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Background: Primary central nervous system lymphoma (PCNSL) is a rare

B-cell lymphoma of central nervous system, which is often found in

immunocompromised patients. The common clinical treatment of PCNSL

is methotrexate (MTX) and whole brain radiation therapy. With the

development of tumour immunology research, the tumour

microenvironment of PCNSL is characterised by abnormal expression of

different immune signature molecules and patients with PCNSL may benefit

from tumour immunotherapy.

Methods: In our research, RNA-seq data from 82 PCNSL patients were collated by

mining themicroarray data from theGEOdatabase. All sampleswere classified into

three types related to tumour immune response by the Cibersort algorithm and

consistent clustering. Differential analysis of genes was used to uncover 2 sets of

differential genes associated with tumour immunity. The ICI scores of each sample

were obtained by PCA algorithm, and the relationship between ICI scores and

immune checkpoint expression, immunotherapy and drug sensitivity was

investigated. Genes associated with ICI scores and their functional

characteristics were investigated by WGCNA analysis and PPI analysis, based on

the ICI scores of each sample.

Results: The tumour microenvironment in PCNSL has a greater relationship with

the tumour immune response. ICI scores obtained from375differential geneswere

associated with multiple immune responses in PCNSL. PCNSL patients with higher

ICI scores had a better tumour microenvironment and were sensitive to

immunotherapy and some small molecule drug. This study also identified

64 genes associated with ICI scores, which may serve as important therapeutic

and prognostic targets for PCNSL.

Conclusion: The presence of multiple immunosuppressive responses in the

tumour microenvironment of PCNSL which suggested that improving the

immune function of PCNSL patients through immunotherapy and targeted

therapies can be an effective treatment for PCNSL. And the ICI score and
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associated genes may also provide a better predictor of the clinical use of

immunotherapy.
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Introduction

Primary central nervous system lymphoma (PCNSL) is an

uncommon but extremely aggressive form of extranodal non-

Hodgkin’s lymphoma, accounting for 4–6% of all extranodal

lymphomas, 1% of all lymphomas and approximately 2% of all

central nervous system tumours (Kluin, 2008). It is a very

aggressive malignancy that affects just the craniospinal axis

and has no systemic spread (brain > eye > molluscum

contagiosum > spinal cord). Histologically, more than 90%

of cases are categorized as diffuse large B-cell lymphoma

(DLBCL) (Grommes and DeAngelis, 2017), almost half of

patients have R/R PCNSL (refractory or recurrent PCNSL),

and over 50% of patients are between 60 and 80 years of age

(Mendez et al., 2018). Recent studies have shown an increase

in the overall incidence of PCNSL, with 5- and 10-years

survival rates of 29.9 and 22.2%, respectively, (Ostrom

et al., 2015). Immune dysfunction is the sole recognized

risk factor (Bathla and Hegde, 2016) and an increased

frequency of PCNSL has been observed in individuals with

acquired immunodeficiency (acquired immunodeficiency

syndrome or post-transplant disease) and congenital

immunodeficiency (X-linked lymphoid hyperplasia

syndrome, Wiskott-Aldrich syndrome or ataxia capillaris)

(Erdag et al., 2001). PCNSL presents clinically in a non-

specific manner, with the most prevalent symptoms being

cognitive decline and gait abnormalities (Izquierdo et al.,

2016).

