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1  |  INTRODUC TION

Na+-K+-ATPase, discovered by Skou,1 is one of the most crucial 
Adenosine-­5′-­Triphosphate (ATP)-­powered P-­type ion transporters. 
It is essential for normal structure and function of all cell membranes. 
Its primary functions include maintenance ion gradient across mem-
branes2–4 and uptake and release of neurotransmitters.5–7 Therefore, 
Na+-K+-­ATPase plays a crucial role in ion homeostasis and cellular 
excitability. Dysfunction of Na+-K+-­ATPase may lead to many types 
of central nervous system (CNS) disorders, including epilepsy.8–11

Epilepsy is a common neurological disorder characterized by re-
current spontaneous seizures,12 caused by the highly synchronized 
firing of neurons with hyperexcitability.13 It affects about 70 million 
population around the world.14 Unfortunately, about one-third of 
epileptic patients remain drug-­resistant,15 leading to a situation that 

needs a more effective drug target. An increasing number of studies 
unveiled a significant role of Na+-K+-­ATPase in epilepsy. Notably, 
mutation of genes encoding Na+-K+-­ATPase leads to epilepsy as 
part of its phenotype. In rodent models of epilepsy, the activity of 
Na+-K+-­ATPase was reported to change as well. Pharmacological in-
hibition of Na+-K+-­ATPase will cause epileptic seizure in rodents as 
well. Na+-K+-­ATPase activating antibody, by contrast, was reported 
to have a protective effect on epilepsy. However, discordant results 
are not uncommon, probably due to differences in etiologies, test-
ing timing, features of various epilepsy models, etc. Hence, in this 
review, we briefly summarize structure and physiological function of 
Na+-K+-­ATPase in the CNS. Then we aim to summarize and evaluate 
current understandings of Na+-K+-­ATPase and epilepsy, hoping to 
provide a comprehensive and novel view on the role of ATPase in the 
epileptic brain and also therapeutic strategies associated with the 
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Abstract
Na+-K+-­ATPase, a P-­type ATP-­powered ion transporter on cell membrane, plays a 
vital role in cellular excitability. Cellular hyperexcitability, accompanied by hypersyn-
chronous firing, is an important basis for seizures/epilepsy. An increasing number of 
studies point to a significant contribution of Na+-K+-­ATPase to epilepsy, although 
discordant results exist. In this review, we comprehensively summarize the structure 
and physiological function of Na+-K+-ATPase in the central nervous system and 
critically evaluate the role of Na+-K+-­ATPase in the epileptic brain. Importantly, we 
further provide perspectives on some possible research directions and discuss its po-
tential as a therapeutic target for the treatment of epilepsy.
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Na+-K+-­ATPase. We also provide perspectives on some possible re-
search directions to address the role of Na+-K+-­ATPase in epilepsy.

2  |  STRUC TURE AND FUNC TION OF Na+-
K+-ATPase IN THE CNS

Na+-K+-­ATPase is composed of three subunits, including α, β, and 
FXYD phenylalanine-­ X-­tyrosine-­aspartate amino acid sequence. 
One molecule of Na+-K+-ATPase contains three molecules of α 
subunits and two molecules of β subunits.16,17 The α subunit con-
sists of four kinds of different subtypes (α1–α4), with the first 
three being expressed in the CNS. The α1 subtype is expressed in 
neurons, and glial cells, α2 mainly in astrocytes,18 and α3 in neu-
rons.19,20 The β subunits are expressed in neurons, astrocytes, and 
oligodendrocytes. The distribution of each subunit is summarized 
in Table 1.

The α subunit is the catalytic subunit, containing three envelope 
domains and ten transmembrane helices. Exporting or importing 
ions is accomplished by changing two conformational states, E1 and 
E2. E1 faces the cytoplasm, which has a high affinity for sodium ions. 
E2 faces extracellular space, with a low affinity for sodium ions but 
a high affinity for potassium ions.2 The function of Na+-K+-ATPase 
is primarily related to the α subunit, which alternates between E1/
E2 and phosphorylated E1 (E1-­p)/phosphorylated E2 (E2-­p). By con-
formational changes of phosphorylation and dephosphorylation, the 
affinity to sodium and potassium ions also changes.21 When the α 
subunit bounds sodium ions through the E1 state, which has a high 
affinity to sodium ions, ATP is going to be hydrolyzed. Once one mol-
ecule of ATP is hydrolyzed, three sodium ions will be transported to 
extracellular compartment while two potassium ions to the intracel-
lular compartment,20,22 which further raises the resting membrane 
potential.

