR-β resulting in downstream stimulation of VEGF and
recruitment/proliferation of pericytes that contribute to vessel maturation [26]. Intraperitoneal injections
of AG 1296 via an osmotic pump resulted in loss of pericytes and decreased vascularization by 21% in a
murine de-epithelialization model. These changes were correlated with decreased expression of mRNAs
for VEGF, PDGF, and angiopoietin 1/2. Similar changes were seen with the phosphatidylinositol 3-kinase
(PI3K) inhibitors, wortmannin and LY294002, indicating that PI3K signaling is key to the downstream
signaling of PDGF [27].

Vatalanib succinate (PTK787) is a potent oral multitarget TKI that is selective for all VEGFRs.
ZK261991 is an oral VEGF TKI with selectivity for VEGFR2 and -3. Oral administration of vatalanib and
ZK261991 resulted in significant reduction in lymphangiogenesis and hemangiogenesis and ZK261991
inhibited macrophage recruitment in a suture-induced CoNV model [28]. Therefore, similar to
sunitinib, their anti-lymph/hemangiogenic effect is related to a combination of reduction in macrophage
recruitment, which are major sources of prolymph/proangiogenic factors, and their direct effect on
vascular endothelial cells [28].

Sorafenib is an orally active multitarget TKI with activity against VEGFRs, PDGFRs, c-RAF, FLT3,
and c-KIT [29], that has been approved for treatment of hepatocellular carcinoma and advanced
RCC [30]. Oral administration of sorafenib significantly reduced CoNV in a rat silver-nitrate model in
a dose-dependent manner. RT-PCR and immunoblot showed reduced expression of corneal Vegfr2
mRNA and phosphorylated ERK respectively in sorafenib treated rats compared to the control
group. Therefore, sorafenib’s antiangiogenic effect is likely related to inhibition of VEGFR2 and ERK
phosphorylation [31].

Semaxanib is a potent and selective TKI for VEGFR2 [32]. Intraperitoneal delivery of semaxanib
significantly decreased new vessel formation in a murine silver-nitrate CoNV model [33]. A high
occurrence of thromboembolic events has halted clinical development of semaxanib [34]; however,
an earlier study showed intraperitoneal semaxanib to significantly reduce choroidal neovascularization
as well [35], indicating that it may be beneficial in treating intraocular angiogenic diseases. Rivoceranib is
another selective and potent VEGFR2 TKI that interferes with downstream angiogenic pathways.
Topical application of rivoceranib in a murine alkali burn model demonstrated significant reduction
in CNV area and reduction in lymph/hemangiogenesis that was equivalent to topical bevacizumab
application [36].
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Regorafenib is a multitarget TKI, inhibiting VEGFR-1, -2 and -3, PDGFR-β and FGFR, that has
been approved for treatment of metastatic colorectal cancer [37]. Topical administration of regorafenib
in a rat alkali burn CoNV model demonstrated decreased corneal VEGF expression and percentage of
CoNV area that was comparable to topical dexamethasone 0.1% and bevacizumab [38].

Lapatinib is a multitarget TKI selective for human epidermal growth factor receptor 2 (HER2) and
epidermal growth factor receptor (EGFR) used for treatment of HER2-positive breast cancer [39,40].
Oral administration of lapatinib reduced corneal epithelial and stromal VEGF expression, which
correlated with decreased CoNV in a rat silver-nitrate CoNV model. Lapatinib was more effective at
preventing CoNV than the large monoclonal antibody against HER2, trastuzumab [41].

Axitinib is a small multitarget TKI highly selective for VEGFRs and possibly PDGFRs. It is
currently approved for treatment of RCC that has previously failed 1 year of systemic therapy [42].
Topical application of axitinib showed a dose-dependent inhibition of CoNV area and corneal stroma
vascularization in a rabbit suture-induced CoNV model. Sunitinib tested using the same methodology
showed similar reduction in CoNV with no significant difference in level of CoNV compared to
axitinib [43].

Dovitinib is another multitarget TKI that inhibits VEGFR-1, -2, -3, and -4, FGFR-1, and -3,
and PDGFR [44]. Studies of dovitinib’s antitumor effect have reported effective antiangiogenic properties.
However, compared to topically administered bevacizumab, topically administered dovitinib was less
effective in reducing CoNV in a rat silver-nitrate model [45]. However, dovitinib was administered at
only one concentration (5 mg/mL), which may account for these findings.

Many of the TKIs were studied as monotherapies against CoNV; however, the TKIs dovitinib,
lapatinib, and sunitinib have also been tested in combination with other drugs. In an effort to broaden the
multimechanistic approach to treating CoNV, sunitinib was combined with the tetracycline doxycycline
and the natural product polyphenol hesperetin. When applied topically to a rat silver-nitrate model,
sunitinib-hesperetin treatment was more effective at reducing CoNV than sunitinib alone and the
sunitinib-doxycycline combination [46]. The combined anti-fibrotic effect of the hesperetin and
antiangiogenic effect of sunitinib are believed to be the contributing factors to a greater therapeutic
effect than monotherapy. However, not all TKI combination therapies showed greater effects than
monotherapies. For example, the combination of dovitinib and bevacizumab was no more effective at
reducing CoNV than bevacizumab monotherapy [45]. Additionally, lapatinib in combination with
trastuzumab showed equivocal results to lapatinib monotherapy [41].
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Table 1. Tyrosine kinase inhibitors tested in corneal neovascularization (CoNV) models.

Tyrosine Kinase Inhibitor Source Mechanism Routes Dose Model Ref

Sunitinib
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Table 1. Cont.

Tyrosine Kinase Inhibitor Source Mechanism Routes Dose Model Ref

Sorafenib
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Table 1. Cont.

Tyrosine Kinase Inhibitor Source Mechanism Routes Dose Model Ref
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3.2. Repurposed Antimicrobials

The search for novel therapies has led to commercially available agents, such as antimicrobials,
being assessed for their antiangiogenic properties (Table 2). Repurposing drugs has attracted much
attention because it saves significant resources and time during drug development. Moreover,
finding new indications for drugs for which safety has been already evaluated can bring great
therapeutic benefits [47]. Tetracyclines are a group of small-molecule antibiotics that have been used
safely in humans for years. Besides their antimicrobial activity, they prevent neovascularization
by potently inhibiting collagenase and matrix metalloproteinase (MMP)-induced degradation of
the extracellular matrix [48]. Oral administration of the semisynthetic tetracycline, doxycycline,
significantly reduced CoNV compared to untreated controls in a murine alkali burn model [49].
In the same study, dexamethasone treated groups showed greater reduction in CoNV, but were
associated with corneal ulceration unlike the doxycycline treated groups [49]. A similar study showed
that topically administered 2% doxycycline reduced CoNV in a murine silver-nitrate model, and in
combination with the steroid triamcinolone acetonide, it had a synergistic inhibitory effect [50].
The mechanism by which doxycycline inhibits CoNV is only partially due to MMP inhibition: MMP
inhibitors, 1,10-phenanthroline and batimastat, had ~45% the inhibitory effect on VEGF-stimulated
CoNV compared to doxycycline. In vitro studies showed that treatment with doxycycline significantly
reduced PI3K activity and phosphorylation of Akt, indicating involvement of the PI3K/Akt-eNOS
pathway in doxycycline-mediated inhibition of HUVEC proliferation. Together, the in vivo and in vitro
studies support that the mechanism of doxycycline-mediated inhibition of angiogenesis occurs through
a combination of MMP inhibition and the MMP-independent PI3K/Akt-eNOS pathway [51].

Minocycline is another semisynthetic tetracycline found to have antiangiogenic properties distinct
from its bacteriostatic mechanism. Minocycline inhibits MMPs by upregulating tissue inhibitors
of metalloproteinases-1 (TIMP-1), endogenous MMP inhibitors, similar to doxycycline but also
downregulates the ERK1/2 and Akt pathways after VEGF stimulation [52]. When administered by
intraperitoneal injection in a murine alkali burn CoNV model, minocycline significantly reduced CoNV,
promoted corneal epithelial healing, and reduced corneal polymorphonuclear leukocytes (PMNs).
Additionally, levels of corneal VEGF, VEGFR1, VEGFR2, b-FGF, IL-1β, IL-6, MMP-2, -9, and -13 were
significantly reduced compared to control [53]. Therefore, minocycline’s effectiveness in treating CoNV
is related to downregulation of angiogenic factors, inflammatory cytokines, and MMPs.

Tigecycline is a newer and broader-spectrum tetracycline derived from minocycline [54].
CoNV was significantly reduced following both topical administration and subconjunctival injection
of tigecycline in a rat silver-nitrate model, with subconjunctival injection being the most effective
administration route [55]. It is likely that tigecycline acts by a similar mechanism to doxycycline and
minocycline. However, its antiangiogenic mechanism and target have not yet been confirmed.

Another antimicrobial agent to show potent antiangiogenic activity is the antifungal itraconazole.
It prevents angiogenesis through inhibition of cholesterol biosynthesis which is needed for endothelial cell
proliferation and capillary formation [56]. Topical, subconjunctival, and intraperitoneal administration of
itraconazole were studied in a rat silver-nitrate model. Biomicroscopic examination after treatment showed
significant inhibition of CoNV in all treatment groups with topical and subconjunctival administration
being the most effective [57]. Such antiangiogenic efficacy of itraconazole indicates targeting endothelial
cell metabolism such as cholesterol synthesis as a potential therapeutic strategy to treat CoNV.