Over the past several decades, treatment for people with

PCNSL has improved considerably. The median overall

survival of elderly patients aged 50–69 years has been

reported to have increased from 8 months in the 1970s to

35 months in the 2010s (Mendez et al., 2018). Chemotherapy,

radiation, haematopoietic stem cell transplantation, and new

targeted medicines are all considered salvage treatments

(Soussain et al., 2001; Sierra del Rio et al., 2009; Pentsova

et al., 2014; Atilla et al., 2019). 3-years survival rates of 53%

and OS of 64% have been achieved in patients with R/R

PCNSL, usually using high-dose chemotherapy and

autologous haematopoietic stem cell transplantation

(Soussain et al., 2001). For newly diagnosed PCNSL, high-

dose methotrexate (HD-MTX)-based regimens are utilized as

first-line therapy, however the best effective dosage of HD-

MTX has yet to be found. Rituximab has been shown to be

effective in improving clinical outcomes in systemic

lymphoma and the efficacy of single agent rituximab has

been reported in patients with R/R PCNSL (Batchelor et al.,

2011). In comparison to HD-MTX alone, combining HD-

MTX with different chemotherapeutic drugs has recently been

demonstrated to enhance therapy response. The combinations

currently used are 1) methotrexate, temozolomide and

rituximab; 2) rituximab, methotrexate, procarbazine and

vincristine; and 3) methotrexate, cytarabine, rituximab and

tiotipine. Immune checkpoint inhibitors might be another

viable treatment option for PCNSL. Anti-PD1 monoclonal

antibodies have demonstrated remarkable therapeutic effect

in CNS lymphomas by inhibiting immune checkpoints (Qiu

et al., 2018). There is currently no agreement on how to treat

R/R PCNSL, and patients with R/R PCNSL have a poor overall

survival rate (Pentsova et al., 2014; Löw and Batchelor, 2018).

New alternative therapies are imperative. The purpose of this

work was to establish a technique for identifying and

quantifying the molecular characteristics of immunocytes

infiltration (ICI) in PCNSL, with the hope of laying the

groundwork for improved chemotherapy and

immunotherapy for PCNSL.

Materials and methods

Data collection and processing

In this study, we downloaded the datasets (GSE34771,

GSE155398, GSE61578 and GSE11392) related to primary

central nervous system lymphoma (Primary central nervous

system lymphoma, PCNSL) from the GEO database, and

retained the PCNSL samples in each dataset. The

“removeBatchEffect” technique was used to mitigate the

possibility of batch effects across datasets. Ultimately, we

obtained a comprehensive PCNSL expression matrix

consisting of 82 samples and 11,743 genes. PCA analysis was

utilized to represent the batch-effects before and after going to

removeBatchEffect.

Multiscale clustering of geometrical
network in PCNSL

In order to analyze the complex co-regulatory relationship

among genes, the co-expression network analysis of the

expression matrix was carried out by using multi-scale

embedded gene co-expression network analysis (MEGENA).
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The two key elements of this technology are multi-scale

clustering structures detection and parallelization of embedded

network creation. Specifically, the Pearson correlation was first

utilized to compute the correlation among genes, and then planar

filtered network (PFN) was implemented to screen gene pairs

with significant correlation. PFN was then subjected to

unsupervised clustering in order to discover network clusters

(i.e., gene modules) at different compactness resolutions using

multi-scale clustering analysis (MCA). The generated gene

modules were arranged hierarchically, resembling a multiscale

arrangement of gene modules with varying degrees of

compactness. The hierarchy represented a succession of

higher-order connections (i.e., parent) modules that include

children modules. The connectedness is an important

indicator to evaluate the nodes in parent-children undirected

network. MEGENA determined smaller kid modules inside

larger parent modules. The nodes with considerably (p < 0.05)

more network connectedness than the randomly permuted

planar networks are further identified as candidate main

drivers of gene modules. The enriched gene ontology (GO)

keywords are then used to identify the gene modules.

Estimating of immune cell infiltration and
sample clustering

To estimate 22 different forms of ICI for each patient

with PCNSL, the R software “CIBERSORT” was used.

Correlation analysis was performed between the ICI

components. Following that, the R package

“ConsensusClusterPlus” was used to do hierarchical

agglomerative clustering according to the ICI pattern.

“ConsensusClusterPlus” uses an algorithm to assess cluster

count and membership based on unsupervised analysis

evidence of stability. To guarantee clustering stability, this

procedure was run 1,000 times.

Differentially expressed genes screening
and competing endogenous RNAs
network construction

To discover DEGs associated with ICI, we grouped all

data into distinct ICI subtypes. We investigated the DEGs

between ICI subtypes with the help of the “Limma” R

package (|log2foldchange|> 1, false discovery rate (FDR) <
0.05). In order to explore the possible biological functions

and pathways of DEGs, “clusterProfiler” package in R was

used to carry out GO and KEGG enrichment analyses. In

addition, miRNet, miRTarBase and StarBase databases were

utilized to predict the miRNAs of DEGs, and then miRNet,

StarBase and mircode databases were used to predict the

targeted lncRNAs of above miRNAs, so as to construct a

comprehensive mRNA-miRNA-lncRNA regulatory network

(i.e., ceRNA network) closely related to ICI pattern.

Clustering with DEGs, dimension
reduction and construction of ICI score

Unsupervised clustering was used to cluster data at the

genomic level based on the expression pattern of DEGs.

Notably, DEGs that linked favorably or negatively with gene

clusters were designated as ICI gene signatures A and B,

respectively. To eliminate noise or redundant genes, the

dimensions of ICI gene signatures A and B were reduced

using the Boruta method, and feature genes were discovered.

