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Human movement is generated by a dynamic interplay between the nervous system,

the biomechanical structures, and the environment. To investigate this interaction, we

propose a neuro-musculoskeletal model of human goal-directed arm movements. Using

this model, we simulated static perturbations of the inertia and damping properties of the

arm, as well as dynamic torque perturbations for one-degree-of freedom movements

around the elbow joint. The controller consists of a feed-forward motor command

and feedback based on muscle fiber length and contraction velocity representing

short-latency (25ms) or long-latency (50ms) stretch reflexes as the first neuronal

responses elicited by an external perturbation. To determine the open-loop control

signal, we parameterized the control signal resulting in a piecewise constant stimulation

over time for each muscle. Interestingly, such an intermittent open-loop signal results

in a smooth movement that is close to experimental observations. So, our model

can generate the unperturbed point-to-point movement solely by the feed-forward

command. The feedback only contributed to the stimulation in perturbed movements.

We found that the relative contribution of this feedback is small compared to the

feed-forward control and that the characteristics of the musculoskeletal system create an

immediate and beneficial reaction to the investigated perturbations. The novelty of these

findings is (1) the reproduction of static as well as dynamic perturbation experiments

in one neuro-musculoskeletal model with only one set of basic parameters. This

allows to investigate the model’s neuro-muscular response to the perturbations that—at

least to some degree—represent stereotypical interactions with the environment; (2)

the demonstration that in feed-forward driven movements the muscle characteristics

generate a mechanical response with zero-time delay which helps to compensate for the

perturbations; (3) that this model provides enough biomechanical detail to allow for the

prediction of internal forces, including joint loads and muscle-bone contact forces which

are relevant in ergonomics and for the development of assistive devices but cannot be

observed in experiments.
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1. INTRODUCTION

Humans generate goal-directed movement by an interplay
between the nervous system, the biomechanical structures, and
the environment, where high-level motor control is fine-tuned
to the dynamics of the low-level muscular system and exploits
its characteristics (Scott, 2004). Understanding and predicting
this dynamic interplay by means of a computational model is
relevant for two reasons: firstly, it allows gaining insight into
the hierarchical structure of motor control and the sensorimotor
integration of muscle-tendon dynamics and reflexes to control
(Berniker et al., 2009; Campos and Calado, 2009; Latash, 2010;
Kistemaker et al., 2013). Secondly, it provides the opportunity
to study internal forces in the musculoskeletal system which
are relevant in ergonomics and for the development of assistive
devices and otherwise experimentally not accessible (Holzbaur
et al., 2005; Pennestrì et al., 2007).

To this end, we here propose a model of human goal-directed
arm movements which fulfills the following criteria: (a) it
represents the biomechanical structures to a level of detail which
allows the prediction of internal joint loads and muscle-bone
contact forces; (b) it considers muscle-tendon based short- or
long-latency reflexes as the first neuronal responses elicited by an
external perturbation; (c) it reproduces experimentally observed
responses to static as well as dynamic external perturbation
forces which allow to investigate the model’s neuro-muscular
response and—at least to some degree—represent stereotypical
interactions with the environment.

Individually, these criteria have been fulfilled in models
before. For criterion (a), models typically consider muscle fiber
characteristics (Hill-type muscle models, e.g., Millard et al., 2013;
Haeufle et al., 2014b; Siebert and Rode, 2014), tendon non-linear
elasticity, neuro-muscular activation dynamics (e.g., Hatze, 1977;
Rockenfeller et al., 2015), antagonistic setup (e.g., Schmitt et al.,
2019), and anatomical muscle routing (e.g., Holzbaur et al., 2005;
Hammer et al., 2019). Such models are used for ergonomics or
for the development of assistive devices, but, to our knowledge,
do not fulfill at least one of the other two criteria (Holzbaur et al.,
2005; Chadwick et al., 2009; Loeb, 2012; Glenday et al., 2019).

Musculoskeletal models which fulfill criterion (b) have also
been developed (e.g., Gribble and Ostry, 2000; Kistemaker
et al., 2006; Lan and Zhu, 2007; Bayer et al., 2017, review:
Todorov, 2004). Two studies further employed perturbations
to demonstrate the benefit of combining muscle spindle and
Golgi tendon organ signals (Kistemaker et al., 2013) and
the role of muscular characteristics in stabilization against
different perturbations (Pinter et al., 2012). However, none of
these models fulfills criterion (a) as they do not account for
anatomical muscle routing. Furthermore, although the latter
two studies investigate the reaction to perturbations, they
do not fulfill criterion (c): they employ the perturbations
to investigate their research questions, but they do not
compare their perturbation response to experimental data
(Pinter et al., 2012; Kistemaker et al., 2013).

Finally, many models successfully reproduce data from
perturbation experiments [criterion (c), reviews see Wolpert and
Ghahramani, 2000; Campos and Calado, 2009]. Examples are the

predicted response to static perturbations mimicking changes in
inertia or damping (Bhanpuri et al., 2014), or to dynamic torque
perturbations (Kalveram et al., 2005). Both models incorporate
feedback but have no representation of themuscles. Furthermore,
they consider feedback on the joint level and not on the
muscular level required to investigate sensorimotor integration.
In addition to that, none of these models represent the muscular
characteristics to fulfill criterion (a).

The purpose of this study was to develop a neuro-
musculoskeletal model that fulfills all three criteria. The approach
results in a neuro-musculoskeletal model that shows valid
responses to both static and dynamic perturbations as reported
in the literature (Kalveram and Seyfarth, 2009; Bhanpuri
et al., 2014). These responses match those of previous motor
control models but allow a novel interpretation of the relative
contribution of feedback and biomechanical characteristics as
well as the calculation of internal forces. This contribution is
a step in the attempt to foster the dual use of musculoskeletal
models as tools to study motor control models and as tools for
the development of a virtual design and testbed for ergonomics
or assistive devices.

2. METHODS

In order to simulate goal-directed arm movements, we combine
a musculoskeletal model of the arm including two degrees of
freedom and six muscles (based on Kistemaker et al., 2007;
Suissa, 2017; Driess et al., 2018) with a neuronal control
model (based on the concept of Bhanpuri et al., 2014). Both
parts are described in more detail in the following. The
structure of the neuro-musculoskeletal model is illustrated
in Figure 1.

To investigate the model’s interaction with the environment
and compare it to experimental results, static perturbations
of the inertia and viscosity properties of the arm (as
reported in Bhanpuri et al., 2014) as well as dynamic torque
perturbations (as reported in Kalveram et al., 2005) are
applied. An overview over the applied perturbations is given
in Figure 2.