The β subunit mainly assists the newly synthesized α subunit with 
folding, targeting, and correct insertion into the cell membrane,23 
thereby stabilizing the structure and regulating the activity of the α 
subunit.24 The β subunit includes three isoforms (β1–β3)25,26 and is 
vital in the α subunit to the plasma membrane and functions as an 
intercellular adhesion protein.27 Three of the seven members of the 
FXYD family were found to modulate the affinity of the α subunit for 

sodium and potassium ions.28 Despite many studies investigating the 
α subunit, the functions of β and FXYD subunits remain ambiguous.

3  |  Na+- K+-ATPase AND SEIZURES/
EPILEPSY: E VIDENCE FROM BENCH AND 
BEDSIDE

3.1  |  Na+-K+-ATPase gene mutation leads to 
epilepsy

Current evidence based on patients with Na+-K+-­ATPase gene mu-
tation found epilepsy to be a frequent occurrence as phenotypes. In 
particular, all reported cases with ATPase genetic mutation fall into 
the sequences encoding the α subunit, with ATP1A1, ATP1A2 and 
ATP1A3 corresponding to the four subtypes of α subunit (Table 2).

3.1.1  |  ATP1A1

Schlingmann et al.29 reported that heterozygous de novo mutations 
in ATP1A1 were found in children diagnosed with hypomagnesemia 
and epilepsy. These children developed symptoms of convulsions 
and hypomagnesemia in the infant period from 6 days to 6 months 
old. All children were treated with antiepileptic drugs and intrave-
nous magnesium. However, seizures remained after a follow-­up of 
about five years, with some even having status epilepticus (SE), in-
dicating the refractoriness of their epilepsy. Apart from that, some 
of them also have severe intellectual disabilities. Lin et al.30 reported 
a clinical case of a boy aged 2 years and 10 months with a de novo 
ATP1A1 variant. He had severe developmental delay, developed epi-
leptic seizures five months after birth, and later switched into gener-
alized tonic–­clonic seizures (GTCS).

3.1.2  |  ATP1A2

Mutations in the ATP1A2 gene generally occur in familial hemiple-
gic migraine (FHM, familial hemiplegic migraine). About 6% of FHM 
patients have epilepsy and epileptic symptoms typically occur in 

TA B L E  1 Subunits of Na+-K+-­ATPase in the CNS

Subunit Function Subtype Distribution

α Catalytic subunit: Ion transportation α1 Neurons and glial cells

α2 Astrocytes and oligodendrocytes

α3 Neurons

β Assists the newly synthesized α subunit in folding, targeting, 
and inserting cell membrane correctly

β1 Neurons

β2 Astrocytes

β3 Oligodendrocytes

FXYD Modulates the affinity of α subunit for sodium and potassium FXYD1 Neurons and astrocytes

FXYD7 Neurons and astrocytes
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adolescence.31,32 The cases of patient with mutation in ATP1A2 were 
reported to be associated with FHM and benign familial infantile 
convulsions.33,34 Moreover, FHM2 is a Mendelian model disease for 
spreading depolarization, and Clemens Reiffurth et al. showed only 
α2 heterozygous mice displayed higher spreading depolarization 
susceptibility,35 indicating the α2 subunit is crucial in this disease. In 
addition, homozygous truncating variants of ATP1A2 would cause a 
novel lethal recognizable polymicrogyria syndrome. Polymicrogyria 
is responsible for a wide range of neurological symptoms, including 
epilepsy.36–­38 The mechanism under epileptogenicity of polymicro-
gyria remains unknown. However, unilateral multilobar polymicro-
gyria is often relevant to an age-­related syndrome of epilepsy.39

3.1.3  |  ATP1A3

Mutations in ATP1A3 are generally believed to be related to alter-
nating hemiplegia in childhood. Those patients were reported to 
have concomitant epilepsy (pediatric case of catastrophic early 
life epilepsy),40 especially in those with mutations in p.Glu815Lys, 
p.Gly358Val, and p.Ile363Asn of ATP1A3. In addition, these muta-
tions manifested as a decrease in the activity of the α3 subunit in 
vitro, which is the basis for these diseases.41 Further, Clapcote et al42 
also presented a mouse model for epilepsy caused by mutation of 
the Na+-K+-ATPase α3-­isoform, which show impairments in the so-
dium pump and hyperexcitability in the CNS.