Following that, principal component analysis (PCA) was used to

extract the major component 1 from feature genes and assign it to

the relevant ICI gene signature as the signature score. Finally, an

approach comparable to the gene expression grade index was

used to calculate each patient’s ICI score: ICI score = ∑PCA1A-

∑PCA1B.

Association of ICI scores with immune
characteristics of PCNSL patients and
therapeutic options

High- and low-ICI score groups (HSG and LSG, respectively)

were defined according to the median ICI scores. In order to

explore the association between ICI score and PCNSL immune

characteristics, and provide clinical guidelines for therapeutic

options of PCNSL patients, we carried out the following series of

analyses: Gene Set Enrichment Analysis (GSEA), Gene Set

Variation Analysis (GSVA), immune checkpoint molecule

analysis, Tumor Immune Dysfunction and Exclusion (TIDE)

analysis and chemosensitivity analysis.

With the help of “limma” package in R, we analyzed the

difference of gene expression between HSG and LSG, calculated

the logarithmic fold change (logFC), and sorted the logFC from

big to small. Then GSEA was carried out to analyze which signal

pathways were involved in HSG and LSG grouping. The

reference gene sets were “C5:GO gene sets” and “C2:KEGG

gene sets” in the MSigDB database (http://www.gsea-msigdb.

org/gsea/).

GSVA is a non-parametric and unsupervised algorithm.

Unlike GSEA, GSVA does not require group samples in

advance and can calculate the enrichment scores of specific

gene sets in each sample. In other words, GSVA transforms

gene expression data from a single gene as a feature expression

matrix to a specific gene set as a feature expression matrix. GSVA

quantifies the results of gene enrichment, which is more

convenient for follow-up statistical analysis. Then, based on

the grouping information, the differences of GSVA results are

analyzed, and the gene sets with significant differences among
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samples can be found. Compared with genes, these differentially

expressed gene sets are more biological and explainable.

In this study, the GSVA package in R was used to analyze the

gene variation based on the expression of all genes in 82 samples

(the reference gene set is C2:KEGGgenesets in MSigDB

database). A total of 186 signal pathways were obtained. The

limma package in R is used to analyze the difference of GSVA

results between HSG and LSG. The FDR <0.05 is used as the

threshold to screen the signal pathways with significant

differences. The correlation between significant difference

signal pathway and ICI score was analyzed and visualized

with the help of “ggcor” package in R.

Through literature review and data integration, we found

35 recognized immune checkpoint molecules with complete

expression information in PCNSL, and then we compared the

differential expression of immune checkpoint molecules in HSG

and LSG subgroups through the “wilcox.test” function in R.

Tumor Immune Dysfunction and Exclusion (TIDE) is a

computational approach for assessing the probability of tumor

immune escape based on the gene expression profiles of tumor

samples. The potential response to immunotherapy was inferred

from the TIDE score, and the lower TIDE indicated that the

patient responded better to immunotherapy. We imported the

standardized expression data into the TIDE website (http://tide.

dfci.harvard.edu/) and obtained the TIDE scores of 82 PCNSL

patients. We compared the difference of TIDE scores between

HSG and LSG subgroups, and analyzed the correlation between

ICIscore and TIDEscore in order to explore the potential

possibility of immunotherapy benefit for PCNSL patients

under different ICI patterns.

To assess treatment sensitivity, the R package “pRRophetic”

was used to compute the concentration producing a 50%

decrease in growth (IC50) of specific inhibitors. The

“wilcox.test” function in R was utilized to compute the

IC50 difference between HSG and LSG. Finally, only the top

10 chemotherapeutic drugs with the most significant difference

in IC50 between the two groups were retained.

Weighted gene co-expression network
analysis identification of the hub genes
associated with ICI scores

Weighted gene co-expression network analysis (WGCNA)

was carried out to determine hub genes significantly associated

with ICI scores using the R package “WGCNA”. Pearson’s

correlation analysis was used to generate an adjacency matrix.

By estimating the soft-thresholding value, we developed a scale-

free co-expression network. To conduct a thorough analysis of

the functional modules, the adjacency matrix was transformed

into a topological overlap matrix (TOM) and the dissimilarity

matrix between genes was produced (dissTOM= 1-TOM).When

dissTOM was clustered hierarchically, genes with comparable

expression patterns were grouped together in the same gene

module. A minimum of 30 module genes was specified. To

acquire the gene modules, the DynamicTreeCut method was

used, and modules with a high degree of similarity were further

combined.