2.1. Musculoskeletal Model of the Arm
The musculoskeletal model Arm26 (2 degrees of freedom, six
muscles, see Bayer et al., 2017; Driess et al., 2018) of the
human arm is described in detail in the Supplementary Material.
The arm model consists of two rigid bodies (lower and upper
arm) that are connected via two one-degree-of-freedom revolute
joints that represent the shoulder (glenohumeral) and elbow
joint (see Figure 1, within dashed box for schematics and
Figure 2 for a visualization). Active forces are generated by six
muscle-tendon units (MTUs, see Figure 2), four monoarticular
(shoulder anteversion, shoulder retroversion, elbow flexor,
elbow extensor) and two biarticular muscles (biarticular flexor,
biarticular extensor). The muscles are stimulated by a neuronal
control stimulation signal u. The model of the activation
dynamics predicts the activity a of the muscle depending
on the current muscle stimulation, considering the fiber
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FIGURE 1 | Schematic diagram of the neuro-musculoskeletal model. The desired trajectory ϕdes.(t) is a minimum jerk trajectory between a desired starting and an

ending point. The command generator maps this trajectory to an open-loop motor command uopen and to desired muscle fiber lengths and contraction velocities (λ,

λ̇) that correspond to the desired trajectory. The total motor command u is fed into the model of the activation dynamics of muscles which relates the neuronal

stimulation u to muscular activity a that drives the muscle model. The muscles produce forces F that act on the skeletal system resulting in a simulated movement ϕ(t)

of the arm. In the time-delayed feedback loop, the sensory system which represents a simplified version of the muscle spindles measures the current lengths and

contraction velocities of the muscle fibers (lCE(t), l̇CE(t)). They are compared to the desired values (λ, λ̇) and the resulting feedback error is multiplied by the feedback

gains kp and kd (see Equation 4).

FIGURE 2 | Overview over the applied static and dynamic perturbations. 1© The static perturbations of the inertia and viscosity properties of the arm during a flexion

movement in the horizontal plane (without gravity) are: a Increased damping (+0.30Nms rad−1) b Decreased damping (−0.31N m s rad−1) c Increased inertia

(+0.039kg ms2) d Decreased inertia (−0.032kg ms2), in accordance with Bhanpuri et al. (2014). 2© During the dynamic torque perturbations a constant torque that

mimics gravity (−1.5Nm) is applied. Hence, we visualized this movement as a movement in the vertical plane. The perturbation is a temporal torque impulse in or

against the direction of movement: a Positive torque impulse (+5Nm) during a flexion movement b Negative torque impulse (−5Nm) during a flexion movement c

Positive torque impulse (+5Nm) during an extension movement d Negative torque impulse (-5Nm) during an extension movement, in accordance with Kalveram et al.

(2005).

length dependency (Hatze, 1977) (see Figure 1). Depending
on the muscular activity, the force of each MTU is modeled
using a Hill-type model accounting for force-length-velocity

characteristics, tendon and parallel tissue elasticity, and damping
in the tendon (Haeufle et al., 2014b). Muscle path geometry,
i.e., origin, insertion and path deflection, is implemented
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to match experimental lever arm data. For the joint angle-
dependent deflection geometry, we used the via-ellipse approach
confining the path of the muscle to geometric ellipses attached
to the rigid bones (Hammer et al., 2019). This algorithm
allows to calculate muscle-bone contact forces and applies
forces to the bones such that internal joint loadings can
be predicted.

The parameters used in the models are not subject-specific but
represent a generic man and are collected from different sources
(among others: van Soest et al., 1993; Kistemaker et al., 2006;
Mörl et al., 2012; Bhanpuri et al., 2014) that are listed in detail in
the Supplementary Material. Due to the muscle-tendon model
in combination with anatomical muscle routing, our model
provides the necessary level of biomechanical detail to determine
internal muscular and joint loads as well as muscle-bone contact
forces. Hence, criterion (a) that we established in the introduction
is fulfilled.

The experimental perturbations that we reproduce in
this simulation study were confined to the elbow joint.
Thus, we here fix the shoulder joint to 30◦ such that
only one-degree-of-freedom movements are possible. Hence,
the monoarticular shoulder muscles have no effect on the
movement and are excluded from our investigations. To
make the results comparable to experiments, the inertia
properties of the forearm were changed according to an arm
that is attached to an exoskeleton robot that was used by
Bhanpuri et al. (2014).

2.2. Control Model
The neuronal control model is illustrated in Figure 1. It is based
on the control model that was proposed by Bhanpuri et al. (2014)
to reproduce static perturbations in a torque-driven model of the
arm. The input to the controller is a desired trajectory ϕdes.(t)
that is considered to be a result of the movement planning. The
controller consists of an open-loop command uopen and a closed-
loop signal uclosed that incorporates proprioceptive feedback.
The total stimulation ui is the sum of those components and
represents α-motor neuron activity. For each muscle i, it is
calculated as

ui(t): =
{

u
open
i (t)+ uclosedi (t)

}1

0
, (1)

where the operation {x}10 sets values x < 0 to 0 and x > 1 to 1.
The total motor command {ui(t)}

6
i=1 is fed into the

musculoskeletal model resulting in a simulated movement ϕ(t)
of the arm. This control approach can be classified as a modified
hybrid equilibrium point (EP) controller where the open-loop
signal is intermittent while the feedback signal is continuous (see
Kistemaker et al., 2006).

2.2.1. Movement Planning
We assume that a higher-level structure conducts planning of
the movement and provides a desired kinematic movement
trajectory ϕdes.(t) as an input to the lower-level control
structures that are modeled here. Therefore, the input to our
controller is the desired trajectory which we determined by
generating a minimum-jerk trajectory between desired starting

FIGURE 3 | Triphasic stimulation pattern for a flexion movement. Starting from

the initial position at t = 0.1 s, during the acceleration phase, mainly the

agonist muscles are active. In the second phase between t = t1 and t = t2,

both muscle groups are active, braking the movement. In the last phase for

t > t2, again both muscle groups are active in order to reach the final position

and hold it with a desired level of co-contraction.

and ending angles. To this end, a fifth-order polynomial
approach for the desired angle trajectory ϕdes.(t) is chosen
in accordance with Flash and Hogan (1985) who have
shown that their mathematical model shows the typical bell-
shaped velocity profile and predicts experimental observations
of voluntary unconstrained point-to-point movements in a
horizontal plane.