Together, in clinical research, mutations in Na+-K+-ATPase are 
closely related to epilepsy. ATP1A1 codes for the α1 subunit of Na+-
K+-­ATPase, which is responsible for maintaining the membrane po-
tential of neurons.29 A primary disease that is relevant to ATP1A1 

mutation is hypomagnesemia and epilepsy. ATP1A2 gene corre-
sponds with the α2 subunit of Na+-K+-ATPase, which is crucial for 
restoring membrane potential in astrocytes.43 ATP1A2 mutation is 
generally associated with familial hemiplegic migraine and polymi-
crogyria in the brain. The α3 subunit of Na+-K+-ATPase is encoded 
by ATP1A3, which is vital for maintaining ionic homeostasis in neu-
rons44 and responsible for several brain diseases such as alternating 
hemiplegia in childhood. They all have epileptic symptoms. Previous 
studies have mainly focused on the clinical spectrum of patients 
with variants in the ATPase gene. However, effective treatment is 
still lacking. Targeted interventions using genetic manipulations are 
promising strategies for treating such diseases, which merit further 
investigations.

3.2  |  Na+-K+-ATPase in an animal model

3.2.1  |  Change of Na+-K+-ATPase activity after 
epileptiform activity

A large number of studies indicated that Na+-K+-ATPase activity 
decreases in epilepsy.11,45,46 In epileptic seizures, abnormal activ-
ity of Na+-K+-ATPase can be found on the cell membrane of the 
cerebral cortex of animals and humans.47 The decrease of Na+-K+-
ATPase activity was first reported by Hunt WA et al. in animal models 
of cobalt-­induced epilepsy, where a significant reduction in enzyme 
activity was observed.48 In the human epileptic brain, the activity of 
Na+-K+-­ATPase is significantly less in the epileptic human cortex than 
that in the nonepileptic cortex.49 The decrease of Na+-K+-ATPase ac-
tivity was further corroborated in the model of audiogenic epilepsy,50 

Mutant gene Mutational point Epilepsy related syndrome References

ATP1A1 p.Leu302Arg Repeated SE 29

p.Gly303Arg Monthly seizures 29

p.Met859Arg Frequent seizures, repeated SE 29

p.Gly864Arg Epileptic seizures 30

ATP1A2 p.Thr378Asn Febrile and a febrile GTCS 31

p.Gly900Arg Epileptic seizure 31

p.Met813Lys Clonic movements or tonic flexion 40

Arg1008Trp Right-­sided hemiclonic seizures 82

p.Pro364Leu Febrile seizures 83

p.Asp301Asn Partial, generalized seizures 84

p.Asn775Ser Febrile seizures 85

p.His927Arg Generalized seizures 85

p.Ala378Gly Generalized seizures 86

p.Tyr1009X Generalized tonic-­clonic seizures 33

ATP1A3 p.Glu815Lys Neonatal-­onset seizures 87

p.Gly358Val and 
p.Ile363Asn

Catastrophic early life epilepsy 40

p.Phe913del Focal epileptic seizures 88

p.Cys346Arg Multifocal epilepsy 88

TA B L E  2 Mutation of genes encoding 
Na+-K+-­ATPase leads to epilepsy
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pentylenetetrazole (PTZ)-­induced seizures in rats,7,43 kainate-lesioned 
rats51 and in the pilocarpine model of temporal lobe epilepsy (espe-
cially one hour after SE).52 In the freeze lesion cat model, a decreased 
activity of Na+-K+-­ATPase was observed three weeks (chronic freeze 
lesion cat model) after the production of cold lesions.53 However, one 
report found that no significant differences were observed between 
epileptic mice and normal mice for Na+-K+-ATPase activities in vari-
ous brain regions, including the hippocampus, brain stem, or cerebel-
lum, suggesting seizure susceptibility in epilepsy mice is not associated 
with differences in the activities of these Na+-K+-ATPase activities.54

Notably, 60 s after the production of cold lesions in the same 
model (acute freeze lesion cat model), Na+-K+-ATPase activity of the 
whole brain increases. In addition, in the pilocarpine model of epi-
lepsy, during a chronic period, 120 days after pilocarpine-­induced SE, 
the activity also increases.55 In TLE patient tissue, Na+-K+-ATPase in 
surviving neurons is upregulated.56 It is speculated there is a compen-
satory change resulting from the increased total brain Na+.