The antimalarial, dihydroartemisinin, is a semisynthetic derivative of artemisinin, which is
isolated from the Chinese herb, Artemisia annua [58]. In addition to its antimalarial properties, in vitro
and in vivo studies have shown that dihydroartemisinin can inhibit angiogenesis. Dihydroartemisinin
treatment induced apoptosis and reduced expression of VEGF in HUVECs [59]. Topical administration
of dihydroartemisinin to rats with suture-induced CoNV significantly decreased CoNV area and
corneal VEGF, VEGFR2 phosphorylation, ERK1/2 and p38 expression [60]. This suggests that the
ERK1/2 and p38 pathways are partially involved in dihydroartemisinin’s antiangiogenic mechanism.
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Table 2. Repurposed antimicrobials tested in CoNV models.

Antimicrobial Source Mechanism Routes Dose Model Ref
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3.3. Other Synthetics

The pathogenesis of CoNV is a complex process involving multiple mechanisms and angiogenic
growth factors. There are various synthetic small molecules other than TKIs and repurposed antiangiogenic
antimicrobials that have undergone preclinical testing for CoNV treatment. These synthetic molecules
induce their antiangiogenic properties through inhibition of integrins, ROS, and inflammation (Table 3).

Endothelial cell activation, survival, migration, and adhesion to extracellular matrix are essential
steps in the process of angiogenesis. Many of those steps are regulated by transmembrane glycoproteins
called integrins. The integrin α5β1 was found to impact blood vessel formation and maturation [61].
Inhibition of α5β1 reduced pathological neovascularization in tumor animal models. Osmotic pump
intraperitoneal delivery of the anti-integrin α5β1 small molecule, JSM5562, significantly regressed
development of CoNV in a murine alkali burn model [62]. This effect was likely a result of JSM5562
impairing endothelial cell migration, adhesion, and tube formation. However, further studies are
needed to assess the exact mechanism that the integrin α5β1 plays in the inflammatory context.

Similarly to JSM5562, the imidazole-based alkaloid derivative LCB54–0009 also inhibits endothelial
cell capillary-like tube formation. LCB54–0009 exhibits antiangiogenic and antioxidant activity
associated with hypoxia-inducible factors (HIFs) in preclinical in vitro and in vivo studies. Under low
oxygen levels HIFs induce the transcription of proangiogenic and inflammatory molecules [63].
Subconjunctival LCB54–0009 in the murine suture model showed reduction in CoNV and inflammation.
LCB54–0009 treatment of hypoxic and VEGF-stimulated HUVECs showed significant inhibition of
tube formation and levels of HIF-1α, angiopoietin-2, and phosphorylated VEGFR2 [64]. Therefore,
the likely mechanism of LCB54–0009′s antiangiogenic effect is through the inhibition of ROS-mediated
signaling cascades, resulting in the inhibition of the HIF-1α, NF-κB, and VEGF/VEGFR2 signaling
pathways [64].

N-acetyl-l-cysteine (NAC) is another synthetic small molecule that was found to inhibit CoNV
through its antioxidant properties. ROS activate the transcription factor NF-κB, which induces the
expression of inflammatory cytokines such as VEGF, monocyte chemoattractant protein (MCP)-1,
IL-1β, and TNF-α [65]. NAC downregulates the NF-κB pathway. To investigate the role of ROS
in an angiogenic response, intraperitoneal NAC was administered in a murine alkali burn model.
Pretreatment starting 3 days before corneal injury showed significant reduction in CoNV and reduced
expression of VEGF, MCP-1, and NF-κB phosphorylation [66]. While pretreatment with antioxidants
is not clinically feasible, it does indicate that antioxidants such as NAC may protect the cornea from
pathological angiogenesis through its ROS-blocking effects.

IMD0354 is a synthetic small molecule that also interferes with NF-κB signaling. The activation
of the NF-κB pathway is regulated by the IKK complex of two kinases, IKK1 and IKK2. IMD0354
is a non-ATP binding, competitive, selective IKK2 inhibitor that has shown inhibitory effects on
VEGF expression in murine diabetic retinopathy models [67]. In rat suture-induced CoNV, systemic
IMD0354 significantly suppressed CoNV, decreased inflammatory cell infiltration, expression of
inflammatory chemokines (CCL2, CXCL5, Cxcr2), and attenuated expression of angiogenic factors
(VEGF) and inflammatory mediators (TNF-α) [68]. In vitro studies support the antiangiogenic
potential of IMD0354: it inhibited HUVEC migration and tube formation and downregulated VEGF-A
expression [68]. The results of this testing underscore the importance of NF-κB signaling in the
mechanism of CoNV.

Due to the association of inflammation and CoNV, the role of the inflammatory mediator substance
P has also been tested in CoNV murine models. Substance P mainly exerts its proinflammatory effect
through the interaction with neurokinin 1 receptor (NK1R) [69], and substance P levels were found
to be increased in murine corneas following alkali burn injury [70]. Therefore, the NK1R antagonist,
lanepitant, was applied topically and subconjunctivally in murine alkali burn and suture-induced
CoNV models. Significant reduction in CoNV, corneal substance P expression, and leukocyte
infiltration were seen in the alkali burn model with subconjunctival and topical administration and
only with subconjunctival injection in the suture-induced model [71]. Limited drug penetration with
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topical application in the suture model may have accounted for these disparate results. Overall,
the antiangiogenic effects of lanepitant suggest that inhibition of NK1R may offer therapeutic effects in
the treatment of inflammation-induced CoNV.

Inflammation in CoNV is also related to the overexpression of proinflammatory chemokines that
are mediators of angiogenesis. Chemokines bind to specific G-protein coupled receptors to induce
cell migration and activation. Multiple chemokine receptors, such as CCR3 and CXCR-4, have been
shown to be upregulated in ocular neovascularization models [72,73]. The CCR3 antagonist SB-328437
applied topically to the corneas of alkali burned mice successfully suppressed CoNV and reduced
intracorneal levels of mRNAs for MCP-1 and -3, which promote expression of VEGF and chemotaxis
of macrophages [74]. This suggests that CCR3 signaling may be involved in the development of CoNV
by its interaction with infiltrating inflammatory cells rather than directly with vascular endothelial
cells. However, further studies are needed to determine the exact mechanism of CCR3 signaling on
CoNV inhibition.

The chemokine receptor CXCR-4 has also been shown to be involved in CoNV. CXCR-4 is involved
in the recruitment of adult endothelial progenitor cells (EPC) which are of bone marrow origin and
contribute to physiologic and pathologic neovascularization [75]. The exact mechanism of CXCR-4
in regulating angiogenesis is unclear but chemokine stromal cell-derived factor-1 (SDF-1) engages
with CXCR-4 expressed by vascular cells and promotes mobilization of proangiogenic hematopoietic
cells that express CXCR-4 and VEGFRs, thereby inducing revascularization of ischemic tissues [76].
Interestingly, previous studies indicated that a specific antagonist of CXCR-4, AMD3100, has dual
functions, improving blood circulation in ischemic tissue by promoting mobilization of EPCs from bone
marrow into peripheral blood in myocardial infarction patients, while also inhibiting angiogenesis by
targeting CXCR-4. To investigate whether EPCs are involved in CoNV and whether blockade of the
SDF-1/CXCR-4 axis affects CoNV formation, AMD3100 was injected subconjunctivally in a murine
alkali burn model and was shown to significantly inhibit CoNV, corneal inflammation and number of
inflammatory cells, and downregulate VEGFR2 expression. However, systemic delivery of AMD3100
by intraperitoneal injection did not have a significant effect on either corneal inflammation or CoNV.
Although it needs to be further studied, it is speculated that AMD3100 in the systemic blood supply
may accelerate mobilization of bone marrow EPCs into ocular circulation, promoting EPC localizing
in the lesions caused by corneal injury. This demonstrates how different routes of administration
can result in conflicting therapeutic effects and highlights the importance of local delivery of ocular
therapeutics [77].

Corneal fibrosis is commonly associated with the development of CoNV due to the main etiologies
involving inflammation. A family of animal lectins that bind β-galactosides named galectins are
involved in CoNV as well as fibrosis. Galectin-3 is an important modulator of the VEGF/VEGFR2
signaling pathway and has increased corneal expression in states of inflammation [78]. The galectin-3
inhibitor, 33-DFTG (TD139) showed antiangiogenic effects by attenuating VEGF-induced HUVEC
migration and sprouting [79]. Due to galectin-3′s proangiogenic function, subconjunctival injections of
33-DFTG were also administered to murine silver-nitrate and alkali burn models, which significantly
suppressed CoNV, corneal fibrosis, and expression of corneal α-smooth muscle actin (SMA) [79].
An eye drop formulation of 33-DFTG was also effective at reducing CoNV. This suggests that inhibition
of galectin-3 could have a beneficial role in the treatment of CoNV and corneal fibrosis.

Finally, TNP-470 is a synthetic analogue of fumagillin, an antibiotic compound secreted by
Aspergillus fumigatus. TNP-470 has potent antiangiogenic properties through the inhibition of type 2
methionine aminopeptidase [80–82]. This activity was supported by in vitro testing that revealed that
TNP-470 significantly inhibited proliferation of b-FGF and VEGF induced bovine capillary endothelial
cells. Additionally, both systemic and topical administration to a murine alkali burn model significantly
reduced CoNV and VEGF expression [17]. TNP-470 has therapeutic potential as either a monotherapy
or in combination with anti-inflammatory drugs. However, more studies are required to find an
optimal topical dose and to assess for longer-term ocular toxicity.
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Table 3. Other synthetic small molecules tested in CoNV models.