2.2.2. Open-Loop Control Generates Reference

Trajectory
The command generator maps the desired trajectory ϕdes.(t) to
an open-loop motor command uopen, and to desired contractile
element lengths and velocities (λ, λ̇) that correspond to the
desired trajectory. Using a musculoskeletal model, the generation
of these motor commands is non-trivial since the system is
redundant (degree of freedom problem, see Bernstein, 1967;
Shadmehr, 1991) and non-linear. In addition to that, the fact
that the activation dynamics and the muscle model are described
by first-order differential equations including time delays and
the resulting time-dependency prohibits the straight-forward
calculation of the inverse problem.

To simplify this process, instead of deriving a continuous set
of stimulations over time, we introduce a triphasic stimulation
pattern with a limited number of parameters (see Equation
2, illustrated in Figure 3). It is inspired by the three phases
that have been observed in muscle surface electromyogram
(EMG) patterns during fast point-to-point movements (see
e.g., Wachholder and Altenburger, 1926; Wierzbicka et al.,
1986; Kistemaker et al., 2006): an acceleration phase where
mostly the agonist muscles are active which is followed by
a braking phase and a final phase which keeps the arm in
the desired final position. Hence, the muscles are divided into
two groups: the agonists and the antagonists for a movement.
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We define the muscle stimulations over time for those muscle
groups as

u
open
i (t): =































u0i for t < 0.1 s

uacc.i =

{

uacc. for agonist muscles

umin. for antagonist muscles
for 0.1 s ≤ t < t1

udec.i for t1 ≤ t < t2

ufinali for t2 ≤ t .

(2)

Following this approach, the control parameters that are required
to follow the desired trajectory need to be determined.

The initial and the final position are determined to be stable
equilibrium positions, i.e.,

ϕ̇ = 0 and ϕ̈ = 0 , (3)

which leads to the condition that the net joint moment vanishes
in these positions. This allows for the determination of the
necessary muscle stimulations u0i and u

final
i to hold the initial and

the final position by minimizing
∑4

i=1(ui − udes.) subject to the
constraint that the sum of all torques acting on a joint is zero,
i.e., the system is in a stable equilibrium position. Herein, the
desired level of stimulation udes. allows influencing the level of
co-contraction. The condition that the system is supposed to be
in equilibrium at t = 0 defines the initial conditions. The final
phase starts at t2 = 0.7 s which is approximately the time when
the final position is reached.

The dynamic movement between those equilibrium positions
(0.1 s < t < t2) is parametrized such that it is close to the desired
trajectory ϕdes.(t):

In the acceleration phase, the muscle stimulation uacc. and the
switching time t1 are optimized using a Bayesian optimization
approach (see e.g., Brochu et al., 2010) where the squared point-
wise difference between the current trajectory and the desired
trajectory is minimized. The minimal level of stimulation umin.

is set to a fixed value (0.005) in order to reduce the search space
for possible stimulations.

The muscle stimulation pattern udec.i in the braking phase is

determined analogously to the stimulations ufinali but with a lower
level of co-contraction to reach the final position following the
desired pathway.

In the following, these optimized muscle stimulation patterns
are used as open-loop signals u

open
i (t). If no external perturbation

occurs, this stimulation pattern generates a trajectory that is close
to the desired minimum jerk trajectory ϕdes.(t). This trajectory
will be used as reference hereafter.

2.2.3. Closed-Loop Response to Perturbations
If a perturbation occurs, the movement trajectory changes.
As a consequence, the actual fiber lengths and contraction
velocities differ from the values from the reference trajectory.
In this case, the feedback loop modifies the control signal (see
Equation 1). This proprioceptive feedback is incorporated in
the closed-loop signal uclosedi (t) by comparing the actual lengths

and contraction velocities (lCE(t), l̇CE(t)) of the muscle fibers
(contractile elements, CEs) of the muscles to desired values

(λ(t), λ̇(t)). The desired CE lengths and velocities (λ, λ̇) are
set to the values (lCE(t), l̇CE(t)) recorded during an unperturbed
movement. So, as long as there is no external perturbation, the
feedback error is zero and hence the closed-loop signal vanishes.

Since the information about the current state of the muscle
only becomes available with a neuronal delay, a time lag δ is
introduced. To investigate different hierarchy levels of feedback
mechanisms, we tested both, a short-latency and a long-latency
stretch reflex. For the short-latency response, the time delay is
set to 25ms in accordance with similar arm models (Gribble
et al., 1998; Kistemaker et al., 2006; Bayer et al., 2017) which
is in a physiologically plausible range [R1 response (Pruszynski
et al., 2011; Kurtzer et al., 2014; Scott, 2016; Weiler et al.,
2016)]. This short-latency feedback represents a simplified model
of the spinal, mono-synaptic muscle spindle reflex (Pruszynski
and Scott, 2012; Weiler et al., 2019), assuming that the muscle
spindles provide accurate time-delayed information about the
muscle fiber lengths and contraction velocities (Kistemaker
et al., 2006). Since experimental findings indicate that the
long-latency stretch reflex plays an important role in the
reaction to mechanical perturbations in goal-directed reaching
movements (e.g., Kurtzer et al., 2014; Weiler et al., 2016), we also
implemented a long-latency feedback loop by setting the time
delay to 50ms [R2 response (Pruszynski et al., 2011; Scott, 2016)].
Since both, short- and long-latency feedback are implemented
with the same mathematical model (see below) and lead to
similar results, we focus in the following on the long-latency
response, while the short-latency responses to the perturbations
can be found in the Supplementary Material. By considering
these muscle-tendon based reflexes, our model fulfills criterion
(b) that we suggested in the introduction.

The closed-loop signal uclosedi (t) for each muscle i is
calculated as

uclosedi (t) : =
kp

lCE,opt
(lCEi (t − δ)− λi(t − δ))

+
kd

lCE,opt
(l̇CEi (t − δ)− λ̇i(t − δ)) , (4)

FIGURE 4 | Illustration of the determination of early velocity and dysmetria.
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where kp and kd are the feedback gains and lCE,opt stands for
the optimal length of the contractile element. The feedback gains
kp and kd as well as the desired level of co-contraction in the

braking phase udes.,dec. play an important role in the way how the
system reacts to perturbations. Therefore, they are optimized in
order to reproduce the answer to all four static perturbations seen
in experiments.