To find modules associated with ICI scores, module

eigengenes (MEs) and gene significance (GS) were used. MEs

were believed to be the primary component of each gene module,

and ME expression was acknowledged on behalf of all genes

included inside a particular module. Correlations between ICI

scores and MEs were calculated in order to identify modules of

clinical value. Additionally, GS was rated as the mediating p value

for each gene in the linear regression analysis of clinical features

and gene expression patterns (GS = lgP). Module significance

(MS) was subsequently rated as the average GS of all genes

included inside a module. The clinically important module was

determined as the one with the highest absolute MS.

Each gene module membership (MM) was determined in the

hub module, which served as a proxy for the module’s relevance.

Genes with |GS| more than 0.65 and |MM| greater than 0.8 were

deemed potential hub genes. Following that, we uploaded the

aforementioned putative hub genes to the STRING database

(https://string-db.org/) to develop a protein-protein interaction

(PPI) network, and the core interaction was extracted using

MCODE in Cytoscape. Finally, the genes in the top1 module

were designated as PCNSL’s hub genes.

Considering that these hub genes were derived from the same

module in WGCNA, we applied Spearman test to verify the

correlation between these hub genes. In addition, we analyzed the

differences in the expression of these hub genes among different

ICI subtypes and their correlation with PCNSL immune

microenvironment.

Hub gene-based ceRNA network
establishment

The target miRNAs of hub genes were predicted by using

miRNet, miRTarBase and StarBase databases, respectively, and

the mRNA-miRNA relation pairs were intersected from the three

databases. The target lncRNAs of the above miRNAs were then

predicted by using miRNet, StarBase and mircode databases,

respectively, and the miRNA-lncRNA relation pairs obtained

from the three databases were also intersected. Finally, according

to the shared miRNA, the mRNA-miRNA-lncRNA relationship

was combined to plot the ceRNA network of the hub genes.

Statistical analyses

R software (version 4.1.0) and cytoscape software (version

3.9.2) was employed for statistical analyses and network plots

separately. The R packages “MEGENA (version 1.3.7)”,
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“clusterProfiler (version 4.0.2)”, “ConsensusClusterPlus (version

1.40.0)”, “corrplot (version 0.90)”, “limma (version 3.48.3)”,

“stats (version 3.48.3)”, “ggcor (version 0.9.8.1)”, “pRRophetic

(version 1.4.0)”, “GSVA (version 1.40.1)”, “WGCNA (version

1.70–3)”, “ggplot2 (version 3.3.5)”, and “psych (version 2.1.6)”

were utilized in our study. The specific prameter settings of

MEGENA were as follows: n. cores = 2, method = “pearson”,

FDR. cutoff = 0.05, module. pval = 0.05, hub. pval = 0.05, cor.

perm = 10, hub. perm = 100. Unsupervised clustering parameter

settings were as follows: reps = 1,000, pItem = 0.8, clusterAlg =

“pam”, distance = "pearson”, innerLinkage = "complete”. Default

parameter settings of cytoscape were as follows: Degree Cutoff: 2,

Node Socre Cutoff: 0.2, K-Core: 2, Max. Depth: 100.

For comparisons between two groups, the Wilcoxon test was

used, while the Kruskal–Wallis test was used for comparisons

between more than two groups. To obtain the correlation

coefficient, a Spearman analysis was used. The significance

level was set at P 0.05.

Results

Multiscale clustering of geometrical
network in PCNSL

The flowchart of the whole study was presented in Figure 1.

After data collection and processing, a total of 82 samples

accompanied by the sequencing results of 11,743 genes were

obtained (Supplementary Table S1). The PCA analysis before

and after remove of batch effect is shown in Supplementary

Figure S1. The results of the PCA analysis showed significant

grouping between original samples and insignificant grouping

between samples after removal of batch effects. To further

analyze the intricate co-regulation connection between the

genes in PCNSL, we used MEGENA to conduct a co-

expression network analysis on the 11,743 genes expressed in

82 human PCNSL samples. From the co-expressed gene network,

we identified 119 gene modules with a hierarchical structure,

FIGURE 1
Process for the analysis of the molecular characteristics of immune infiltrating cells in patients with PCNSL.
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showing parent-child relationships (Supplementary Tables S2,