Molecule Source Mechanism Routes Dose Model Ref

JSM5562
(Exact structure not reported) Synthetic

Impairing EC
migration, adhesion,
and tube formation.
Exact mechanism

unknown

Systemic via osmotic
pump implantation

0.1 mg/mL,
0.5 mg/mL,
2.5 mg/mL

Murine alkali burn
model [62]

LCB54–0009
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Table 3. Cont.
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cyclooxygenase-2 (COX-2) protein [89]. COX-2 is a proangiogenic protein through modulation of 
VEGF ligand and receptors [90]. Therefore, EGCG’s inhibitory effect in CoNV is likely related to 
suppression of VEGF and COX-2 mediated angiogenesis. In an attempt to maximize the 
bioavailability of EGCG eye drops, arginine-glycine-aspartic acid peptide-hyaluronic acid-conjugate 
complex-coated, gelatin/EGCG self-assembling nanoparticles (GEH-RGD NPs) were synthesized. In 
a murine alkali burn model, fewer and thinner corneal vessels were observed after treatment with 
GEH-RGD NP eye drops compared to mice treated with free EGCG solution eye drops [91]. Topical 
application of EGCG has been shown to be effective for the treatment of CoNV, however EGCG’s 
underlying mechanism of CoNV inhibition has yet to be identified.  

Kaempferol belongs to the flavonol subclass and is one of the most common dietary flavonoids. 
In vitro studies of kaempferol have demonstrated its ability to inhibit angiogenesis, VEGF expression, 
inflammation, and vascular cell migration [92,93]. To test its ability to inhibit CoNV, gelatin 
nanoparticles with kaempferol encapsulation (GNP-KA) were formulated to increase bioavailability 
and were administered to HUVECs and topically to a murine silver/potassium nitrate model. GNP-

Synthetic analogue of
fumagillin Targets MetAP2

Topical
Subconjunctival

injection

5 ng/nL; 3x/day
30 mg/kg

Murine alkali burn
model [17]
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4. Natural Products

4.1. Polyphenols: Flavonoids

Natural products derived from plants, animals, and microorganisms have played an essential
role in the history of medicine and drug discovery. Natural products have immense structural and
chemical diversity that has allowed for the development of a broad spectrum of pharmaceuticals [83].
Polyphenols make up the largest group of bioactive molecules that are commonly found in plant-based
foods. The polyphenols are classified into two main groups: flavonoids and non-flavonoids. More than
4000 flavonoids have been identified and can be further subdivided into various structural subclasses
such as flavanols, flavones, isoflavones, flavonols, and chalcones that will be of interest in this review [84].
Due to their polypharmacology, natural products have been recognized for their potential multitarget
therapeutic effects and have been studied in a variety of disease states such as CoNV (Table 4).

The flavanol, epigallocatechin gallate (EGCG), is the major secondary metabolite present at high
levels in green tea. EGCG has been shown to inhibit multiple downstream signaling pathways and
therefore has been studied for its chemopreventative, antioxidant, anti-inflammatory, and antiangiogenic
properties [85–88]. Topical application of EGCG to suture-induced CoNV in rabbits showed significant
reduction in CoNV surface area and expression of Vegfa mRNA and cyclooxygenase-2 (COX-2) protein [89].
COX-2 is a proangiogenic protein through modulation of VEGF ligand and receptors [90]. Therefore,
EGCG’s inhibitory effect in CoNV is likely related to suppression of VEGF and COX-2 mediated
angiogenesis. In an attempt to maximize the bioavailability of EGCG eye drops, arginine-glycine-aspartic
acid peptide-hyaluronic acid-conjugate complex-coated, gelatin/EGCG self-assembling nanoparticles
(GEH-RGD NPs) were synthesized. In a murine alkali burn model, fewer and thinner corneal vessels
were observed after treatment with GEH-RGD NP eye drops compared to mice treated with free EGCG
solution eye drops [91]. Topical application of EGCG has been shown to be effective for the treatment of
CoNV, however EGCG’s underlying mechanism of CoNV inhibition has yet to be identified.

Kaempferol belongs to the flavonol subclass and is one of the most common dietary flavonoids.
In vitro studies of kaempferol have demonstrated its ability to inhibit angiogenesis, VEGF expression,
inflammation, and vascular cell migration [92,93]. To test its ability to inhibit CoNV, gelatin nanoparticles
with kaempferol encapsulation (GNP-KA) were formulated to increase bioavailability and were
administered to HUVECs and topically to a murine silver/potassium nitrate model. GNP-KA significantly
suppressed cell migration of HUVECs and had less vessel growth into the cornea compared to kaempferol
solution by reducing corneal MMP and VEGF [94]. These results indicate that topical application of
kaempferol in nanoparticle formulation could be a viable candidate for treatment of CoNV.

Isoliquiritigenin is a chalcone flavonoid isolated from the root of licorice (Glycyrrhiza uralensis and
G. glabra). Isoliquiritigenin has diverse pharmacological properties: it is anti-inflammatory, anti-viral,
anti-microbial, antioxidant, anticancer, immunomodulatory, hepatoprotective, and cardioprotective [95].
Topical administration of isoliquiritigenin in a murine silver-nitrate CoNV model suppressed NV in
a dose-dependent manner. This study also showed isoliquiritigenin reduced VEGF and increased
antiangiogenic factor PEDF in VEGF stimulated HUVECs [96]. This suggests that the potential role of
isoliquiritigenin in suppressing angiogenesis is through restoring the balance of pro and antiangiogenic
factors, however, this still needs to be confirmed in corneal tissue.

Diets containing flavonoids and isoflavonoids have been of interest for novel therapies due to
their potential of regulating angiogenesis. The flavones fisetin and luteolin and isoflavone genistein
are commonly found in many fruits and vegetables. To evaluate their effect on CoNV, fisetin, luteolin,
and genistein were applied topically to rabbits with CoNV induced by b-FGF pellets implanted
intrastromally. All three substances significantly reduced CoNV, with fisetin having the strongest
effect followed by genistein and luteolin [97]. In murine xenografts of breast carcinoma cells, genistein
downregulated VEGF, TGF-α, MMP-9, and upregulated TIMP-1 [98], and therefore, CoNV inhibition
by genistein, fisetin, and luteolin in this study may involve similar mechanisms. However, the exact
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mechanism by which these flavonoids and isoflavonoids enact their antiangiogenic effect in CoNV has
yet to be discovered.

Naringenin is a flavanone that is abundant in vegetables and citrus fruits. Previous studies have
demonstrated that naringenin has anti-inflammatory properties related to the downregulation of NF-κB
activity and reduced production of inflammatory cytokines IL-1β and IL-6 [99,100]. Additionally, a rat
choroidal neovascularization model showed that naringenin’s antiangiogenic potential is linked to
its anti-inflammatory properties and downregulation of VEGF and COX-2 [101]. When administered
topically in a murine alkali burn CoNV model, naringenin reduced CoNV, inhibited corneal recruitment
of neutrophils and macrophages, and decreased production of cytokines (IL-1β and IL-6) and Vegfa, Pdgf,
and Mmp14 mRNA expression [102]. These results suggest that in addition to reducing proangiogenic
factors, the anti-inflammatory properties of naringenin play a similar role in inhibiting corneal
angiogenesis as seen in earlier studies on choroidal neovascularization [101].

While several flavonoids have shown favorable results for treating CoNV, this is not the case
for every study. The flavonol quercetin and the coumarin esculetin have inhibitory activities against
lipoxygenase (LOX) which is one of the key enzymes of the arachidonic acid (AA) metabolic pathway.
The AA metabolic pathways can give rise to proinflammatory molecules [103] and thus they are
well-known therapeutic targets of anti-inflammatory agents such as steroids and COX inhibitors that
block the COX and LOX pathways at the first step of the AA pathway. Steroids and COX inhibitors
have shown the ability to inhibit CoNV in inflammatory CoNV models [18,104]. To further assess the
involvement of these pathways in CoNV, quercetin and esculetin were studied due to their ability to
inhibit LOX [105,106]. However, topical application of 1% esculetin and quercetin in a rat silver-nitrate
CoNV model was not able to significantly reduce CoNV compared to control [104].

4.2. Non-Flavonoid Phytochemicals

Plants produce a vast group of organic compounds other than flavonoids referred to as phytochemicals.
Some of these natural products have been of special interest in the search for alternative therapies for
treating CoNV due to their diverse and complex chemical properties. Therefore, plant phytochemicals
such as non-flavonoid polyphenols, a steroidal lactone, and a sesquiterpene lactone have been studied in
preclinical CoNV studies (Table 5).

Curcumin, the major curcuminoid polyphenol, is isolated from the turmeric plant. Earlier studies
found curcumin to possess antitumor effects that are mediated by antiangiogenic, as well as potent
antioxidant, anti-inflammatory properties [107–109]. In vivo and in vitro studies showed that curcumin
also has the ability to inhibit CoNV. Topical administration of curcumin significantly reduced CoNV
and suppressed corneal VEGF expression in a rabbit suture model [110]. In vitro, curcumin successfully
suppressed VEGF-stimulated HUVEC migration while inhibiting NF-κB activation [111]. Therefore,
a possible mechanism of curcumin mediated CoNV inhibition is through downregulation of VEGF
by inhibition of NF-κB activity. These findings were supported by curcumin nanoparticle eye drops
significantly inhibiting corneal NF-κB, CoNV, and expression of inflammatory cytokines plus VEGF
in a rat silver-nitrate model [112]. While the inhibition of several angiogenic pathways supports a
multitarget approach of curcumin-induced CoNV inhibition, the exact antiangiogenic mechanism and
target are currently unknown. These studies indicate curcumin has potential as a therapy for CoNV,
but it is worth mentioning its drawbacks. The shortcomings associated with curcumin include poor
pharmacokinetics/pharmacodynamic properties, unclear mechanism, low efficacy in several disease
models, and toxic effects under certain testing conditions [113].
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Table 4. Flavonoid polyphenols tested in CoNV models.