In the objective function for this optimization, we
incorporated the quantities early velocity and dysmetria (as
used by Bhanpuri et al., 2014, illustrated in Figure 4) that we also
use as evaluation criteria for the static perturbations below. Early
velocity is defined as the joint angle velocity 155ms after the
first time the velocity exceeds 10 ◦/s. Dysmetria is defined as the
difference between the final position (at t=1 s) and the position
at the time of first correction. Herein, the time of first correction
is the time when the absolute value of the angular velocity is
smaller than 2 ◦/s or the absolute value of the angular acceleration
falls below 2 ◦/s2. The objective function is minimized using
the pattern search algorithm in Matlab R© and is defined as

∑

static
perturbation types

[

(

early velocity difference simulation - mean early velocity difference experiment

maximal standard deviation early velocity difference experiment

)2

+

(

dysmetria difference simulation - mean dysmetria difference experiment

maximal standard deviation dysmetria difference experiment

)2
]

=
∑

static
perturbation types

[(

1vsim0 − µ(1v
exp
0 )

max σ (1v
exp
0 )

)2

+

(

1dsim − µ(1dexp)

max σ (1dexp)

)2
]

, (5)

with vsim0 : early velocity, d: dysmetria, µ: mean, σ : standard
deviation, 1: difference that is calculated as the early
velocity/dysmetria of the perturbed movement minus the
early velocity/dysmetria of the reference movement.

The whole set of resulting control parameters can be found
in Table 2 in the Appendix. To quantify the influence of these
control parameters on the resulting movements, we performed a
sensitivity analysis (see Appendix).

2.3. Simulation Experiments
To test whether this model also fulfills criterion (c) from
the introduction, we simulated its response to static and
dynamic perturbations.

velocity quotient : =
angular velocity at the beginning of the perturbation

angular velocity at 1t after the beginning of the perturbation
. (6)

2.3.1. Static Perturbation of Inertia and Viscosity
Bhanpuri et al. (2014) performed experiments where healthy
subjects carried out goal-directed single-joint arm movements
while the arm was attached to an exoskeleton robot. Each subject
performed two blocks with 40 trials each of which 36 trials were
null trials (without perturbation). In the perturbation trials, the
robot exerted a force to mimic changes in the dynamic properties
of the arm, in particular inertia and viscosity. The movements
were performed in a horizontal plane (Figure 2 1©).

In our computer simulation, we adapted the moment of
inertia of the modeled forearm to account for the influence of
the robot arm to be able to compare our simulation results to
their experiments. In accordance with Bhanpuri et al. (2014),
the static perturbations were an increase in moment of inertia
(+0.039kgms2), a decrease in inertia (−0.032kgms2), an increase
in damping (+0.30Nms rad−1) or a decrease in damping
(−0.31Nms rad−1) (Figure 2 1©).
Evaluation criterion: In order to compare the simulation results
to the experimental data, we introduced an evaluation criterion
as used by Bhanpuri et al. (2014). They investigate the relation
between early velocity and dysmetria, as defined above in section
2.2.3 and illustrated in Figure 4.

2.3.2. Dynamic Torque Perturbation
In analogy with the experiments described in Kalveram et al.
(2005) and Kalveram and Seyfarth (2009), a dynamic torque
perturbation was applied to the simulated pointing movement
(Figure 2 2©). A constant torque that mimics gravity (−1.5Nm)

is applied. The perturbation is an additional temporal torque
change in or against the direction of movement (±5Nm). The
perturbation starts after 25% of the movement (corresponds to
7.5◦ of 30◦ in total) and lasts 37.5ms. Hence, relative to the
total movement, we apply the same perturbation as Kalveram
et al. (2005). The starting and final position and all other
biomechanical and control parameters are identical to the static
perturbation simulations 1©.

Evaluation criterion: For the dynamic torque perturbation,
we chose the quotient of the angular velocity at the elbow
joint at the beginning and at the end the perturbation as an
evaluation criterion:

Setting 1t to the duration of the perturbation (37.5ms),
the velocity quotient relates the angular velocity at the
beginning of the perturbation to the one at the end of
the perturbation. This allows investigating the muscle-
dominated response to the perturbations. In addition
to that, we also evaluate the velocity quotient of the
angular velocity at 1t =100ms after the beginning
of the perturbation, which quantifies also the first
neuronal response.
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2.3.3. Implementation
The arm model and the optimization and analysis scripts are
implemented using Matlab R©/Simulink R© version 2018a with
the Simscape MultibodyTMenvironment. For all simulations, the
variable-step Matlab ODE solver ode15s with relative solver
tolerance 1× 10−5 has been used. The absolute tolerance
and the minimum/maximum/initial step size are set to be
determined automatically.

For comparison, the experimental results were digitized from
Kalveram and Seyfarth (2009) and Bhanpuri et al. (2014). For
a smooth appearance and for the calculation of the angular
velocity, we fitted a smoothing spline to the digitized discrete data
(using the curve fitting toolbox in Matlab R©).

2.4. Open-Loop and Torque-Driven Model
as Comparison
To investigate the influence of the implemented feedback
mechanism, we applied the same perturbations to an open-loop
controlled version of our model, i.e., without the implemented
feedback loop (kp = 0 and kd = 0).

In addition to that, we implemented an idealized torque-
driven model to compare the reaction to external forces to
those of the musculoskeletal model. This comparison allows
investigating the contribution of the visco-elastic reaction
forces which are generated by the muscle-tendon contraction
dynamics (preflex forces). The torque-driven model uses the
same mechanical parameters (segment lengths, masses, inertia)
as the musculoskeletal model. To determine the torque that is
necessary to reproduce the musculoskeletal model’s movement,
we recorded the net joint torque that is applied by the muscles
during both the unperturbed movement. In accordance with
the model of Bhanpuri et al. (2014), the feedback is based on
the joint positions with a delay of 100ms representing a long-
latency reflex.

3. RESULTS

We here show the results for the long-latency feedback loop
(50ms delay). The short-latency responses (25ms delay) to
the perturbations is quite similar and can be found in the
Supplementary Material.

3.1. Intermittent Open-Loop Signals
Reproduce Unperturbed Movement
The simulation of the unperturbed movement is in good
agreement with the desired minimum jerk trajectory and with
the experimental data (see Figures 5, 7, orange curves). As
mentioned above, without perturbations the feedback signal
vanishes. So, the movement is solely controlled by the open-loop
command which is a piecewise constant function over time. This
unperturbed movement is the reference for the perturbed cases.

3.2. Static Perturbation of Inertia and
Viscosity
In presence of the static perturbations, the simulation and
experimental results show the same qualitative behavior in

the relation between early velocity difference and dysmetria
difference (Figure 5A). An increase in inertia leads to a lower
early velocity which results in higher dysmetria. A decrease
in inertia causes an increase in early velocity which leads to
lower dysmetria. For the damping perturbations, it is the other
way round. The comparison of the movement trajectory in
the simulation (Figure 5B) and the experiments of Bhanpuri
et al. (2014) (Figure 5C) shows a qualitatively and quantitatively
similar behavior at the beginning of the movement. Toward
the end of the movement, the subject in the experiment tends
to take longer to reach the final position, especially for the
damping perturbations. Note that we only compared our results
with experimental trajectories of one typical control subject
and with early velocity/dysmetria difference of a small control
group, respectively, while we used generic, not subject-specific
parameters for the mechanical description of the limb.