S3). The topmost modules in the network are assigned at a

particular compactness scale (Figure 2A). The module

hierarchical structure and the enriched BP terms are also

summarized in Figure 2B. Module 5 (M5), M26, and M34 are

most significantly enriched for T cell activation. M18, M21, M7,

FIGURE 2
MEGENA analysis. (A) Functional modules of MEGENA analysis. (B) Hierarchy of functional modules of MEGENA analysis.
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FIGURE 3
ICI analysis and sample clustering. (A) Relative proportions of 22 immune cell subpopulation in PCNSL samples. (B) Cellular interaction of
22 immune cell subpopulation. (C) Consensus matrixes of all PCNSL samples for appropriate k value (k = 3). (D) The heat map showed unsupervised
clustering of 22 immune cell subpopulation in all PCNSL samples (Rows represented tumor-infiltrating immune cells, and columns represented
samples). (E) The fraction of tumor-infiltrating immune cells in three ICI clusters (The Kruskal–Wallis test was used to assess the statistical
difference among three ICI clusters).
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M35, M25, M37, M40, and M36 are most significantly enriched

for MHC protein complex, neutrophil degranulation, regulation

of immune effector process, response to virus, B cell activation,

IgG binding, pattern recognition receptor activity, acute

inflammatory response, respectively, suggesting that immune

response plays a crucial role in the pathophysiological

processes of PCNSL.

The landscape of ICI in PCNSL

The landscape of ICI was systematically evaluated by

CIBERSOFT algorithm. Figures 3A,B summarizes the

abundance of ICI in each PCNSL sample and the interaction

of immune cells. Obviously, the proportions of ICI in PCNSL

varies significantly and there are significant correlations among

FIGURE 4
ICI differential genes and associated ceRNAs. (A) Volcano maps based on the distribution of all genes in clusterA and clusterB, clusterA and
clusterC. (B) GO enrichment analysis for the top 10 most significant biological functions. (C) Cytoscape differential gene KEGG enrichment analysis.
(D) mrna-mirna relationship pairs predicted by miRNet, miRTarBase and StarBase databases. (E) Predicted lncRNAs from miRNet, StarBase and
mircode databases. (F) mrna-mirna-lncrna regulatory network.
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these immune cells, suggesting that significant heterogeneity is

observed for immune microenvironment of PCHSL. Thus,

classifying PCNSL immunophenotypes based on the distinct

traits of ICI would therefore be highly warranted.

Following that, all samples were clustered using the R

package “ConsensusClusterPlus” based on their ICI content,

and three subtypes were identified (Figure 3C). To more

precisely define the intrinsic distinctions between the three

ICI subtypes, a differential study of immune cells in the three

ICI subtypes was performed (Figures 3D,E). The ICI cluster A

was accompanied by high CD8+T cells, activated memory

CD4+T cells, M1 macrophages, γδT cells, M2 macrophages,

neutrophils, as well as low naïve B cells, memory B cells,

resting natural killer (NK) cells, activated dendritic (DC) cells,

and resting memory CD4+T cells. However, the opposite was

the case for ICI cluster B, which was accompanied by high

memory B cells, naïve CD4+T cells, as well as low

CD8+T cells, activated memory CD4+T cells,

M1 macrophages, γδT cells, and neutrophils. The ICI

cluster C was marked by high naïve B cells, plasma cells,

follicular helper T (Tfh) cells, as well as low CD8+T cells,

activated memory CD4+T cells, M1 macrophages, γδT cells,

memory B cells, naïve CD4+T cells. Thus, cluster A of PCNSL

patients showed active T lymphoid system response, cluster C

of PCNSL patients showed active B lymphoid system

response, and cluster B of PCNSL patients showed inactive

immune response.

Differentially expressed genes screening
and competing endogenous RNAs
network construction

To prepare for the development of ICI scores and illustrate

the heat map of DEGs between ICI subtypes, we utilized the R

package “Limma” to analyze the DEGs between the three ICI

subtypes at the genomic level, yielding a total of 375 DEGs

(Figure 4A, Supplementary Tables S4, S5). GO and KEGG

results showed that these DEGs were mainly enriched in

neutrophil-related immune response, interferon-γ-related
cellular response, regulation of cytokine production,

antigen processing and presentation, complement cascades,

and NK cell-mediated cytotoxicity (Figures 4B,C).