Flavonoid Source Mechanism Routes Dose Model Ref

Epigallocatechin gallate (EGCG)
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Resveratrol is another non-flavonoid polyphenol present in red wine and other grape products.
Previous studies have shown resveratrol to have chemopreventative properties through inhibition of
tumor initiation, promotion, and progression [114]. Oral resveratrol significantly suppressed murine
FGF-2 and VEGF-micropocket induced CoNV, suggesting disruption of blood vessel growth as a part of
resveratrol’s antitumor effect [115]. Resveratrol’s antiangiogenic effects sparked interest in its potential
as a therapy for CoNV. However, in a rabbit inflammatory alkali burn CoNV model, subconjunctival
injection of 1% resveratrol did not significantly reduce CoNV compared to control [116]. Despite the
negative results of subconjunctival resveratrol at this dose, further studies are needed to assess whether
an optimal dose and route of administration of resveratrol can inhibit CoNV.

Another phytochemical with diverse pharmacological properties is the steroidal lactone withaferin
A, which is extracted from the root of the medicinal plant Withania somnifera. Withaferin A has
anti-inflammatory, immunosuppressive, antitumor, and antiangiogenic activity [117]. Its antiangiogenic
activity is due to targeting and downregulation of the intermediate filament protein vimentin. This is
supported by intraperitoneal injection of withaferin A in a deepithelialization model of CoNV markedly
suppressing CoNV in wild-type mice while only marginally attenuating CoNV in vimentin-null mice [118].
The use of vimentin-null mice in this study validates that withaferin A’s mechanism of CoNV inhibition is
largely mediated through its interaction with vimentin, adding an extra level of rigor to this work.

The sesquiterpene lactone xanthatin is the major bioactive compound isolated from the leaves
of Xanthium sibiricum. Xanthatin has beneficial biological activities such as antitumor, antifungal,
and antiplasmodial effects [119–121]. Xanthatin was also shown to have antiangiogenic properties
through the inhibition of the VEGFR2 signaling pathways [122]. Xanthatin’s antiangiogenic effect and
mechanism in CoNV were further evaluated with in vitro and in vivo studies. Xanthatin inhibited
the migration and lumen-forming ability of VEGF-treated HUVECs in a concentration-dependent
manner and significantly decreased expression of phosphorylated (p-)VEGFR2, p-STAT3, p-PI3K,
and p-Akt [123]. Topical xanthatin eye drops were used for the treatment of CoNV in a rat alkali burn
model, and suppressed CoNV area, lowered VEGF, and raised PEDF protein levels [123]. Together,
these results indicate that xanthatin likely inhibits CoNV through regulating the VEGFR2-mediated
STAT3/PI3K/Akt signaling pathways.

Triptolide is a phytochemical extracted from Tripterygium wilfordii Hook F and is a key ingredient
of Chinese herbal medicine. It has diverse pharmaceutical activities such as anti-inflammatory,
antiproliferative, proapoptotic, and immunosuppressive properties [124,125]. To evaluate its effect on
angiogenesis, it was tested in vitro and in vivo. Triptolide inhibited rat aortic endothelial cell migration
and tube formation and significantly suppressed CoNV and VEGF expression in a murine alkali burn
model [126]. While these results indicate that triptolide may have clinical indications for the treatment
of CoNV, further studies are needed to assess its exact mechanism of action, optimal dose, and potential
toxic side effects with long term use.

Thymoquinone is another biologically active compound isolated from the volatile oil of black
seed (Nigella sativa). It has anti-inflammatory properties through the inhibition of the cyclooxygenase
and lipoxygenase pathways [127], as well as antioxidant and antineoplastic effects both in vitro and
in vivo [128–130]. Therefore, it was studied for its inhibitory effect on CoNV. Topical application of
thymoquinone reduced CoNV in a dose-dependent manner in a rat silver-nitrate model and was also
found to be as effective as topical triamcinolone in reducing CoNV [131]. Further studies are needed
to determine thymoquinone’s exact mechanism of inducing CoNV inhibition, but it is believed to be
mediated by its antioxidant or anti-inflammatory properties.

Glycyrrhizin is another major active constituent of licorice (G. glabra), and has shown
anti-inflammatory and anticancer activity [132]. Topical glycyrrhizin was applied to rabbit corneas
following alkali burn. Glycyrrhizin treatment resulted in considerable decrease in CoNV but was less
effective than G. glabra extract, which contained several chemical constituents [133]. This suggests that
licorice root extract has potential as a CoNV therapy, but further research is needed to identify the
main components responsible for its antiangiogenic effect in CoNV.
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Table 5. Non-flavonoid phytochemicals tested in CoNV models.

Non-Flavonoid Phytochemical Source Mechanism Routes Dose Model Ref
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4.3. Immunosuppressants

There are various causes of CoNV, with a majority of these etiologies associated with an
inflammatory response. Due to the limited efficacy and side effect profile of the standard-of-care
steroids, the search for novel therapies that target the inflammatory response continues. Several natural
metabolites produced by fungi and bacteria are effective immunosuppressive agents that have shown
promising therapeutic potential for CoNV (Table 6).

Tetramethylpyrazine (TMP) is the major bioactive component of the traditional Chinese
medicine, chuanxiong (Ligusticum striatum). In China, chuanxiong is prescribed for cancer,
autoimmune, and inflammatory diseases [134,135]. Previous in vitro studies identified that
TMP significantly downregulates CXCR4 expression in HUVECs [136]. Topical application of
TMP significantly suppressed CoNV, macrophage aggregation, and corneal CXCR4 expression
in a murine alkali burn model and was as effective as the immunosuppressant tacrolimus (see
below) [137]. These results suggest that the mechanism of TMP-mediated inhibition of CoNV is likely
through regulation of CXCR4 and TMP eye drops could be a potential agent for CoNV treatment.

Synthetic immunomodulators have also been studied as novel therapies for CoNV. Methotrexate
is a synthetic antimetabolic substance that blocks DNA and RNA synthesis through antagonism of
folic acid [138]. It is used in the treatment of autoimmune diseases, however, a study identified that
systemic administration decreased cerebral blood flow [139]. Therefore, methotrexate was examined
for its antiangiogenic potential in a rabbit suture-induced model of CoNV. Topical and subconjunctival
injection of methotrexate significant decreased CoNV area and expression of VEGF and IL-6 in treated
corneas [140]. A similar antiangiogenic effect was seen with topical methotrexate in a rabbit corneal
pocket model [141]. These studies indicate methotrexate’s efficacy in treating CoNV, however, further
studies are needed to determine safe and effective doses.

Thalidomide contains a single stereogenic carbon and therefore it exists in (R)- and (S)-enantiomers.
These enantiomers have different biological properties and only the (S)-enantiomer is teratogenic [142].
However, the drug was initially marketed as a racemate and its use in humans has been limited due to
teratogenic effects [143,144]. Since then, thalidomide has gone through a significant transformation
from a notorious sedative causing birth defects to a compound that is now again garnering a clinical
interest due its pharmacological effects against numerous pathological processes [145]. Thalidomide is
immunomodulatory and anti-inflammatory, and it potently inhibits angiogenesis caused by TNF-α
and FGF-2 [143]. CC-3052 is an analogue of thalidomide with the same antiangiogenic effects and
greater immunomodulatory activity, but is also nontoxic, nonmutagenic, and nonteratogenic [146].
Work in a rabbit suture-induced CoNV model showed that topical and subconjunctival injections of
CC-3052 were effective at decreasing CoNV area and expression of mRNAs for VEGF and TNF-α.
Additionally, on histopathological analysis, both topical and subconjunctival administration reduced
inflammation intensity, fibroblast activity, and neovascularization [147]. Similar to methotrexate,
CC-3052′s anti-inflammatory effect reduced CoNV; however, optimal dose and administration route
have yet to be determined. Another analogue of thalidomide, DAID, has antiproliferative and
antimitotic activities in vitro [148]. DAID was applied topically to alkali burn mouse corneas
and reduced CoNV and attenuated the overexpression of VEGF [149]. DAID has potential as a
noninvasive therapy for CoNV; however, more studies are needed to determine how it suppresses
VEGF. LASSBio-596 is another hybrid of a thalidomide derivative and an arylsulfonamide, without
the teratogenic profile of thalidomide, that displays anti-inflammatory and immunomodulatory
properties [150,151]. Topical application of LASSBio-596 to a rabbit alkali burn model significantly
reduced CoNV [152]. LASSBio-596 was not as effective at reducing CoNV as dexamethasone, but due
to its ability to suppress angiogenesis further studies may be beneficial to better understand its effect
on the process of angiogenesis.
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Macrolides

In addition to the immunosuppressants discussed above, the macrolide immunosuppressants
have also been tested for their potential to treat CoNV. Cyclosporine A is a cyclic nonribosomal peptide
secondary metabolite of the fungal genus Tolypocladium and is an immunosuppressive drug use to treat
various autoimmune and inflammatory conditions through suppression of T-lymphocyte functions.
In a rat silver-nitrate model, topical and subcutaneous injections of cyclosporine A reduced blood vessel
formation [153]. A similar study assessed the inhibitory effects of topical cyclosporine A 0.05% on
immune-mediated rabbit CoNV and compared its efficacy to topical dexamethasone and bevacizumab.
Cyclosporine A significantly suppressed CoNV and was more effective than bevacizumab, but was not
as effective as dexamethasone [154]. Long-term systemic administration of cyclosporine A often leads
to toxic damage of various organs, and therefore, more focus has been placed on its topical use [155].
The unique clinical accessibility of the eye allows targeted drug delivery by routes such as topical eye
drops, therefore minimizing unwanted systemic side effects. To better improve bioavailability of ocular
cyclosporine A it was incorporated into nanofibers and applied to rabbit corneas following alkali burn.
The corneas treated with cyclosporine A-loaded nanofibers showed strongly suppressed CoNV and
restoration of corneal transparency, had significant reduction in CD3(+) cells and proinflammatory
cytokines, and decreased expression of MMP-9, inducible nitric oxide synthase, and VEGF [156].
While the exact mechanism of cyclosporine A-induced inhibition of CoNV has yet to be identified,
topical application shows promising therapeutic potential.