The open-loop controlled system shows a similar response to
the static perturbations as the closed-loop version and also as
the subjects in the experiment (Figure 6A). However, in three of
four cases, the closed-loop controller leads to better results than
the open-loop approach and also the sum of all cases is smaller
(Figure 6A vs. Figure 6B and Table 1). The only case that does
not profit from the feedback and leads to similar results is the
decreasing of inertia.

The trajectories generated by the torque-driven model do not
reach the desired target position without feedback (Figure 6C).
With feedback, the trajectories get closer to what has been
observed in the experiments, but there are oscillations around the
target position (Figure 6D).

An increase in arm inertia causes an overshoot of the
movement using the musculoskeletal model with and without
feedback while the forward-controlled torque model predicts an
undershoot (Figure 6). The former counter-intuitive behavior
was also observed in the experiments (Figure 5C).

3.3. Dynamic Torque Perturbation
The response to the dynamic perturbations in the simulation
is qualitatively similar to what has been observed in the
experiments (Figures 7B,C). Most relevant here is the reaction
directly after the perturbation which reflects in a change in
angular velocity. Therefore, we calculated the relation between
the angular velocity in the elbow joint at the beginning and
the end of the perturbation (Figure 7A, 1t = 37.5ms). For
a perturbation in the direction of the movement, the velocity
is approximately doubled while it is halved for perturbations
against the direction ofmovement. The velocity quotient between
the velocity in the beginning and the one 100ms after the
beginning of the perturbation (Figure 7A,1t = 100ms) deviates
more from the experiment than the one after 37.5ms.

Note that no parameters were tuned to match the perturbed
trajectories. For all static and dynamic perturbation types, the
same feedback gains, delays and desired levels of co-contraction
are used. For case 2©, some parameters need to be re-optimized
in comparison to 1© to compensate for the constant torque
that mimics gravity and to allow for an extension movement.
The whole set of control parameters can be found in Table 2 in
the Appendix.
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FIGURE 5 | Results for case 1©. (A) Evaluation criterion for the static perturbations: early velocity difference in relation to the dysmetria difference (both calculated as

the early velocity/dysmetria of the perturbed movement minus the early velocity/dysmetria of the reference movement) shown for both, simulation and experiment. The

experimental results are digitized from Bhanpuri et al. (2014), the control group averages (n = 11) are shown and the error bars indicate standard deviation. (B) Our

simulation results and (C) experimental results digitized from Bhanpuri et al. (2014) for one typical control subject in null condition (reference) and with perturbations

(shaded areas indicate standard deviation).

The open-loop controlled system shows a similar response to
the dynamic perturbations as the closed-loop version and also as
the subjects in the experiment (Figures 8A,B).

The trajectories generated by the torque-driven model do not
reach the desired target position without feedback (Figure 8C).
With feedback, the trajectories get closer to what has been
observed in the experiments, but there are oscillations around the
target position (Figure 8D).

3.4. Internal Force Responses
Our model approach allows for analyses of internal muscular
and joint force responses as well as the proprioceptive feedback
signals that cannot be observed in experiments. To show the
possibilities this method offers, we evaluated the joint angle,
muscle stimulation and resulting activity, internal muscle and
joint forces and active joint torque exemplary for one static and
one dynamic perturbation case and for one muscle (Figure 9).

The changes in the total muscle stimulation are due to the
implemented feedback mechanism: For example in Figure 9B,
the perturbation acts against the direction of movement, so the
muscle stimulation is increased to compensate for it. Also the
muscle force is increased as a consequence of the perturbation.
In consequence, the contact force and the constraint force in the
elbow joint are increased as well.

4. DISCUSSION

Our goal was to propose a model of human goal-directed arm
movements which fulfills all three criteria that we formulated
in the introduction: Our neuro-musculoskeletal model shows
valid responses to both static and dynamic perturbations
and therefore fulfills criterion (c). This alone is novel, as
typically only one category of perturbations is studied and
reproduced by previous models. The predicted response to
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FIGURE 6 | Comparison to open-loop and torque-driven model for case 1©. (A) Resulting trajectories when controlling the musculoskeletal model open-loop, (B)

trajectories when controlling the musculoskeletal model closed-loop, (C) trajectories when controlling a purely torque-driven model open-loop, and (D) trajectories

when controlling a purely torque-driven model closed-loop.

both types of perturbations is an emerging behavior of the
sensorimotor integration in the model which was achieved by
fulfilling the other two criteria, both specifying the level of
detail of the modeling. The high level of biomechanical detail
allows predicting muscle-tendon based proprioceptive feedback
signals, internal muscle forces, muscle-bone contact forces, and
joint loads (Figure 9), all of which require the representation
of muscle-tendon complexes and geometrical muscle routing
in the model [criterion (a)]. In consequence, kinematic- or
torque-based control concepts of human motor control are
not applicable, as a control input is required on the muscular

level for our model (one for each muscle). The proposed

controller is a combination of an open-loop controller and
a low-level muscle spindle signal based controller [criterion

(b)]. The open-loop controller generates a (close-to) minimum

jerk trajectory for the unperturbed movement. Only in the
presence of a perturbation, the closed-loop control contributes
to the muscle stimulations. Thus, this model allows for gaining
insights into the sensorimotor integration in response to
external forces.

TABLE 1 | Quantification of the difference between simulation and experiment for

case 1© by evaluating the cost function (Equation 5) that was used in the

optimization of the closed-loop control parameters and splitting it into the

contributions of the different perturbations.

Closed-loop Open-loop

Increased damping 0.19 4.43

Decreased damping 0.03 1.77

Increased inertia 0.43 0.69

Decreased inertia 3.19 2.87

Sum of all cases 3.84 9.76

For the single cases, a value smaller than one means that the result lies within the

experimental standard deviation area (taking the maximum standard deviation in each

direction).