Subsequently, miRNet, miRTarBase, and StarBase

databases were employed to predict the target miRNAs of

375 DEGs, and 844 pairs of mRNA and miRNA interaction

involving 141 mRNAs and 312 miRNAs were preserved

(Figure 4D, Supplementary Tables S6–S9). Besides, miRNet,

StarBase and miRcode databases were then applied to predict

the target lncRNAs of 312 miRNAs, and 281 pairs of miRNA

and lncRNA interaction involving 34 miRNAs and

71 lncRNAs were preserved (Figure 4E, Supplementary

Tables S10–S13). Finally, 938 regulatory relations of

mRNA-miRNA-lncRNA involving 53 mRNAs, 34 miRNAs,

and 71 lncRNAs were obtained and visualized (Figure 4F).

Clustering by DEGs from ICI subtypes and
construction of ICI score

The PCNSL samples were re-divided into two gene groups

using unsupervised clustering of these DEGs (Figure 5A). The

DEGs that are positively associated with gene clusters are

designated as gene signature A, while the other DEGs are

designated as gene signature B. Heat map visualization of the

gene expression of gene signature A and B was shown in

(Figure 5B).

To quantify the ICI landscape of patients with PCNSL and

assist the identification of significant genes, PCA was used to

calculate the aggregate score of feature genes from gene signature

A and B, respectively, after dimensionality reduction. We

calculated the sum of the scores and designated them as ICI

scores (Supplementary Table S14). All PCNSL patients were

classified into two groups based on their median ICI score:

those with high ICI scores and those with low ICI scores

(i.e., HSG and LSG).

Association of ICI scores with immune
characteristics of PCNSL patients and
therapeutic options

GO- and KEGG-related GSEA revealed that T cell-

mediated immune response, B cell-mediated immune

response, and NK cell-mediated immune response were

significantly enriched in the HSG subgroup (Figure 5C). In

addition, GSVA results demonstrated that there were

44 signaling pathways (involving 34 up-regulated and

10 down-regulated pathways) with significant differences

between HSG and LSG subgroups (Supplementary Table

S15). More importantly, ICI score was detected to be

significantly associated with glycan degradation,

glycosaminoglycan degradation, lysine degradation,

glycosphingolipid biosynthesis, galactose metabolism, and

NK cell-mediated cytotoxicity (Figure 5D).

In addition to these, the expression of immune

checkpoints in the HSG subgroup generally showed a high

trend, suggesting that the high-risk populations might benefit

from immunotherapy (Figure 6A). Subsequently, we

conducted a TIDE analysis, and the results showed that the

high-risk group had lower TIDE populations, indicating that

the PCNSL patients in the high-risk subgroup were indeed

adaptive to immunotherapy (Figure 6B).

Chemotherapy is one of the first-line treatment strategies

for PCNSL patients. Due to the obvious heterogeneity of

immune microenvironment in PCNSL patients, people with
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FIGURE 5
Identification of ICI gene clusters and ICI scores. (A) Consensus clustering matrix for k = 2 in PCNSL samples based on DEGs among ICI
subtypes. (B) Expression traits of DEGs in different ICI clusters and gene clusters. (C)GSEA for the enrichment results in high and low ICI score groups
(ICI scores = PCA1a-PCA1b). (D) Correlation between ICI score and typical immune-related signaling pathways.
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different immune characteristics may benefit from different

chemotherapeutic drugs. Our data revealed that LSG

populations might benefit from OSI.906 (a selective

inhibitor of IGF-1R/IR kinase) and GW.441,756 (a selective

inhibitor of the NGF receptor tyrosine kinase A); however,

HSG populations might benefit from IPA.3 (a non ATP-

competitive, allosteric inhibitor of p21-activated kinase 1),

MK.2206 (a selective allosteric Akt inhibitor), RO.3306 (an

ATP-competitive and selective CDK1 inhibitor), XMD8.85 (a

selective inhibitor of ERK5 and LRRK2), ABT.888 (an

FIGURE 6
The relationship between ICI scores and drug therapy. (A) The results of differential expression of immune checkpoint genes in high and low ICI
score groups. (B) The results of spearman’s correlation analysis of ICI scores with TIDE scores (TIDE scores serve as a well-recognized indicator of
immunotheraptic response). (C) The results of spearman’s correlation analysis of ICI scoreswith ten targeted drugs. (D) The results of differential drug
response analysis of ten targeted drugs in high and low ICI score groups (Lower values on the y-axis of boxplots imply greater drug sensitivity).
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FIGURE 7
Identification of hub genes based on ICI scores. (A) Identification of co-expression modules for WGCNA analysis. (B) Correlation heat map of
modules and differentially immuno-infiltrated cells. (C) Green module screening for core genes. (D) PPI network analysis. (E) protein counts of PPI
analysis. (F) Hub gene correlation. (G) Expression traits of hub genes in different ICI subgroups. (H) Correlation between hub genes and immune cell
infiltration in PCNSL.
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inhibitor of PARP-1 and PARP-2), NU.7441 (a selective

DNA-dependent protein kinase inhibitor), CCT018159 (a

novel inhibitor of heat shock protein 90 with potential

anticancer activity), and AICAR (a cell-permeable,

allosteric activator of AMP-activated protein kinase)

(Figures 6C,D).