Rapamycin (sirolimus) is a macrolide product of Streptomyces hygroscopicus that inhibits mammalian
target of rapamycin (mTOR) making it an effective immunosuppressant for treatment of allograft
rejection and several cancers [157,158]. In vitro assessment of its angiogenic activity revealed that
rapamycin strongly inhibited HUVEC proliferation and migration but did not cause cytotoxicity.
An in vivo study with the murine alkali burn model showed reduced CoNV and reduced expression
of proinflammatory factors (substance P, VEGF, TNF-α, TGF-β and IL-6) by topical and intraperitoneal
injections of rapamycin [159,160]. Additionally, the rapamycin synthetic derivative, everolimus,
has shown similar results on CoNV. Topically applied everolimus in a murine silver-nitrate model
significantly reduced CoNV and levels of mRNAs for VEGFR2 and ERK 1/2, and appears to be
more effective than sunitinib [161]. These results reveal the antiangiogenic potential of rapamycin
and its derivatives, but future studies are needed to determine the safest and most effective route
of administration.

Tacrolimus (FK506), a macrolide isolated from Streptomyces tsukubaensis, is an immunosuppressant
100-fold more effective than cyclosporine A that is commonly used to prevent human organ transplant
rejection [162]. Topical and intraperitoneal tacrolimus were administered to rats with silver-nitrate
induced CoNV, resulting in decreased CoNV area and decreased intensity of VEGF immunostaining
compared to control groups [163]. Due to its effect on VEGF, subconjunctival and topical tacrolimus
were compared to bevacizumab in a rabbit suture CoNV model, revealing that subconjunctival
injections of tacrolimus were similar to bevacizumab in reducing CoNV area. Additionally, both groups
showed reduced levels of VEGF, inflammatory cytokines (TNF-α, IL-1β, and MCP-1), and infiltration
of F4/80+ inflammatory cells [164]. While the exact antiangiogenic mechanism of tacrolimus remains
unknown, these results suggest that a combination of immunosuppression and inhibition of the VEGF
pathways are involved in CoNV inhibition.
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Table 6. Immunosuppressants, including macrolides, tested in CoNV models.

Immunosuppressant Source Mechanism Routes Dose Model Ref
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4.4. Vitamins and Photoactivatable Compounds

Water- and fat-soluble vitamins are another source of dietary natural products that are essential
for human growth and health. In vitro and in vivo studies also indicate that the vitamins ascorbic acid,
riboflavin, and vitamin D3 possess antiangiogenic properties (Table 7). Ascorbic acid (vitamin C) has
been shown to inhibit MMP-9 and VEGF expression in models of tumor growth [165]. When applied
to a silver-nitrate CoNV model, topical ascorbic acid was found to reduce neovascularization in a
dose-dependent manner [166]. These results were further supported by the suppression of CoNV
and downregulation of VEGF and MMP-9 by topical ascorbic acid administration in a rabbit suture
model [167].

Riboflavin (vitamin B2) is another water-soluble vitamin with antiangiogenic potential when
combined with UV light. This process is referred to as corneal crosslinking, and it is used to treat other
ocular diseases such as progressive keratoconus, corneal ulcers, pellucid marginal degeneration, corneal
melting, and iatrogenic keratectasia after laser surgery [168,169]. Topical riboflavin is photoactivated by
UVA light, resulting in the release of reactive oxygen radicals which cause apoptosis [170]. The corneas
of mice with suture-induced CoNV received corneal crosslinking treatment with riboflavin and UVA
rays which resulted in regression of preexisting blood and lymphatic vessels via induction of apoptosis
of vascular endothelial cells. Additionally, there was a significant reduction in macrophages and
CD45+ cells in inflamed corneas [171]. This is similar to the results seen in photodynamic therapy
using the photosensitizer verteporfin. Verteporfin is used for treatment of angiogenic diseases such as
certain cancers and subfoveal choroidal neovascularization [172,173]. Although it is not a vitamin,
it is a synthetic small molecule that when injected intravenously and combined with photodynamic
therapy significantly reduced preexisting blood and lymphatic vessels in the corneas of suture-induced
mice [174]. The ability of these photoactivated therapies to reduce CoNV and inflammatory cells
indicates the potential combination of light and riboflavin or verteporfin in treating preexisting CoNV
and for decreasing graft rejection after corneal transplant in high risk eyes.

The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3), is a hormone involved
in the regulation of calcium homeostasis. However, 1α,25[OH]2D3 also has antiangiogenic effects in a
transgenic murine retinoblastoma model [175] and other angiogenesis models [176]. To test its effect on
CoNV, it was applied topically to mouse corneas with suture-induced CoNV. 1α,25[OH]2D3 reduced
CoNV and corneal inflammation by inhibiting intracorneal migration of antigen presenting cells involved
in initiating the immune response called Langerhans cells [177]. These results suggest that topical vitamin
D3 has potential as a treatment for CoNV, but further testing is needed to rule out toxicity of 1α,25[OH]2D3

on corneal epithelial cells.

4.5. HDAC Inhibitors

Histone deacetylases (HDACs) are a family of enzymes that regulate gene transcription through the
modification of histone and nonhistone proteins by acetylation. HDACs play a role in cell proliferation and
survival and are essential for angiogenesis through the regulation of VEGF expression [178]. Largazole is
a natural macrocyclic depsipeptide isolated from the marine cyanobacterium Symploca species that
selectively inhibits class I HDACs [179]. Topical application of largazole to murine alkali burn-injured
corneas attenuated CoNV by downregulating the proangiogenic factors VEGF, b-FGF, TGF-β1, and EGF
and upregulating antiangiogenic factors thrombospondin-1 (Tsp-1), Tsp-2, and ADAMTS-1. Furthermore,
largazole inhibited migration, proliferation, and tube formation of a human dermal microvascular
endothelial cell line (HEMC-1) [180]. Additional studies on the potent synthetic HDAC inhibitor,
vorinostat (suberoylanilide hydroxamic acid; SAHA), showed similar results to largazole in vivo and
in vitro [181]. Topical application of vorinostat inhibited CoNV in a murine alkali burn model through
the inhibition of hemangiogenesis, lymphangiogenesis, and inflammation [182]. The exact mechanism of
CoNV inhibition by vorinostat remains unknown, however its overall effect on CoNV was comparable to
current steroid therapies. Together, these studies indicate that both natural and synthetic HDAC inhibitors
have potential as therapeutic drugs for CoNV associated with inflammation (Table 8).
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Table 7. Vitamins and photoactivatable small molecules tested in CoNV models.

Vitamin/Photoactivatable
Compound Source Mechanism Routes Dose Model Ref

Ascorbic acid

Molecules 2020, 25, x FOR PEER REVIEW 21 of 34 

 

degeneration, corneal melting, and iatrogenic keratectasia after laser surgery [168,169]. Topical 
riboflavin is photoactivated by UVA light, resulting in the release of reactive oxygen radicals which 
cause apoptosis [170]. The corneas of mice with suture-induced CoNV received corneal crosslinking 
treatment with riboflavin and UVA rays which resulted in regression of preexisting blood and 
lymphatic vessels via induction of apoptosis of vascular endothelial cells. Additionally, there was a 
significant reduction in macrophages and CD45+ cells in inflamed corneas [171]. This is similar to the 
results seen in photodynamic therapy using the photosensitizer verteporfin. Verteporfin is used for 
treatment of angiogenic diseases such as certain cancers and subfoveal choroidal neovascularization 
[172,173]. Although it is not a vitamin, it is a synthetic small molecule that when injected 
intravenously and combined with photodynamic therapy significantly reduced preexisting blood 
and lymphatic vessels in the corneas of suture-induced mice [174]. The ability of these photoactivated 
therapies to reduce CoNV and inflammatory cells indicates the potential combination of light and 
riboflavin or verteporfin in treating preexisting CoNV and for decreasing graft rejection after corneal 
transplant in high risk eyes.  