The experimental data on the applied static (Bhanpuri et al.,
2014) and dynamic perturbations (Kalveram and Seyfarth,
2009) that we used to validate our model response has been
previously reported in the literature. The static perturbations
represent changes in inertia and viscosity continuously affecting
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FIGURE 7 | Results for case 2©. (A) Evaluation criterion for the dynamic perturbations: the quotient of the angular velocity at the beginning of the perturbation and

after 1t (37.5 and 100 ms, see Equation 6) shown for both, the simulation results (filled bars) and the experimental results (empty bars) for all four perturbation types

(experimental results are digitized from Kalveram and Seyfarth, 2009). (B) Joint angle trajectories for the four different perturbation types in our simulation and (C) in

the experiment (digitized from Kalveram and Seyfarth, 2009). Note that the experimental results show the trajectory for one typical control subject. The upper curves

show flexion movements, the lower curves show extension movements. The dashed lines visualize the applied torque perturbations.

the dynamics of the lower arm (Bhanpuri et al., 2014). Such
force fields have been a valuable tool to investigate motor
control models (e.g., Pinter et al., 2012), and particularly, motor
adaptation (e.g., Gribble and Ostry, 2000; Kistemaker et al.,
2010, review: Franklin and Wolpert, 2011). Please note that
in this contribution we focused on the non-adaptive neuro-
muscular response in the sense of a sudden response to an
unexpected perturbation in between a large set of null-trials,
thus, neglecting motor learning (e.g., Burdet et al., 2006; Yang
et al., 2007; Shadmehr et al., 2010). This is also the case
for the dynamic perturbations, which represent a sudden and
time-limited external torque. These perturbations represent a
broad spectrum of systematic perturbations as they may occur
in ergonomically relevant scenarios or in the interaction with
assistive devices.

Individually, the response to these perturbations have been
reproduced by motor control models before [static (Bhanpuri
et al., 2014) and dynamic (Kalveram and Seyfarth, 2009)]. Both
models reproduced the experimental kinematics by means of a
torque in the elbow joint. Both have an inverse model which,
due to the simple equations of the model, can analytically
compute the required open-loop torque to achieve a desired
joint trajectory. The model proposed by Bhanpuri et al. (2014)
compensated for the static perturbations with a long-latency
(100ms) negative feedback control on the error between
desired (minimum-jerk) and actual elbow joint angle trajectory.
The model proposed by Kalveram and Seyfarth (2009) is
quite similar. However, it proposes zero-time-delay negative
feedback representing the tunable mechanical elasticity of the
muscles. Both models did not consider muscle contraction
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FIGURE 8 | Comparison to open-loop and torque-driven model for case 2©. (A) Resulting trajectories when controlling the musculoskeletal model open-loop, (B)

trajectories when controlling the musculoskeletal model closed-loop, (C) trajectories when controlling a purely torque-driven model open-loop, and (D) trajectories

when controlling a purely torque-driven model closed-loop with the same controller as described above.

dynamics and, therefore, do not allow to investigate the
sensorimotor interplay in consequence of such perturbations.
The model presented here transfers these control concepts to
the more physiologically detailed musculoskeletal model. As a
consequence, it validly reproduces the response to both static
and dynamic perturbations and, in addition, allows for further
insights into the neuromuscular interplay of armmovements and
internal dynamics in response to such perturbations (Figure 9),
as we will discuss in the following.

4.1. Unperturbed Movements: Intermittent
Open-Loop Control
In our model, the unperturbed reference movement is solely
generated by an open-loop command. Although other
musculoskeletal models show that feedback signals may
play a role in the generation of unperturbed arm movements
(e.g., Bizzi et al., 1992; Desmurget and Grafton, 2000; Kistemaker
et al., 2006; Kambara et al., 2009), we chose this approach to
closely resemble the motor control models previously used to
investigate these perturbations (Kalveram et al., 2005; Bhanpuri
et al., 2014). To be able to determine an open-loop control signal
in our neuro-muscular model, we parametrized the control

signal resulting in a piecewise constant stimulation over time
for each muscle (Figure 3). Hereby we exploit the advantage
of neuro-musculoskeletal models that allow stable open-loop
starting and target positions due to the passive visco-elastic
characteristics of the muscles and the length dependence of the
activation dynamics (Kistemaker et al., 2005, 2007). Such so-
called equilibrium points (Feldman, 1986) can be found without
and with gravity. Previously, complete equilibrium trajectories
have been proposed as control concept for smooth movements,
where each point on the kinematic trajectory is an equilibrium
point (Flash and Hogan, 1985; Bizzi et al., 1992). Kistemaker
et al. (2006) composed their open-loop signal from several
intermittent equilibrium points resulting in a piecewise constant
stimulation over time for every muscle. Also, our controller
generates an intermittent purely open-loop stimulation to
generate the desired movement.

This intermittent control has two characteristics worth
mentioning. Firstly, it is interesting to see that it actually results
in a smooth movement—without gravity (Figure 6A) and with
gravity (Figure 8A). This is a result of the activation dynamics,
the visco-elastic properties of the muscle-tendon units, and the
inertia of the lower arm. Secondly, it can achieve the required
velocity purely controlled by an open-loop signal. This is in
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A B

FIGURE 9 | Selection of quantities that can be investigated using our model. Elbow joint angle, muscle stimulation and activity, muscle force, muscle-bone contact

force, joint constraint force and active joint torque for the unperturbed trajectory (orange) and for a perturbed movement (blue). These results are exemplary shown for

the elbow flexor muscle and (A) for an increase in inertia and (B) for a flexion movement with a negative torque impulse perturbation. Here, the gray area visualizes the

length of the time delay in the controller (50ms), i.e., the time after the perturbation before the feedback mechanism is activated. Note that the total muscle stimulation

in the unperturbed case is equal to the open-loop contribution in the perturbed case. For all forces, the resultant force is shown. The contact force is the force at the

first deflection ellipse (positions of the ellipses see Supplementary Material). The active joint torque represents the torque acting on the joint that is a consequence

of the muscle forces.

contrast to previous intermittent equilibrium point control,
where proprioceptive feedback was included to achieve fast
movements (Kistemaker et al., 2006). While their intermittent
control points all were equilibrium points taken directly from
their desired trajectory, the intermittent control parameters in
our optimization are free, allowing us to match the velocity of
the experiments purely by open-loop control.

4.2. Perturbed Movements: Hierarchical
Levels of Feedback
An external force applied to the arm during the movement
generates a deviation from the planned/anticipated movement.
With our model, we can study the response of the neuro-
musculoskeletal system on several hierarchical levels.

