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Background. Viral diarrhoea is a concern in acute gastroenteritis cases among children younger than 5 years of age. Sapovirus has
been noted as an emerging causative agent of acute gastroenteritis worldwide.Objective/Study Design. *e aim of this study was to
characterize human sapoviruses targeting the VP1 (NVR and N-terminal) region. Twenty-five samples were randomly selected
from 40 sapovirus-positive samples previously detected and analyzed for the VP1 region using the One-Step RT-PCR assay. *e
PCR products were subjected to Sanger sequencing analysis. Results. *e polyprotein segment (NVR and N-terminal) was
successfully amplified from 10/25 samples. Sapovirus GI.1 was the most predominant strain (6/10; 60%), followed by SV-GII.1 (2/
10; 20%) and 10% of each GI.3 and GII.3.Conclusion.*rough the partial analysis of the VP1 region, this study provides more data
to add on the human sapovirus genetic characterization of circulating strains in South Africa, with the proposition of further
analysis of sapovirus VP1 fragments for the viral structure and function.

1. Introduction

Human sapovirus (SV) as one of the leading causative
agents of diarrhoea in young children is becoming notable
worldwide [1, 2]. Information on the distribution of SV
genotypes can give insights into the patterns of probable
transmission, immunity amongst exposed people, rele-
vant diagnosis of the circulating strains, and development
of vaccine to regulate or eradicate virulent strains [3].
Human SV has four well-known genogroups, namely,
genogroups I, II, IV, and V. Although SV-GI is the most
detected genogroup followed by SV-GII, these gen-
ogroups are commonly associated with acute gastroen-
teritis across age groups and often detected in infants
[2, 4–8]. *ere are few studies on the detection of human
SV in South Africa which have been reported in different
settings, that is, on rural outpatients [9], in a longitudinal

study [10], on urban hospitalized children [11, 12], and on
all age groups [13].

Human SV, a single-stranded positive-sense RNA virus
classified in the Caliciviridae family, has a genome estimated
to be 7.7 kb in size. Amongst the three open reading frames
(ORF-1, 2, and 3) documented, ORF-1 amongst other
proteins contains the major capsid protein (VP1). *e VP1
region is used for the classification of sapoviruses [14], and it
is the most common targeted area for detection of this virus.
Moreover, VP1 contains a segment which correlates with the
genetic diversity and antigenicity of SV [4, 15, 16].

A variety of primers have been designed from previously
accessible nucleotide sequences and tested for the detection
of SVs [1, 15]. *e capsid protein is described to have four
regions, namely, N-terminal variable region (NVR) with
1–43 amino acid aa sequence containing 6.1% conserved
residues, followed by the well-conserved section of the N-
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terminal region (N) with 44–285 aa sequence containing
40.5% conserved residues, a central variable region (CVR)
with 286–441 aa sequence containing 5.9% conserved res-
idues, and a last quarter of the C-terminal region (C) with
442–561 aa sequence containing 27.3% conserved residues
[16].

*e conserved amino acid motifs of SV are predicted to
be positioned on VP1.*erefore, analysis of this proteinmay
play a role in proper understanding of the diversity of strains
that are circulating, for epidemiological surveillance to
monitor emerging strains and controlling of pathogens
posing serious illness among people. *e detections of
human SV have been reported worldwide, but mostly tar-
geting a short sequence at the conserved RdRp/VP1 junction
region of these viruses [2, 15]. *is study aimed at reporting
on the identification of human SV targeting a larger con-
served region of the capsid protein (VP1).

2. Methods

2.1. Ethical Clearance andConsent. Ethical clearance for this
study was obtained from the UNIVEN Research Ethics
Committee (SMNS/18/MBY/02), and permission to collect
samples was obtained from the Limpopo Provincial De-
partment of Health and the District (Ref: 4/2/2). Written
informed consent was obtained from all parents or guard-
ians of participating children before stool sample collection.

2.2. Sample Selection. Twenty-five (62.5%) randomly se-
lected and extracted RNA samples, from 40 samples which
were previously identified as SV-positive [9], were subjected
to further RT-PCR amplification targeting the fragments
which form the capsid protein (VP1).