The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3), is a hormone 
involved in the regulation of calcium homeostasis. However, 1α,25[OH]2D3 also has antiangiogenic 
effects in a transgenic murine retinoblastoma model [175] and other angiogenesis models [176]. To 
test its effect on CoNV, it was applied topically to mouse corneas with suture-induced CoNV. 
1α,25[OH]2D3 reduced CoNV and corneal inflammation by inhibiting intracorneal migration of 
antigen presenting cells involved in initiating the immune response called Langerhans cells [177]. 
These results suggest that topical vitamin D3 has potential as a treatment for CoNV, but further testing 
is needed to rule out toxicity of 1α,25[OH]2D3 on corneal epithelial cells.  

Table 7. Vitamins and photoactivatable small molecules tested in CoNV models. 

Vitamin/Photoactivatable 
Compound 

Source Mechanism Routes Dose Model Ref 

Ascorbic acid 

 

Diet 

Unknown; 
Downregulatio
n of VEGF and 

MMP-9 

Topical 0.5, 1, 10 
mg/mL 

Rabbit 
suture 
model 

[167] 

Riboflavin 

 

Diet 

Induction of 
apoptosis in 

vascular ECs; 
downregulatio

n of 
macrophages 
and CD45+ 

cells 

Topical 
riboflavin 

followed by 
UVA 

exposure 

0.1% 
Murine 
suture 
model 

[171] 

Verteporfin 

 

Synthetic 

Suppressed 
blood vessels 

and lymphatic 
vessels 

Intravenous 
followed by 

light exposure 
6 mg/m2 

Murine 
suture 
model 

[174] 

Diet
Unknown;

Downregulation of
VEGF and MMP-9

Topical 0.5, 1, 10 mg/mL Rabbit suture model [167]

Riboflavin

Molecules 2020, 25, x FOR PEER REVIEW 21 of 34 

 

degeneration, corneal melting, and iatrogenic keratectasia after laser surgery [168,169]. Topical 
riboflavin is photoactivated by UVA light, resulting in the release of reactive oxygen radicals which 
cause apoptosis [170]. The corneas of mice with suture-induced CoNV received corneal crosslinking 
treatment with riboflavin and UVA rays which resulted in regression of preexisting blood and 
lymphatic vessels via induction of apoptosis of vascular endothelial cells. Additionally, there was a 
significant reduction in macrophages and CD45+ cells in inflamed corneas [171]. This is similar to the 
results seen in photodynamic therapy using the photosensitizer verteporfin. Verteporfin is used for 
treatment of angiogenic diseases such as certain cancers and subfoveal choroidal neovascularization 
[172,173]. Although it is not a vitamin, it is a synthetic small molecule that when injected 
intravenously and combined with photodynamic therapy significantly reduced preexisting blood 
and lymphatic vessels in the corneas of suture-induced mice [174]. The ability of these photoactivated 
therapies to reduce CoNV and inflammatory cells indicates the potential combination of light and 
riboflavin or verteporfin in treating preexisting CoNV and for decreasing graft rejection after corneal 
transplant in high risk eyes.  

The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3), is a hormone 
involved in the regulation of calcium homeostasis. However, 1α,25[OH]2D3 also has antiangiogenic 
effects in a transgenic murine retinoblastoma model [175] and other angiogenesis models [176]. To 
test its effect on CoNV, it was applied topically to mouse corneas with suture-induced CoNV. 
1α,25[OH]2D3 reduced CoNV and corneal inflammation by inhibiting intracorneal migration of 
antigen presenting cells involved in initiating the immune response called Langerhans cells [177]. 
These results suggest that topical vitamin D3 has potential as a treatment for CoNV, but further testing 
is needed to rule out toxicity of 1α,25[OH]2D3 on corneal epithelial cells.  

Table 7. Vitamins and photoactivatable small molecules tested in CoNV models. 

Vitamin/Photoactivatable 
Compound 

Source Mechanism Routes Dose Model Ref 

Ascorbic acid 

 

Diet 

Unknown; 
Downregulatio
n of VEGF and 

MMP-9 

Topical 0.5, 1, 10 
mg/mL 

Rabbit 
suture 
model 

[167] 

Riboflavin 

 

Diet 

Induction of 
apoptosis in 

vascular ECs; 
downregulatio

n of 
macrophages 
and CD45+ 

cells 

Topical 
riboflavin 

followed by 
UVA 

exposure 

0.1% 
Murine 
suture 
model 

[171] 

Verteporfin 

 

Synthetic 

Suppressed 
blood vessels 

and lymphatic 
vessels 

Intravenous 
followed by 

light exposure 
6 mg/m2 

Murine 
suture 
model 

[174] 

Diet

Induction of
apoptosis in vascular
ECs; downregulation
of macrophages and

CD45+ cells

Topical riboflavin
followed by UVA

exposure
0.1% Murine suture model [171]

Verteporfin

Molecules 2020, 25, x FOR PEER REVIEW 21 of 34 

 

degeneration, corneal melting, and iatrogenic keratectasia after laser surgery [168,169]. Topical 
riboflavin is photoactivated by UVA light, resulting in the release of reactive oxygen radicals which 
cause apoptosis [170]. The corneas of mice with suture-induced CoNV received corneal crosslinking 
treatment with riboflavin and UVA rays which resulted in regression of preexisting blood and 
lymphatic vessels via induction of apoptosis of vascular endothelial cells. Additionally, there was a 
significant reduction in macrophages and CD45+ cells in inflamed corneas [171]. This is similar to the 
results seen in photodynamic therapy using the photosensitizer verteporfin. Verteporfin is used for 
treatment of angiogenic diseases such as certain cancers and subfoveal choroidal neovascularization 
[172,173]. Although it is not a vitamin, it is a synthetic small molecule that when injected 
intravenously and combined with photodynamic therapy significantly reduced preexisting blood 
and lymphatic vessels in the corneas of suture-induced mice [174]. The ability of these photoactivated 
therapies to reduce CoNV and inflammatory cells indicates the potential combination of light and 
riboflavin or verteporfin in treating preexisting CoNV and for decreasing graft rejection after corneal 
transplant in high risk eyes.  

The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3), is a hormone 
involved in the regulation of calcium homeostasis. However, 1α,25[OH]2D3 also has antiangiogenic 
effects in a transgenic murine retinoblastoma model [175] and other angiogenesis models [176]. To 
test its effect on CoNV, it was applied topically to mouse corneas with suture-induced CoNV. 
1α,25[OH]2D3 reduced CoNV and corneal inflammation by inhibiting intracorneal migration of 
antigen presenting cells involved in initiating the immune response called Langerhans cells [177]. 
These results suggest that topical vitamin D3 has potential as a treatment for CoNV, but further testing 
is needed to rule out toxicity of 1α,25[OH]2D3 on corneal epithelial cells.  

Table 7. Vitamins and photoactivatable small molecules tested in CoNV models. 

Vitamin/Photoactivatable 
Compound 

Source Mechanism Routes Dose Model Ref 

Ascorbic acid 

 

Diet 

Unknown; 
Downregulatio
n of VEGF and 

MMP-9 

Topical 0.5, 1, 10 
mg/mL 

Rabbit 
suture 
model 

[167] 

Riboflavin 

 

Diet 

Induction of 
apoptosis in 

vascular ECs; 
downregulatio

n of 
macrophages 
and CD45+ 

cells 

Topical 
riboflavin 

followed by 
UVA 

exposure 

0.1% 
Murine 
suture 
model 

[171] 

Verteporfin 

 

Synthetic 

Suppressed 
blood vessels 

and lymphatic 
vessels 

Intravenous 
followed by 

light exposure 
6 mg/m2 

Murine 
suture 
model 

[174] Synthetic
Suppressed blood

vessels and lymphatic
vessels

Intravenous followed
by light exposure 6 mg/m2 Murine suture model [174]



Molecules 2020, 25, 3468 28 of 40

Table 7. Cont.

Vitamin/Photoactivatable
Compound Source Mechanism Routes Dose Model Ref
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5. Discussion/Future Directions

CoNV is a common sequela of numerous corneal insults from hypoxia and inflammatory conditions.
The mechanisms involved in the induction of CoNV are complex and are regulated by a multitude
of pro and antiangiogenic factors in the cornea. A majority of CoNV cases involve inflammatory
conditions and VEGF is arguably one of the main factors involved in the development of NV. However,
despite the usefulness of corticosteroids and anti-VEGF agents in suppressing CoNV their partial
efficacy and side effect profile reveal the need for novel therapies. This review highlighted a growing
collection of synthetic and natural small-molecule inhibitors of various molecular mechanisms that
showed promising antiangiogenic potential against CoNV in preclinical in vitro and in vivo studies.
The next step for many of these compounds would be to compare their effects on CoNV to current
therapies such as dexamethasone and bevacizumab. For example, the multitarget TKI, sunitinib,
was shown to be 3-fold more effective than bevacizumab [24]. More of this work would help to identify
the small molecules that are comparable to or better than current CoNV therapies, and narrow the
long list of potential CoNV treatments.

Overall, small molecules have some significant advantages over large molecules in the treatment
of CoNV. Biologic pharmaceuticals are drastically more costly than small molecules, therefore resulting
in high consumer cost [183]. One reason for this is that analytical characterization of biologics is
extremely challenging, requiring combination of numerous methods to ensure their stability and
purity [184] whereas small molecules can be structurally verified through high resolution analytical
techniques such as NMR spectroscopy [185]. In terms of drug delivery, small molecules can offer
greater partitioning across ocular barriers. Oral administration is one of the most common methods
of delivery that is noninvasive and patient compliance friendly [186]. However, biologics have
poor uptake from the gut and poor absorption across ocular barriers, and therefore oral and other
systemic delivery of such large size molecules are typically avoided when oral administration of small
molecules can offer more favorable partitioning across ocular barriers [187]. Small molecules can
also be formulated as topical eye drops allowing for targeted drug administration to the clinically
accessible cornea. Topical administration has the advantage of being noninvasive, with low systemic
absorption. Eye drops are easy to administer, and have fairly high compliance rates [188]. Additionally,
many of the side effects associated with systemic administration of medications such as cyclosporine A
can be avoided with topical eye drop administration [189]. The disadvantage to topical application
is that there is decreased bioavailability of the drug by this route. In an attempt to improve local
ocular drug delivery, nanoparticle formulations have been tested for EGCG, kaempferol, curcumin,
and cyclosporine A with promising results [91,94,112,156]. Therefore, nanoparticles or other advanced
formulation of other small molecules may allow for better inhibition of CoNV.