4.2.1. Musculoskeletal Response
The evaluation of the stimulation signals (Figure 9) shows that

the relative contribution of the feedback signal is small (always

<16% for 25ms delay, <34% for 50ms delay, even less for the

static perturbations), i.e., the stimulation comes predominantly
from the open-loop controller. We therefore repeated the
perturbation simulations with open-loop control. Interestingly,
even when solely driven by an open-loop command, the system
already shows a similar response to the perturbations as the
healthy subjects in the experiments (Figures 6A, 8A). The reason
for this is that the antagonistically arranged muscle models
account for the non-linear force-length-velocity relationship of
muscle fibers and the passive non-linear elasticities of tendons.
This relationship basically acts as a zero-time-delay peripheral
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feedback (previously termed preflex, Brown et al., 1995). In
consequence, the force produced by themuscles changes not only
with changes in stimulation but also with changes in the length
and contraction velocity of the muscle fibers—which change
during the movement. Hence, our open-loop controlled system
includes an internal feedback mechanism on the muscular level.
The role of this effect becomes strikingly clear in comparison to a
torque-based model that was able to reproduce the unperturbed
movement but failed to adequately respond to the perturbations
in the open-loop scenario. So, the difference between the open-
loop controlled musculoskeletal model (Figures 6A, 8A) and the
torque-driven model (Figures 6C, 8C) is the consequence of
the immediate physical response due to the impedance of the
muscular system. The relevance of this immediate response is
also emphasized by the velocity quotient evaluated at 37.5ms
after the perturbation (Figure 7A) as it is independent of the
feedback signal and thus reflects the musculoskeletal response.
The resemblance of this velocity quotient to the experiment
indicates that the system’s state is adequately represented as it
characterizes the initial response to perturbations. This means
that the first zero-time-delay response is provided by the muscle-
tendon units and it shows already correct qualitative responses
to the perturbations. This indicates that the relative importance
of feedback over feed-forward may be diminishing in the
presence of muscular characteristics (Pinter et al., 2012), which
is particularly interesting with respect to assistive devices for
rehabilitation. Furthermore, the capability of the musculoskeletal
system to stabilize against external perturbations (Brown et al.,
1996; Wagner et al., 2007) may allow reducing the informational
control effort (Haeufle et al., 2014a, 2020) by exploiting the
capability of morphological computation of the biomechanical
system (Ghazi-Zahedi et al., 2016).

4.2.2. First Neuronal Response
The next level of response to the perturbation is the short- or
long-latency feedback mechanism that we implemented in our
model. Both the short- and the long-latency feedback lead to
the same qualitative behavior (see Supplementary Material for
short-latency results). Depending on the type of perturbation,
the feedback in our model helps to bring the simulated
trajectory closer to the experiment (Table 1). For the damping
perturbations, the closed-loop controlled system is less sensitive
to the perturbations than the version without feedback, because
the feedback works against the perturbations during the whole
movement. Therefore, with feedback, the movement is closer
to the unperturbed trajectory which is closer to the experiment
than the open-loop version of the model. When perturbing
the inertia properties, feedback enhances the effect of the
perturbation which leads to a trajectory that is further away
from the experiment. This becomes visible in the quantification
criterion dysmetria, which evaluates the deviation in the target
position due to the static perturbations. On the other hand, the
quantification criterion early velocity for the static perturbations
is only little affected by the feedback because it is measured in the
early phase of the movement where feedback does not play a big
role due to its delay. Also for the dynamic perturbation, feedback
improves the response. However, this is only little reflected in
the chosen quantification criterion (velocity quotient, Figure 7A)

since it takes into account the velocity before the perturbation
and 37.5ms or 100ms after the perturbation, respectively, while
the feedback delay is 50ms. Hence, the model prediction benefits
from the sensorimotor integration on the lower-level reflex level
in response to these perturbations.

4.2.3. More Complex Long-Latency Feedback and

Higher-Level Adaptation
In addition to the musculoskeletal response and the simple
short- and long-latency feedback, more complex long-latency
feedback and higher-level control would be able to further
handle the late consequences of perturbations. While data on
dynamic perturbations in human arm movements indicate only
a small response in the time-window of short-latency reflexes—
as in our model—it shows well-tuned and adequate responses
of long-latency reflexes (45ms to 100ms, Kurtzer et al., 2008).
Such long-latency feedback (100ms) has been used by Bhanpuri
et al. (2014) to compensate for the static perturbations in their
torque-driven model, an effect we can reproduce in our torque
model as well (Figures 6D, 8D) where responses get closer
to the experiment than without feedback but tend to oscillate
around the final positions. Currently, our neuro-musculoskeletal
model does only consider the muscle-fiber-length- and velocity-
dependent aspects of long-latency reflexes. More complex or
higher-level feedback strategies seem not necessary to reproduce
the immediate perturbation response.

4.2.4. Relevance for Motor Control
We interpret these findings such that muscles generate an
immediate zero-time-delay impedance response. Short-latency
feedback and our simplified representation of long-latency
feedback have little influence, and not necessarily beneficial for
all types of unexpected interaction forces. More complex long-
latency feedback could then consider an internal model of limb
dynamics (Kurtzer et al., 2008, 2014) for an adequate complex
response. However, this is not implemented in our model (4).
Therefore, the detailedmodeling of the low-level neuro-muscular
control mechanism is suggested to be important to understand
(i) higher-level control mechanisms, (ii) their disturbances in
patients with movement disorders and (iii) to develop effective
assistive devices to compensate for those disturbances.

4.3. Model Assumptions and Limitations
To derive control parameters, we made a few assumptions.
The most prominent assumption was the triphasic pattern (2)
which was our approach to tackle the inverse model problem:
finding required control signals for the desired trajectory. Our
approach was inspired by the observation of triphasic patterns
in muscle surface electromyograms (EMG) (see e.g., Wachholder
and Altenburger, 1926; Wierzbicka et al., 1986; Kistemaker
et al., 2006) and has been discussed in detail above (4.1).
Other approaches tackled this inverse problem by reducing the
biomechanical complexity: Examples are ideal torque generators
in the joints (e.g., Bhanpuri et al., 2014), linear or non-linear
spring, and spring-damper models (e.g., Kalveram et al., 2005;
Kalveram and Seyfarth, 2009), or simplifiedmuscle models which
contain no tendons, no activation dynamics and an entire model
without any neuronal delays (Teka et al., 2017). Furthermore,

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 13 April 2020 | Volume 8 | Article 308

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Stollenmaier et al. Predicting Perturbed Human Arm Movements

inverse relations between a desired movement and control may
also be resolved for musculoskeletal models by more elaborate
optimizations (Todorov, 2004; Kistemaker et al., 2014; Driess
et al., 2018), although it is not easy to determine a physiologically
relevant cost function (Todorov, 2004; Berret et al., 2011; Loeb,
2012). A third option entirely circumvents the inverse problem by
iterative motor learning (e.g., Gribble and Ostry, 2000; Kambara
et al., 2009).