2.3. Amplification of Partial VP1 by RT-PCR. *e One-Step
RT-PCR (QIAGEN, Germany) kit was used for amplifica-
tion of the selected SV-positive samples. Selected primers
(Table 1) were used on the attempt to target region of the
VP1 sequence [17].*e reagent mixture for SV amplification
were as follows: 25 µl of reaction volume containing 5 µl of
5X One-Step RT-PCR buffer, 1 µl of One-Step RT-PCR
enzyme mix, 1 µl of dNTP mix (containing 10mM of each
dNTP), 1.5 µl of 0.6 µM of each primer, 10 µl of RNase-free
water, and 5 µl of the RNA sample. Amplification was done
using the following conditions set on a T100 *ermal cycler
(Bio-Rad, USA): reverse transcription at 50°C for 30min;
followed by initial PCR activation at 95°C for 15min; then 39
cycles of three-step cycling (denaturation for 30 sec at 94°C,

annealing for 30 sec at 53.5°C, and extension for 60 sec at
72°C); and final extension at 72°C for 10min.

*e location of part of the genome targeted for PCR
amplification is important to understand the diversity and
virulence of pathogens which are detected. Figure 1 displays
the targeted locations by selected primers aligned against the
VP1 segment, for amplification of human sapoviruses. In
previous studies, the most reported target region of the SV
genome has been the RdRp/VP1 junction [15].

2.4. Sequencing. PCR products of the amplified fragments
were directly purified with a master mix of ExoSAP (Nucleics,
Australia). Using the same primers (Table 1), Sanger se-
quencing was performed on the ABI 3500XL Genetic Analyzer
POP7TM (*ermo-Scientific). *e obtained nucleotide of the
successful sequenced amplicons were compared against those
of the reference strains available in the NCBI GenBank, using
BLAST available at https://www.ncbi.nlm.nih.gov/blast [18].
*e reference strains with sequences of ≥709 nucleotides (SV-
GI) and ≥644 (SV-GII) nucleotides were randomly selected
among BLAST hits with >85% similarities on the query se-
quences of SV strains detected from this study. For confir-
mation of SV genotypes, the human calicivirus typing tool
available at https://norovirus.ng.philab.cdc.gov [19] was used.
Phylogenetic analysis was performed to check for close re-
latedness of human SV strains using MEGA 11 [20]. *e
confirmed nucleotide sequences were submitted to GenBank
under the accession numbers OK180480–OK180489.

3. Results

3.1. RT-PCR Amplification. *is study reports on 40% (10/
25) successful amplification of partial VP1 using SV-F11 and
SV-R1 primers, while other 15 samples failed to amplify. In
addition, other pairs of primers used failed to amplify in all
selected samples. *e unsuccessful amplifications are sug-
gested to be as a result of degraded or limited RNA genome
copies. Sixty percent (6/10) of the results was identified as
SV-GI.1, followed by 20% (2/10) SV-GII.1 and 10% of each
GI.3 and GII.3 (Table 2). Of these 10 amplified samples, 60%
(6) were obtained from outpatient children with diarrhoea
and 40% (4/10) from hospitals based in the rural commu-
nities of Vhembe district, South Africa.

3.2. Sequence and Phylogenetic Analysis. *e sequences
generated from this study were identified as the polyprotein
segment. *e human calicivirus typing tool gave a BLAST
score of 75–99% capsid protein identity. A BLAST search

Table 1: Primers for amplification of VP1 segments [17].

PCR type Primer Sequence Location Product size (bp)

One-Step RT-PCR

SV-F11 GCY TGG TTY ATA GGT GGT AC 5098–5117 781SV-R1 CWG GTG AMA CMC CAT TKT CCA T 5857–5878
KSV-F8 ATG GAM AAT GGK GTK TCA CCW G 5857–5878 632KSV-R8 AGC CAG TGT GGC TGT GA 6473–6488
KSV-F9 GAC TTT GAC ACY AGT GGY TTT GC 6379–6401 670KSV-R9 CCA TTR ATG GAG AGG TCY CG 7029–7048
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gave a hint of 87–98% similarities of all featured sequences
on a phylogenetic tree (Figures 2 and 3).