Many of the natural products such as the polyphenols and phytochemicals showed suppression
of CoNV; however, their exact antiangiogenic mechanisms and target proteins in CoNV inhibition
are not yet known. This is largely due to the non-selectivity of natural products that allows for
multitarget disease treatment. For example, the green tea polyphenols, such as EGCG, can inhibit
carcinogenesis through inhibition of MAPK, NF-κB, EGFR, insulin-like growth factor, proteasomes,
MMPs, urokinase-plasminogen activators, as well as through induction of apoptosis and cell cycle
arrest [190]. While further studies are needed to better understand the mechanism of natural products
in CoNV, their non-selectivity provides a potential advantage of regulating multiple pathways that
may be involved in the complex pathogenesis of CoNV.

Natural products have been studied for their antiangiogenic effects in multiple other disease
states. For instance, many antiangiogenic natural products have been tested for their effect on cancer
and posterior segment ocular angiogenesis [191,192]. More of those molecules that show potential in
treating other angiogenic diseases could be tested in CoNV as well. For example, cremastranone and
derivatives are homoisoflavanones that reduce choroidal and retinal neovascularization [193–197] and
therefore, may also have activity against CoNV. Moreover, many CoNV studies focus on inhibiting the
common pathways associated with vessel proliferation such as VEGF. However, other pathways have
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been discovered to be involved in angiogenesis, such as heme synthesis via ferrochelatase [198–200]
and epoxylipid metabolism via soluble epoxide hydrolase [201,202]. Therefore, these could be potential
unexplored targets for blocking CoNV.

The small molecules discussed above were mainly studied as monotherapies; however,
polypharmacology can have therapeutic benefits. The partial efficacy of bevacizumab is believed to
be related to its selectivity for the VEGF pathway. Endothelial cells become less dependent on VEGF
as new blood vessels mature due to the recruitment of pericytes [203]. Therefore, this may explain
why the multitarget TKI, sunitinib and the combination treatment, sunitinib-hesperetin, have a greater
inhibitory effect than bevacizumab alone [24,46]. Multitarget and combination therapies have the
advantage of impacting different pathways involved in the pathogenesis of CoNV. Future development
of effective CoNV therapies could benefit from combining existing methods with drug discovery of
small molecules, repurposed drugs and natural products. Our current knowledge of the application
of natural products and numerous small-molecule inhibitors in treating CoNV is limited to in vitro
and preclinical in vivo studies but offers exciting potential in future translational studies to investigate
their clinical efficacy and safety.
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sunitinib on corneal neovascularization. Cutan. Ocul. Toxicol. 2016, 35, 97–103. [CrossRef]

162. Kino, T.; Hatanaka, H.; Hashimoto, M.; Nishiyama, M.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H.;
Imanaka, H. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation,
and physico-chemical and biological characteristics. J. Antibiot. (Tokyo) 1987, 40, 1249–1255. [CrossRef]

163. Turgut, B.; Guler, M.; Akpolat, N.; Demir, T.; Celiker, U. The impact of tacrolimus on vascular endothelial
growth factor in experimental corneal neovascularization. Curr. Eye Res. 2011, 36, 34–40. [CrossRef]

164. Park, J.H.; Joo, C.K.; Chung, S.K. Comparative study of tacrolimus and bevacizumab on corneal
neovascularization in rabbits. Cornea 2015, 34, 449–455. [CrossRef] [PubMed]

165. Roomi, M.W.; Ivanov, V.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. In vitro and in vivo antitumorigenic
activity of a mixture of lysine, proline, ascorbic acid, and green tea extract on human breast cancer lines
MDA-MB-231 and MCF-7. Med. Oncol. 2005, 22, 129–138. [CrossRef] [PubMed]

166. Peyman, G.A.; Kivilcim, M.; Morales, A.M.; DellaCroce, J.T.; Conway, M.D. Inhibition of corneal angiogenesis
by ascorbic acid in the rat model. Graefes Arch. Clin. Exp. Ophthalmol. 2007, 245, 1461–1467. [CrossRef]
[PubMed]

167. Lee, M.Y.; Chung, S.K. Treatment of corneal neovascularization by topical application of ascorbic acid in the
rabbit model. Cornea 2012, 31, 1165–1169. [CrossRef] [PubMed]

168. Kohlhaas, M.; Spoerl, E.; Speck, A.; Schilde, T.; Sandner, D.; Pillunat, L. A new treatment of keratectasia after
LASIK by using collagen with riboflavin/UVA light cross-linking. Klin. Mon. Augenheilkd. 2005, 222, 430.
[CrossRef] [PubMed]

169. Wollensak, G.; Spoerl, E.; Seiler, T. Riboflavin/ultraviolet-A–induced collagen crosslinking for the treatment
of keratoconus. Am. J. Ophthalmol. 2003, 135, 620–627. [CrossRef]

170. Spoerl, E.; Mrochen, M.; Sliney, D.; Trokel, S.; Seiler, T. Safety of UVA-riboflavin cross-linking of the cornea.
Cornea 2007, 26, 385–389. [CrossRef]

171. Hou, Y.; Le, V.N.H.; Toth, G.; Siebelmann, S.; Horstmann, J.; Gabriel, T.; Bock, F.; Cursiefen, C. UV light
crosslinking regresses mature corneal blood and lymphatic vessels and promotes subsequent high-risk
corneal transplant survival. Am. J. Transpl. 2018, 18, 2873–2884. [CrossRef]

172. Blinder, K.J.; Blumenkranz, M.S.; Bressler, N.M.; Bressler, S.B.; Donato, G.; Lewis, H.; Lim, J.I.; Menchini, U.;
Miller, J.W.; Mones, J.M. Verteporfin therapy of subfoveal choroidal neovascularization in pathologic myopia:
2-year results of a randomized clinical trial—VIP report no. 3. Ophthalmology 2003, 110, 667–673.

173. Weiss, A.; van den Bergh, H.; Griffioen, A.W.; Nowak-Sliwinska, P. Angiogenesis inhibition for the
improvement of photodynamic therapy: The revival of a promising idea. Biochim. Biophys. Acta-Rev. Cancer
2012, 1826, 53–70. [CrossRef]

174. Hou, Y.; Le, V.N.H.; Clahsen, T.; Schneider, A.C.; Bock, F.; Cursiefen, C. Photodynamic therapy leads to
time-dependent regression of pathologic corneal (lymph) angiogenesis and promotes high-risk corneal
allograft survival. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5862–5869. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.survophthal.2011.05.003
http://dx.doi.org/10.1016/j.exer.2016.04.016
http://dx.doi.org/10.1097/00007890-199904150-00017
http://dx.doi.org/10.1038/bjc.2012.399
http://dx.doi.org/10.1167/iovs.04-0753
http://dx.doi.org/10.1167/iovs.13-11684
http://dx.doi.org/10.3109/15569527.2015.1034360
http://dx.doi.org/10.7164/antibiotics.40.1249
http://dx.doi.org/10.3109/02713683.2010.516620
http://dx.doi.org/10.1097/ICO.0000000000000336
http://www.ncbi.nlm.nih.gov/pubmed/25651492
http://dx.doi.org/10.1385/MO:22:2:129
http://www.ncbi.nlm.nih.gov/pubmed/31583272
http://dx.doi.org/10.1007/s00417-007-0542-4
http://www.ncbi.nlm.nih.gov/pubmed/17318569
http://dx.doi.org/10.1097/ICO.0b013e318241433b
http://www.ncbi.nlm.nih.gov/pubmed/22832865
http://dx.doi.org/10.1055/s-2005-857950
http://www.ncbi.nlm.nih.gov/pubmed/15912463
http://dx.doi.org/10.1016/S0002-9394(02)02220-1
http://dx.doi.org/10.1097/ICO.0b013e3180334f78
http://dx.doi.org/10.1111/ajt.14874
http://dx.doi.org/10.1016/j.bbcan.2012.03.003
http://dx.doi.org/10.1167/iovs.17-22904
http://www.ncbi.nlm.nih.gov/pubmed/29145577


Molecules 2020, 25, 3468 39 of 40

175. Shokravi, M.T.; Marcus, D.M.; Alroy, J.; Egan, K.; Saornil, M.A.; Albert, D.M. Vitamin D inhibits angiogenesis
in transgenic murine retinoblastoma. Investig. Ophthalmol. Vis. Sci. 1995, 36, 83–87.

176. Merrigan, S.L.; Park, B.; Ali, Z.; Jensen, L.D.; Corson, T.W.; Kennedy, B.N. Calcitriol and non-calcemic vitamin
D analogue, 22-oxacalcitriol, attenuate developmental and pathological choroidal vasculature angiogenesis
ex vivo and in vivo. Oncotarget 2020, 11, 493. [CrossRef] [PubMed]

177. Suzuki, T.; Sano, Y.; Kinoshita, S. Effects of 1α, 25-dihydroxyvitamin D3 on Langerhans cell migration and
corneal neovascularization in mice. Investig. Ophthalmol. Vis. Sci. 2000, 41, 154–158.