WGCNA identification of key genes based
on ICI score

To discover critical genes in PCNSL, a gene co-expression

network was constructed using WCGNA to identify significant

gene modules associated with the ICI score. By choosing 10 as

FIGURE 8
The construction of a triple-regulatory network of mRNA-miRNA-lncRNA. (A) miRNAs predicted by miRNet, miRTarBase and StarBase
databases. (B) lncRNAs predicted by miRNet, StarBase and mircode databases. (C) mrna-mirna-lncrna regulatory network.
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the suitable soft threshold (Supplementary Figure S1), a scale-free

co-expression network was constructed, yielding 11 modules

(Figure 7A). The green module was found to have the strongest

association with the ICI score (Correlation coefficient = 0.79, p = 8e-

19) (Figure 7B). On the basis of established criteria (|GS| >0.65 and |
MM| >0.8), we identified 64 highly connected genes in the salmon

module as possible hub genes (Figure 7C). Following that, we

performed a PPI network analysis on these 64 hub genes by

uploading them to the STRING database, and 24 hub genes were

discovered (Figures 7D,E). Spearman test was applied to verify their

co-expressed relationship, with the data showing that there were

strong positive correlations between these 24 genes (Figure 7F). In

addition, we intensively explored the expression traits of these

24 genes in different ICI subgroups, and investigated the

correlation between these 24 genes and 12 immune cells with

significant difference among ICI subgroups (Figures 7G,H).

Hub gene-based ceRNA network
establishment

The miRNet, miRTarBase, and StarBase databases were

employed to predict the target miRNAs of 24 hub genes, and

141 pairs of mRNA andmiRNA interaction involving 16 mRNAs

and 120 miRNAs were preserved (Figure 8A, Supplementary

Tables S16–S19). Besides, miRNet, StarBase and miRcode

databases were then applied to predict the target lncRNAs of

120 miRNAs, and 102 pairs of miRNA and lncRNA interaction

involving 11 miRNAs and 38 lncRNAs were preserved

(Figure 8B, Supplementary Tables S20–S23). Finally,

130 regulatory relations of mRNA-miRNA-lncRNA involving

7 hub genes, 11 miRNAs, and 38 lncRNAs were obtained and

visualized (Figure 8C).

Discussion

PCNSL is an uncommon kind of non-lymphoma Hodgkin’s

that originates in the central nervous system, which is mostly high-

grade B-cell lymphoma. This lymphoma frequently occurs in

immunocompromised patients, while immunocompetent patients

usually have a higher age of onset. The disease is commonly detected

and diagnosed by cerebrospinal fluid (CSF) pathology and brain

biopsy. Due to the relative rarity of the disease and the lack of

prospective and randomised clinical trials, few of effective

therapeutic targets and optimal treatment options can be used.

As we all know the central nervous system is protected in the blood-

brain barrier, traditional anatomical and physiological studies

suggest that the central nervous system may be an immune

tolerant organ and that its internal T and B cells are generally

suppressed by the microenvironment of brain tissue. This particular

microenvironment makes the pathogenesis of PCNSL is more

closely related to the immune system and immune response.

PCNSL is more associated with immune cell infiltration of the

microenvironment. CSF analysis used to detect the level of immune

cells in the CSF is an important test for confirming diagnosis. It was

found that the baseline of tumour immune response in PCNSL

patients was reduced compared to the normal, and inmost cases the

CSF tests revealed a decrease in CD8+ T cells and helper DC cells, as

well as a decrease in Th1 cells and an increase in Th2 cells, suggesting

that themicroenvironment of PCNSL inhibits the activation of most

immune cells (Chang et al., 2015; Takashima et al., 2019a; Monabati

et al., 2020). And there was also a degree of reduction in HLA on the

surface of tumour cells in PCNSL, such as HLA-DM, which

prevented immune cells from recognising the surface antigens of

tumour cells (Nijland et al., 2017). In our research, the Cibersort

algorithm revealed significant changes in immune cells such as

B cells, T cells andmacrophages in PCNSL tissues, which confirmed

the presence of a strong immunosuppression in the

microenvironment of PCNSL.