As mentioned before, the activity of Na+-K+-ATPase decreases 
in most situations. However, in some animal models, the activity in-
creases. Moreover, Reime Kinjo57 and Fernandes52 reported discor-
dant results, which may be due to the P16 rat used by Reime Kinjo 
E. From these conflicting data, it could be postulated that under 
different situations (different stages of epilepsy or different type of 
epilepsy models), the activity of Na+-K+-ATPase would vary. The 
various changes of Na+-K+-ATPase activity in different animal mod-
els of seizure/epilepsy are summarized in Table 3.

3.2.2  |  Epileptic discharge after Na+-K+-
ATPase inhibition

Inhibition of Na+-K+-­ATPase will lead to epileptic seizure. Previous 
studies consistently employed ouabain or [3H]Ouabain as an inhibi-
tor of Na+-K+-ATPase.58–­61 Ex vivo studies showed that 64.5% of 
ganglion neurons will depolarize after applying ouabain, along with a 

decrease in input resistance.62 Injection of ouabain into the cerebral 
cortex in vivo can also cause epileptic symptoms, and the symptoms 
will last for several hours.61 It is postulated that the Na+-­Ca2+ ex-
change is strengthened after Na+-K+-ATPase inhibition. This causes 
the intracellular Ca2+ to increase and leads to an increase in cellular 
excitability. However, there is currently a lack of specific inhibitors 
for the different subunit of Na+-K+-ATPase, which lead to some un-
specific outcome in studies using ouabain.

Using heterozygous knock-­out mice, we could know that defi-
ciency of the α2 isoform of Na+-K+-­ATPase increases spreading de-
polarization susceptibility in acute brain slices when exposed to high 
K+.35 Moreover, spreading depolarization has been proposed as a 
risk factor for the development of epilepsy.63

3.2.3  |  Protective effects in epilepsy after applying 
Na+-K+-­ATPase activating antibody

Some researchers use Na+-K+-­ATPase activating antibody DRRSAb 
to activate the ion pump. Freitas ML et al. incubated brain slices 
with DRRSAb and reported a subsequent glutamate release ex 
vivo.64 Furthermore, activation of Na+-K+-­ATPase using DRRSAb 
in vivo decreased seizure susceptibility in the pilocarpine model of 
epilepsy.64 Funck et al.5 also found that DRRSAb will increase hip-
pocampal Na+-K+-­ATPase activity in mice and attenuate seizure 
susceptibility in post-­SE animal models. These results showed that 
the intervention of Na+-K+-­ATPase would impact epilepsy.

4  |  Na+ - K+-ATPase MODUL ATES CELL 
E XCITABILIT Y IN THE EPILEPTIC BR AIN

In the resting state, the cell membrane is much more permeable 
to potassium than sodium. The equilibrium potential of potas-
sium ions dominates the resting membrane potential. Therefore, 

TA B L E  3 The activity of Na+-K+-­ATPase in animal epilepsy model

Model
Na+-K+-ATPase functional 
changes Specific stage References

Chronic cobalt-­induced model ↑
↓(afterward)

5–­10 day
10–­40 day

89

Cobalt-­induced model ↓ 2–­23 day 48

Acute freeze lesions ↑ 3–­5 h 53

Chronic freeze lesions ↓ 21 day

Kainite model ↓ 7–­21 day 51

Pilocarpine induced SE model ↓ (Acute and silent period)
↑(Chronic period)

Acute period:1/24 h
Silent period:7 day
Chronic period:120 day

52

Pilocarpine induced SE model(P16) ↑ 7 and 30 day 57

Pilocarpine induced SE model ↓ 60 day 90

Audiogenic seizures in mice ↓ 21 day 50

Pentylenetetrazol model ↓ 15 min 7
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Na+-K+-­ATPase, which determines the potassium gradients across 
cell membranes, is an essential factor in the maintenance of the rest-
ing membrane potential and the regulation of ion homeostasis.23 We 
could understand the mechanisms underlying ATPase and cellular 
excitability from the perspective of sodium and potassium ions ho-
meostasis, respectively (Figure 1).

4.1  |  Sodium-ion homeostasis related excitability

4.1.1  |  Decreased GABA transportation

GABA is the main inhibitory neurotransmitter in the CNS. In par-
ticular, GAT3 (GABA transporters 3) is one of the transporters of 
GABA, which is specifically expressed in astrocytes. The activity of 
GAT3 depends on the sodium ion gradient.65 Therefore, Na+-K+-
ATPase dysfunction will lead to abnormalities in GABA transporta-
tion, thereby increasing CNS excitability.