Some of the control parameters were chosen by hand while
others were optimized to match the unperturbed or perturbed
trajectories (see Table 2 in the Appendix). To investigate
the influence of the control parameters on the resulting
movement, we performed a sensitivity analysis (see Appendix).
We quantified the sensitivity to small changes of the control
parameters in two ways: (a) by measuring the effect on the
trajectory (time-based measure) or (b) by measuring the effect on
a scalar characteristic measure that describes the behavior [cost
function used in the optimization (5); velocity quotient (6)]. Note
that these sensitivity indicators need to be treated carefully as for
example the relative sensitivity to a change of the time delay δ

around the reference value of 50ms is relatively high (Figure 11
in the Appendix) while a change of the time delay from 50ms
to 25ms or 100ms without re-optimizing the other control
parameters has only little influence on the qualitative behavior in
reaction to the perturbations (results not shown here). This is due
to the fact that the chosen state variables are sums over several
cases and non-linear functions of the input parameters. The
influence is even smaller when re-optimizing the other control
parameters after changing the time delay from 50ms to 25ms (see
Supplementary Material) or 100ms (not shown here). In doing
so, the changes in the delay can be compensated for by adapting
the other control parameters.We assume that the nervous system
similarly adapts themotor control when for example the feedback
delay changes. Overall, the sensitivity analysis shows that some
control parameters do have a relevant influence on the results.
However, the overall behavior is only little affected when the
other control parameters are re-optimized to compensate for
the change.

The second assumption for the control is further related to
the biomechanical representation: the type of feedback. Torque
models and other simplified models often use the joint angle
as the control level to account for deviations between desired
and actual trajectory (e.g., Kalveram et al., 2005; Bhanpuri et al.,
2014). In our model, however, we use muscle spindle signal
based feedback and assume that it provides direct feedback of
the muscle fiber length and contraction velocity. We neglect
other types of proprioceptive feedback, for example from
Golgi tendon organs, which may provide a link to joint-based
control (Kistemaker et al., 2013). Furthermore, more detailed
representations of the proprioceptors (Loeb andMileusnic, 2015)
allow for a detailed analysis of, e.g., the role of alpha-gamma
co-activation (Lan and Zhu, 2007; Lan and He, 2012).

Finally, one crucial assumption is the neuronal delay, as
it strongly influences the interpretation of the location of the
feedback in the neuronal hierarchy. By assuming zero time
delay, Kalveram et al. (2005) located the negative feedback
control at the biomechanical level—a common approach which
is not always clearly separated from afferent signals (e.g., Teka

et al., 2017). Experimental findings show that the short-latency
reflex can produce more sophisticated responses to perturbations
than previously thought (Weiler et al., 2019). This short-
latency feedback occurs after a time delay of ∼20ms to 50ms
after a perturbation (Shemmell et al., 2010; Pruszynski and
Scott, 2012; Kurtzer et al., 2014). Other delays in the order
of 50ms to 100ms represent long-latency reflexes (Shemmell
et al., 2010; Pruszynski and Scott, 2012; Kurtzer, 2015; Weiler
et al., 2016), as used for example by Gribble and Ostry (2000),
Bhanpuri et al. (2014). Several studies have shown that the
long-latency stretch response plays an important role in the
reaction to mechanical perturbations in goal-directed reaching
movements (e.g., Kurtzer et al., 2014; Weiler et al., 2016).
In our model, using 25ms delay, the implemented feedback
mechanism represents a simplified model of the spinal, mono-
synaptic muscle spindle reflex (Pruszynski and Scott, 2012;
Weiler et al., 2019), assuming that the muscle spindles provide
accurate time-delayed information about the muscle fiber lengths
and contraction velocities (Kistemaker et al., 2006). However,
this model of the afferent feedback does not accurately reflect
the natural muscle spindle feedback which is only sensitive
to the muscle’s local stretch (Kurtzer et al., 2014, see Scott,
2016 for an overview) while our formulation reacts to stretch
and shortening. Therefore, choosing a time delay of 50ms and
thus modeling a long-latency reflex seems more appropriate.
However, this model considers only the muscle-fiber-length-
and contraction-velocity-dependent part of the long-latency
feedback and neglects other aspects. This becomes visible in the
velocity quotient after 100ms (Figure 7A) which characterizes
the behavior at the end of the first neuronal response. It is
further away from the experiments than the velocity quotient
after 37.5ms, suggesting that our long-latency feedback model
does not include all relevant feedback mechanisms. Experimental
findings indicate that long-latency feedback represents the net
impact of spinal and cortical circuits and thus includes several
independent processes (e.g., Pruszynski et al., 2011; Kurtzer et al.,
2014) that for example account for limb biomechanics (Kurtzer,
2015) or evoke responses in muscles that were not stretched
(Weiler et al., 2018). The reaction after more than 100ms after
the perturbation is influenced by more complex and higher-
level feedback mechanisms and voluntary activities (Pruszynski
and Scott, 2012; Kurtzer, 2015; Weiler et al., 2016) that are not
represented in our model. Although the resulting reactions of
our model to the perturbations seem quite sensitive to the chosen
delay time (see Sensitivity Analysis in the Appendix), the results
were quite similar for choosing 25, 50, or even 100ms delay (the
latter results are not shown in this contribution). Our model
reproduces the response to the perturbation by using short-
latency feedback (25ms) which represents spinal control layers or
long-latency feedback (50ms) which has spinal and supraspinal
influences. Once more this emphasizes the decentralized control.
However, as the feedback contribution was rather small and
did not improve the response in all cases, it is likely that more
sophisticated models, which may, for example, include multiple
layers of feedback including more complex long-latency feedback
(Kurtzer et al., 2008) would improve the model prediction.

As with the control and feedback assumptions, also the level of
detail of the musculoskeletal model has its limitations. Although
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our muscle model represents contraction dynamics quite well
(Haeufle et al., 2014b), it does not consider recent findings
on the behavior of muscles under eccentric loading conditions
(Tomalka et al., 2017), on the possible role of short-range stiffness
(Nichols and Houk, 1976; De Groote et al., 2017), or the effect
of transversal loading (Siebert et al., 2014). As we see significant
force changes in the dynamic perturbations originating from the
muscle’s passive characteristics (Figure 9), these new findings
may also influence the response. Ultimately, for the study of
internal contact forces, finite-element models may allow a more
detailed analysis (Röhrle et al., 2016) but significantly increase the
complexity of finding an adequate controller (Martynenko et al.,
2017).

4.4. Conclusion
For our study, the focus was on the valid prediction of the
response to static and dynamic external perturbations while
providing the possibility to investigate the neuromuscular
interplay at a level that allows predicting muscle-bone contact
forces and joint loadings. As our model with its assumptions and
limitations still fulfills the initially stated criteria, we consider it a
starting point to further develop models with the integrated use:
studying motor control and ergonomics with the same model for
research questions where they overlap, e.g., for the development
and ergonomic risk assessment of assistive devices.
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