*e phylogenetic tree (Figure 2) presents two distinctive
clusters of genotypes, SV-GI.1 and SV-GI.3, showing re-
latedness of their strains. *e detected SV-GI.1 genotypes
(OK180480–OK180485) from this study presented an iso-
lated cluster showing their close relatedness and a slight
relatedness to a strain detected in Congo from a chimpanzee
(KJ858686), with a common ancestor. *e GI.1 strains
detected in this study showed similarities of between 93 and
96.43% with KJ858686 strain on BLAST. *e detected SV-
GI.3 (OK180489) from this study clustered with a strain
(MN102410) detected in Taiwan, and this strain had 97.38%
identity on BLAST. Although other reference strains had
similarities of between 90 and 98% (BLAST) with the de-
tected strains from this study, they showed distinct clusters
when rooted by a porcine SV strain (MF766258).

*e phylogenetic tree (Figure 3) displays two distinctive
clusters of genotypes, SV-GII.1 and SV-GII.3, showing their

strains’ relatedness. *e detected GII.1 strains (OK180486 and
OK180488) from this study did not cluster with any of the
reference strains although sharing a common ancestor and
similarity hints of >85% on BLAST. Within a GII.3 cluster,
relatedness of a strain (OK180487) detected in this study with a
strain (MF944258) detected in China is shown by a distinct
cluster and these strains had a similarity of 89.62% on BLAST.
Reference strains used on the phylogenetic tree (Figure 3) gave
similarity hints of between 85% and 92.55% (BLAST) to the
detected strains from this study, although they present distinct
clusters from strains reported in this study.

4. Discussion

*e detection of circulating human SVs has been previously
reported based on the analysis of small fragments (especially the
RdRp/VP1 junction) on the ORF1 segment of the viral genome
[15]. In this study, the successful amplification of partial VP1
provides valuable data on circulating SV strains in South Africa.
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Figure 1: Schematic diagram of human sapovirus partial genomic organization and RT-PCR target regions. *e diagram presents the most
targeted RdRp/VP1 junction by RT-PCR pointed by a black arrow, and the location of primers targeting the complete VP1 segment shown
by grey arrows on the binding location.

Table 2: Positive samples by partial VP1 analysis.

Sample ID (admitted) Collection date Place coordinates Sapovirus genotype Accession numbers

R17 (Mph.clinic) 2019/11/29 22°38′58.6″S GI.1 OK18048030°49′48.0″E

R77 (Tsh.hospital) 2020/02/26 22°59′42.0″S GI.1 OK18048130°24′52.7″E

R95 (Sil.hospital) 2020/10/03 22°54′03.5″S GI.1 OK18048230°11′37.3″E

R26 (Tsh.hospital) 2019/12/18 22°59′42.0″S GI.1 OK18048330°24′52.7″E

R102 (Eli.hospital) 2020/05/03 23°09′16.6″S GI.1 OK18048430°03′20.2″E

Z01 (Xig.clinic) 2018/02/11 22°55′29.0″S GI.1 OK18048530°43′21.7Ë

R21 (Maj.clinic) 2019/11/20 23°13′17.6″S GII.1 OK18048630°20′08.8″E

R80 (Sil.clinic) 2020/02/28 22°54′03.2″S GII.3 OK18048730°11′37.2″E

R24 (Maj.clinic) 2019/04/12 23°13′17.6″S GII.1 OK18048830°20′08.8″E

Z31 (Mal.clinic) 2018/11/03 23°00′47.9″S GI.3 OK18048930°42′05.2″E
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*is study reports on 40% (10/25) partial sequencing of the VP1
(polyprotein) fragment of the human SV strain circulating in the
rural areas of South Africa. It has been previously reported that
single-stranded RNA is generally known to be very unstable,
which may lead to difficulties of generating positive results [21].
*is may explain the reason that some amplicons failed to
generate successful sequence in this study.

*e SVGI.1, reportedly associated with gastroenteritis [23],
was noted as a dominate genotype (60%: 6/10) from this study.
SV-GI.1 strains were detected from 66.7% (4/6) cases of pa-
tients admitted in hospitals and 33.3% (2/6) cases of patients in
clinics (Table 2). However, other strains (SV-GII.1 (20%: 2/10),
SV-GI.3 (10%: 1/10), and SV-GII.3 (10%: 1/10)) were detected
from patients aided in clinics. SV-GI.1 seems to be the most
widespread genotype, since it was also reported as the pre-
dominant strain in a study from Brazil [4], with other geno-
types detected at a low rate similar to the findings of this study.