4.1.2  |  Dual influence on glycine and its 
transporter Glyt1b

The dysfunction of Na+-K+-ATPase will cause an increase in intra-
astrocytic Na+ level. The rise of Na+ concentration has a dual 

influence on the NMDA receptor co-­agonist glycine and its trans-
porter Glyt1b.66 It may increase NMDA receptor-­mediated excita-
tion at a low concentration. However, at a higher concentration it 
may also exert an inhibitory effect on glycine-­mediated activation.

4.1.3  |  Calcium ion influx

Na+-K+-ATPase dysfunction will cause the accumulation of intra-
cellular sodium ions, which will induce the activation of voltage-­
gated calcium pumps and the reversion of intercellular Na+-­Ca2+ 
exchanger, leading to the rapid accumulation of intercellular free 
calcium ions.43,67 The rapid influx of calcium depolarizes the cell 
membrane due to its divalent positive charge, and it can also mediate 
action potential firing and potential membrane oscillations.

4.2  |  Potassium ion homeostasis related 
excitability

4.2.1  |  Dysfunction of glutamate clearing

Glutamate is the main excitatory neurotransmitter whose trans-
porter in the synapse depends on excitatory amino acid transport-
ers (EAATs). When one molecule of glutamate is transported, one 

F I G U R E  1 Potential mechanisms of Na+-K+-­ATPase dysfunction contributed to epilepsy. The inhibition of Na+-K+-ATPase could cause 
the accumulation of intracellular sodium ions, which will further lead to (1) inhibition of inward transportation of GABA; (2) increased NMDA 
receptor-­mediated excitation; (3) accumulation of intercellular free calcium ions through the reversion of intercellular Na+-­Ca2+exchanger. 
Furthermore, Na+-K+-­ATPase dysfunction is also associated with a decrease in intracellular potassium ion homeostasis, resulting in (1) 
impaired glutamate clearance; (2) an increase in resting membrane potential. With these mechanisms, Na+-K+-ATPase is a major contributor 
to brain excitability in epileptic brains. NKA, Na+-K+-­ATPase; GAT3, GABA transporters 3; NXC, Na+-­Ca2+ exchanger; EAATs, Excitatory 
amino acid transporters
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potassium ion is exported, and three sodium ions and one molecule 
of hydrogen ion are imported. With Na+-K+-ATPase dysfunction, 
glutamate will have clearance impairment, thereby increasing CNS 
excitability.68

4.2.2  |  Increased resting potential

When the activity of Na+-K+-ATPase is inhibited, the active trans-
port between sodium and potassium ions cannot be completed, 
leading to the accumulation of potassium extracellularly. This will be 
followed by an increase of resting membrane potential, finally lead-
ing to an increase of cellular excitability.

4.3  |  Increased extracellular ATP concentrations

ATP was first proposed as a neurotransmitter by Geoffrey 
Burnstock et al.69 In the CNS, ATP operates as a fast excitatory 
neurotransmitter.70 Some studies reported an increase in extra-
cellular ATP concentration during seizures.71,72 With Na+-K+-
ATPase dysfunction, the concentration of ATP will increase. The 
elevated concentration of ATP will further activate purinergic P2 
receptors,73 leading to an exacerbation of seizures.74 Among the 
subtypes of P2 receptors, hippocampal P2X7 receptors were re-
ported to have a selective increase in the intra-­amygdala kainic 
acid mice,75 which further promotes the glutamate release.76 
However, the specific mechanism underlying P2 receptors and 
seizures remains unclear.

Although Na+-K+-­ATPase dysfunction can lead to hyper-­
excitability in many ways, the mechanism of Na+-K+-ATPase in-
volved in the epileptic brain is still not fully understood. Furthermore, 
how Na+-K+-­ATPase in different types of cells, like neurons or glia, 
contributes to overall excitability is unclear.