IL10 and IL6 are important protective cytokines which were

secreted after inflammation and immune responses, which

reduce cellular damage and promote the cellular repair

process. More studies (Ramkumar et al., 2012; Nguyen-Them

et al., 2016; Shao et al., 2020) have shown that PCNSL has a

greater relationship with IL-10 and IL-6. Especially IL-10, which

is an important biomarker for PCNSL, elevated concentrations of

IL-10 in the CSF make PCNSL more aggressive. STAT3 is an

important transcription factor and enhanced phosphorylation of

STAT is present in late stages of inflammation and immune

response, which can promote the expression of

immunosuppressive molecules and suppress immune

response. It has been shown that elevated STAT3 expression

and enhanced phosphorylation in tumour cells of PCNSL can

suppress the immune response of tumour cells (Ruggieri et al.,

2017; Tang et al., 2021).

Immunosuppressive checkpoints, such as PD-1/PD-L1, are

important therapeutic targets in oncology treatment. High

expression of PD-1/PD-L1 was present in tumour tissue of

PCNSL which was associated with IDO-1 expression (Miyasato

et al., 2018; Abdulla et al., 2021). And related studies (Miyasato et al.,

2018; Sethi et al., 2019; Furuse et al., 2020) have shown that both

macrophages and some T cells surrounding tumour cells have high

expression in PD-1, which can promote the suppressive effect of

tumour tissues on CD8+ T cells. In addition, other checkpoint

molecules such as CTLA4, CD86 and TIM3 were also expressed

at elevated levels in PCNSL tissues (Alame et al., 2021). Moreover,

Biomarkers related with Tumour mutation burden (TMB) were

elevated in some PCNSL tissues (Ou et al., 2020). This study showed

that there was high expression of immunosuppressive molecules

such as PD-L1, CTLA4 and CD86 in the tumour tissue of PCNSL.

This suggests that PCNSL can benefit from immunotherapy, while

some studies also suggest that PD-1 inhibitors have a better

therapeutic effect on relapsed/refractory PCNSL (Lin et al., 2020).

MiRNAs are important protein expression repressors that bind

to mRNAs and repress the expression of related proteins. In gliomas
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and brain tumours, some miRNAs, such as miR16, miR156 and

miR21, are in high expression, which can identify the patient’s

disease state and even distinguish the category of brain tumours (Ivo

D’Urso et al., 2015).MoremiRNAs are also abnormally expressed in

PCNSL tissues. It showed that miR181b, miR30d and miR93 can

affect the prognosis of PCNSL patients and are associated with the

activation of TGFβ-Notch, MAPK and other pathways (Takashima

et al., 2019b). Another studies (Li et al., 2020; Takashima et al., 2020)

showed that miR101, miR548b, miR554, miR1202 and

miR370 could affect the prognosis of PCNSL patients as

potential therapeutic targets.

In recent years, the incidence of PCNSL has increased in

line with the rising incidence of autoimmune disease and

AIDS. However it is still a lack of effective clinical treatment

for PCNSL. The whole brain radiation therapy (WBRT) in

combination with chemotherapeutic agents such as

methotrexate is still a more common treatment modality.

And some studies (Wirsching et al., 2021) have suggested

that isitinib may be a more promising therapeutic agent. As

immunotherapy becomes more popular, more immune

agents such as PD-1/PD-L1 monoclonal antibodies are

being used in oncology treatment. This study suggests that

inhibition of immunosuppressive checkpoints, such as PD-1/

PD-L1,CTLA4,TIM3, may improve the tumour

microenvironment in PCNSL. Therefore, immunotherapy

may be widely used in the treatment of PCNSL patients in

the future. Our study also found that two drugs, OSI.906 and

GW.441,756, may have a greater benefit in the treatment of

PCNSL, but more studies are needed to verify this result.

Conclusion

Multi-scale embedded gene co-expression network

analysis highlights the crucial role of immune response in

the pathophysiological processes of PCNSL. We successfully

identify and quantify the molecular characteristics of

immunocytes infiltration in PCNSL, which lays the

groundwork for improved chemotherapy and

immunotherapy for PCNSL. Weighted gene co-expression

network analysis identification of key ceRNA network closely

associated with immunocytes infiltration score may be

promising novel therapeutic targets in PCNSL.
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