*eORF1 of SV is proposed to encode a polyprotein that
is processed by the viral protease, resulting in manifestation
of proteins needed for the viral genome’s replication [14, 24].
In this study, the analysis of long amino acid sequences of
NVR and N terminals was performed. It has been proposed
that analysis of viral polyproteins provides understanding in
mechanisms and clues leading to the drug design against
viral diseases [24]. Moreover, the NVR is reportedly com-
mon to all SV genotypes [15, 16], and N-terminal has been
identified as an area which can undergo significant con-
formational variation [14]. *e analysis of the capsid protein
region (VP1) is very crucial, since genotyping of SV is based
on the capsid, which strongly correlates with the viral an-
tigenic properties [16].

Sapovirus GI is known to be associated with severe
diarrhoeal disease. Furthermore, GI.1 strains have previ-
ously been detected in acute gastroenteritis cases in studies
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Figure 2: Phylogenetic analysis of the partial polyprotein of human SV-GI detected in Vhembe district (South Africa) and reference strains
selected from the GenBank database. *e percentage of replicate trees in which the associated taxa clustered together in the bootstrap test
(1000 replicates) are shown next to the branches. A bar scale representing a genetic distance scale. *e phylogenetic tree was deduced by the
maximum likelihood method and the Kimura 2-parameter model using MEGA 11 [20, 21], based on a 709-nucleotide sequence fragment of
the polyprotein (a VP1 segment) showing relationships of SV strains. *e porcine SV (MF766258) was selected as an outgroup strain.
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conducted in Africa [23, 25, 26]. *e phylogenetic analysis
on this study showed a variability of strains detected. A
discrete cluster of the detected strains (OK180480–
OK180485) within genotype GI.1 suggests slight mutations
on strains circulating in the Vhembe rural communities,
South Africa (Figure 2). In addition, a slight relation of the
cluster of GI.1 strains from this study with a strain
(KJ858686) detected from a nonhuman host proposed a
possibility of zoonotic transmission. Although close relat-
edness of human genogroups to the nonhuman genogroups
have been predictable [27], more analysis on SV strains
detected from human and other mammalians should be
performed to confirm zoonotic transmission.

Sapovirus-GII is mostly associated with nonsevere di-
arrhoea, and it has been reportedly detected in diarrhoea
cases in Africa [23, 25, 28]. Among other strains of gen-
ogroup-II, the most commonly detected is GII.1 as also
reported in South Africa by Murray et al. [25]. *e identified

SV-GII.1 in this study clustered away from each other and
reference strains, which could suggest possible mutations
based on the occurred number of substitutions per site
measured by the branch lengths (Figure 3).

A more successful detection rate of SVs has been
commonly achieved by targeting the RdRp/VP1 junction
[29, 30]. However, the analyzed segment in this study is
reliable for accurate strain identification, since it is most
variable and contains the maximum conserved residues on
the VP1 sequence [15, 29]. From BLAST search list, there
were no available data on SV strains previously reported in
South Africa that could be used for phylogenetic relatedness.
Moreover, analysis of a larger fragment on SV should be
considered, as it creates a better possibility of genetic
characterization by sequence analysis and comparison of
strains around the globe. To our knowledge, this is the first
study in South Africa to report on analysis of the large
fragment (≥644 nucleotide long) of human sapovirus VP1.
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Figure 3: Phylogenetic analysis of the partial polyprotein of human SV-GII detected in Vhembe district, South Africa, and reference strains
selected from the GenBank database. *e percentage of replicate trees in which the associated taxa clustered together in the bootstrap test
(1000 replicates) are shown next to the branches. A bar scale representing a genetic distance scale. *e phylogenetic tree was deduced by the
maximum likelihood method and the Kimura 2-parameter model using MEGA 11 [20, 21], based on a 644-nucleotide sequence fragment.
*e porcine SV (MF766258) was selected as an outgroup strain.
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5. Conclusion

Our study reports on partial analysis of VP1 protein (pol-
yprotein), suggested to be responsible for viral protein
folding, dimer formation, and viral particle assembly. Pre-
dominance of SV-GI.1 was determined in this study. Studies
on the antigenicity and VP1 variations of SV are needed for
accessing the role of SV as an emerging virulent agent as-
sociated with diarrhoeal diseases in young children. Analysis
of SV’s capsid protein should be carried out for epidemi-
ological reference, to identify the diversity of virulent pro-
teins produced and possibly to give insight into vaccine
proposition.
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