4.4  |  Dysfunction of injury-related autophagy

Brain injury is one of most frequent causes of epilepsy. Brain injury 
is related to autophagy through Na+-K+-ATPase. The interaction 
between Na+-K+-­ATPase and autophagy protein Beclin 1 increases 
when brain have an injury, including ischemia.77 Moreover, Na+-K+-
ATPase dependent autophagy can produce a protective effect on 
brain injury.78 Interestingly, recent studies demonstrated that au-
tophagy also has a close relationship with epilepsy. The abnormal 
activation of the mTOR pathway, which would impair autophagy, 
could cause various epilepsy syndromes.79 Specifically, conditional 
deletion of Atg7, an essential regulator of autophagy, in mouse fore-
brain neurons is sufficient to promote development of spontaneous 
seizures,80 the mechanism of which is due to disinhibition of mTOR 
pathway. In addition, balloon cells in the brains of focal cortical dys-
plasia (FCD) type IIb patients, a common type of epilepsy, exhibit an 
increase of autophagy-­related proteins, which indicates autophagy 

is impaired in FCD. Inhibiting mTOR could reverse this phenom-
enon.81 Therefore, a prospective mechanism may exist in the role 
of Na+-K+-­ATPase in epilepsy through the regulation of autophagy, 
which is worth exploring in the future.

5  |  CONCLUSION AND PROSPEC T

Na+-K+-­ATPase is an ATP-­driven ion transporter pivotal for physi-
ological structure and function of cell activity. It is closely related to 
cellular excitability, which indicates the vital role of Na+-K+-ATPase 
in epilepsy. The presence of epileptic symptoms in numerous neuro-
logical diseases caused by the mutation of Na+-K+-ATPase subunits 
highly suggested the cause-­and-­effect relationship between Na+-
K+-­ATPase and epilepsy. Furthermore, a substantial change in the 
activity of Na+-K+-­ATPase was observed in different epilepsy/sei-
zure animal models, although discordant results among studies exits. 
Pharmacological inhibition of Na+-K+-ATPase in rodents will lead 
to cellular hyperexcitability and seizures. We further highlight the 
potential mechanisms underlying the role of Na+-K+-ATPase dys-
function and cellular hyperexcitability, which is mainly mediated by 
the change in sodium and potassium ion homeostasis.

However, several questions remain unknown, which mainly re-
volve around the impact of Na+-K+-­ATPase on epilepsy and its clin-
ical translational significance.

1.	 The detailed change of Na+-K+-­ATPase in epilepsy, includ-
ing the protein level and subunit alterations, remains elusive. 
Through investigating the protein level, the direct reason why 
the activity of Na+-K+-­ATPase has changed might be explained. 
Furthermore, the role of each subunit of Na+-K+-ATPase in 
epilepsy must be further clarified. Each subunit of Na+-K+-
ATPase exists in different cell types. Understanding changes 
in specific subunits will better address the cell-­specific role of 
Na+-K+-­ATPase in epilepsy. This can assist us in finding new 
drug targets and explore a series of recent drug structures.

2.	 In different types and phases of epileptogenesis, the role of 
Na+-K+-­ATPase may vary. In clinical, genetic diseases with mu-
tations in the gene encoding Na+-K+-ATPase can have differ-
ent types of epilepsy manifestations. The pathophysiological 
contribution of Na+-K+-­ATPase in those patients remains to 
be further investigated. Moreover, in other types of epilepsy, 
including TLE with hippocampal sclerosis and FCD, the role of 
Na+-K+-­ATPase remains uninvestigated as well. Whether Na+-
K+-­ATPase contributes to epileptic seizure in a common way or 
via various mechanism in different types of epilepsy needs to be 
investigated. Further, investigation of the function of Na+-K+-
ATPase in different phases of epileptogenesis, including acute 
epileptogenic phase, latency period and chronic spontaneous 
seizure period, will be of great value in understanding its role in 
the development of epilepsy.

3.	 Currently, no one drug that specifically intervene Na+-K+-ATPase 
exists. With specific drugs, the function of Na+-K+-ATPase could 
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be evident. Moreover, it would have clinical transformational 
prospects if such specific drugs could be discovered.

4.	 The cell-­specific role of Na+-K+-­ATPase remains largely uninves-
tigated. The fact that each subunit of Na+-K+-­ATPase predomi-
nates in different cell types might indicate distinct functions of 
subunits. Previous research failed to identify the cell-­specific 
role of Na+-K+-­ATPase in pathological states, including epilepsy. 
Combined with gene intervention with Cre-­Loxp strategy or 
subunit-­specific drug with structural virtual screening, the cell-­
specific functions of Na+-K+-­ATPase would have paramount 
therapeutic implications not only for the treatment of epilepsy, 
but also other neurological diseases.
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