178. Ha, C.H.; Jhun, B.S.; Kao, H.Y.; Jin, Z.G. VEGF stimulates HDAC7 phosphorylation and cytoplasmic
accumulation modulating matrix metalloproteinase expression and angiogenesis. Arter. Thromb. Vasc. Biol.
2008, 28, 1782–1788. [CrossRef] [PubMed]

179. Hong, J.; Luesch, H. Largazole: From discovery to broad-spectrum therapy. Nat. Prod. Rep. 2012, 29, 449–456.
[CrossRef]

180. Zhou, H.; Jiang, S.; Chen, J.; Ren, X.; Jin, J.; Su, S.B. Largazole, an inhibitor of class I histone deacetylases,
attenuates inflammatory corneal neovascularization. Eur. J. Pharm. 2014, 740, 619–626. [CrossRef]

181. Zhou, H.; Jiang, S.; Chen, J.; Su, S.B. Suberoylanilide hydroxamic acid suppresses inflammation-induced
neovascularization. Can. J. Physiol. Pharm. 2014, 92, 879–885. [CrossRef]

182. Li, X.; Zhou, Q.; Hanus, J.; Anderson, C.; Zhang, H.; Dellinger, M.; Brekken, R.; Wang, S. Inhibition of
multiple pathogenic pathways by histone deacetylase inhibitor SAHA in a corneal alkali-burn injury model.
Mol. Pharm. 2013, 10, 307–318. [CrossRef]

183. Ngo, H.X.; Garneau-Tsodikova, S. What are the drugs of the future? MedChemComm 2018, 9, 757–758.
[CrossRef]

184. Berkowitz, S.A.; Engen, J.R.; Mazzeo, J.R.; Jones, G.B. Analytical tools for characterizing biopharmaceuticals
and the implications for biosimilars. Nat. Rev. Drug Discov. 2012, 11, 527–540. [CrossRef]

185. Sugiki, T.; Furuita, K.; Fujiwara, T.; Kojima, C. Current NMR Techniques for structure-based drug discovery.
Molecules 2018, 23, 148. [CrossRef] [PubMed]

186. Jitendra; Sharma, P.K.; Bansal, S.; Banik, A. Noninvasive routes of proteins and peptides drug delivery.
Indian J. Pharm. Sci. 2011, 73, 367–375. [CrossRef] [PubMed]

187. Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J. 2010, 12, 348–360.
[CrossRef] [PubMed]

188. Cholkar, K.; Patel, S.P.; Vadlapudi, A.D.; Mitra, A.K. Novel strategies for anterior segment ocular drug
delivery. J. Ocul. Pharm. 2013, 29, 106–123. [CrossRef] [PubMed]

189. Lallemand, F.; Felt-Baeyens, O.; Besseghir, K.; Behar-Cohen, F.; Gurny, R. Cyclosporine A delivery to the eye:
A pharmaceutical challenge. Eur. J. Pharm. Biopharm. 2003, 56, 307–318. [CrossRef]

190. Khan, N.; Mukhtar, H. Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett. 2008, 269,
269–280. [CrossRef]

191. EL-Meghawry, E.; Rahman, H.; Abdelkarim, G.; Najda, A. Natural products against cancer angiogenesis.
Tumor Biol. 2016, 37, 14513–14536.

192. Sulaiman, R.S.; Basavarajappa, H.D.; Corson, T.W. Natural product inhibitors of ocular angiogenesis.
Exp. Eye Res. 2014, 129, 161–171. [CrossRef]

193. Basavarajappa, H.D.; Lee, B.; Lee, H.; Sulaiman, R.S.; An, H.; Magaña, C.; Shadmand, M.; Vayl, A.;
Rajashekhar, G.; Kim, E.-Y. Synthesis and biological evaluation of novel homoisoflavonoids for retinal
neovascularization. J. Med. Chem. 2015, 58, 5015–5027.

194. Kim, J.H.; Kim, J.H.; Yu, Y.S.; Jun, H.-O.; Kwon, H.J.; Park, K.H.; Kim, K.-W. Inhibition of choroidal
neovascularization by homoisoflavanone, a new angiogenesis inhibitor. Mol. Vis. 2008, 14, 556.

195. Kim, J.H.; Kim, K.H.; Kim, J.H.; Yu, Y.S.; Kim, Y.-M.; Kim, K.-W.; Kwon, H.J. Homoisoflavanone inhibits
retinal neovascularization through cell cycle arrest with decrease of cdc2 expression. Biochem. Biophys.
Res. Comm. 2007, 362, 848–852. [CrossRef]

196. Lee, B.; Basavarajappa, H.D.; Sulaiman, R.S.; Fei, X.; Seo, S.-Y.; Corson, T.W. The first synthesis of the
antiangiogenic homoisoflavanone, cremastranone. Org. Biomol. Chem. 2014, 12, 7673–7677. [CrossRef]

197. Sulaiman, R.S.; Merrigan, S.; Quigley, J.; Qi, X.; Lee, B.; Boulton, M.E.; Kennedy, B.; Seo, S.-Y.; Corson, T.W.
A novel small molecule ameliorates ocular neovascularisation and synergises with anti-VEGF therapy.
Sci. Rep. 2016, 6, 1–11. [CrossRef]

http://dx.doi.org/10.18632/oncotarget.27380
http://www.ncbi.nlm.nih.gov/pubmed/32082484
http://dx.doi.org/10.1161/ATVBAHA.108.172528
http://www.ncbi.nlm.nih.gov/pubmed/18617643
http://dx.doi.org/10.1039/c2np00066k
http://dx.doi.org/10.1016/j.ejphar.2014.06.019
http://dx.doi.org/10.1139/cjpp-2014-0117
http://dx.doi.org/10.1021/mp300445a
http://dx.doi.org/10.1039/C8MD90019A
http://dx.doi.org/10.1038/nrd3746
http://dx.doi.org/10.3390/molecules23010148
http://www.ncbi.nlm.nih.gov/pubmed/29329228
http://dx.doi.org/10.4103/0250-474X.95608
http://www.ncbi.nlm.nih.gov/pubmed/22707818
http://dx.doi.org/10.1208/s12248-010-9183-3
http://www.ncbi.nlm.nih.gov/pubmed/20437123
http://dx.doi.org/10.1089/jop.2012.0200
http://www.ncbi.nlm.nih.gov/pubmed/23215539
http://dx.doi.org/10.1016/S0939-6411(03)00138-3
http://dx.doi.org/10.1016/j.canlet.2008.04.014
http://dx.doi.org/10.1016/j.exer.2014.10.002
http://dx.doi.org/10.1016/j.bbrc.2007.08.100
http://dx.doi.org/10.1039/C4OB01604A
http://dx.doi.org/10.1038/srep25509


Molecules 2020, 25, 3468 40 of 40

198. Basavarajappa, H.D.; Sulaiman, R.S.; Qi, X.; Shetty, T.; Sheik Pran Babu, S.; Sishtla, K.L.; Lee, B.; Quigley, J.;
Alkhairy, S.; Briggs, C.M.; et al. Ferrochelatase is a therapeutic target for ocular neovascularization.
EMBO Mol. Med. 2017, 9, 786–801. [CrossRef]

199. Pran Babu, S.P.S.; White, D.; Corson, T.W. Ferrochelatase regulates retinal neovascularization. FASEB J. 2020.
[CrossRef]

200. Shetty, T.; Corson, T.W. Mitochondrial heme synthesis enzymes as therapeutic targets in vascular diseases.
Front. Pharm. 2020. [CrossRef]

201. Sulaiman, R.S.; Park, B.; Sheik Pran Babu, S.P.; Si, Y.; Kharwadkar, R.; Mitter, S.K.; Lee, B.; Sun, W.; Qi, X.;
Boulton, M.E. Chemical proteomics reveals soluble epoxide hydrolase as a therapeutic target for ocular
neovascularization. ACS Chem. Biol. 2018, 13, 45–52. [CrossRef]

202. Park, B.; Corson, T.W. Soluble epoxide hydrolase inhibition for ocular diseases: Vision for the future.
Front. Pharm. 2019, 10, 95. [CrossRef]

203. Chaoran, Z.; Zhirong, L.; Gezhi, X. Combination of vascular endothelial growth factor receptor/platelet-derived
growth factor receptor inhibition markedly improves the antiangiogenic efficacy for advanced stage mouse
corneal neovascularization. Graefes Arch. Clin. Exp. Ophthalmol. 2011, 249, 1493–1501. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.15252/emmm.201606561
http://dx.doi.org/10.1096/fj.202000964R
http://dx.doi.org/10.3389/fphar.2020.01015
http://dx.doi.org/10.1021/acschembio.7b00854
http://dx.doi.org/10.3389/fphar.2019.00095
http://dx.doi.org/10.1007/s00417-011-1709-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Models of CoNV 
	Synthetic Small Molecules 
	Tyrosine Kinase Inhibitors 
	Repurposed Antimicrobials 
	Other Synthetics 

	Natural Products 
	Polyphenols: Flavonoids 
	Non-Flavonoid Phytochemicals 
	Immunosuppressants 
	Vitamins and Photoactivatable Compounds 
	HDAC Inhibitors 

	Discussion/Future Directions 
	References

