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Abstract

Re-engineering the tropism of viruses is an attractive translational strategy for targeting cancer cells. The Ras signal
transduction pathway is a central hub for a variety of pro-oncogenic events with a fundamental role in normal and
neoplastic physiology. In this work we were interested in linking Ras activation to HSV-1 replication in a direct manner in
order to generate a novel oncolytic herpes virus which can target cancer cells. To establish such link, we developed a
mutant HSV-1 in which the expression of ICP4 (infected cell protein-4, a viral protein necessary for replication) is controlled
by activation of ELK, a transcription factor down-stream of the Ras pathway and mainly activated by ERK (extracellular
signal-regulated kinase, an important Ras effector pathway). This mutant HSV-1 was named as Signal-Smart 1 (SS1). A series
of prostate cells were infected with the SS1 virus. Cells with elevated levels of ELK activation were preferentially infected by
the SS1 virus, as demonstrated by increased levels of viral progeny, herpetic glycoprotein C and overall SS1 viral protein
production. Upon exposure to SS1, the proliferation, invasiveness and colony formation capabilities of prostate cancer cells
with increased ELK activation were significantly decreased (p,0.05), while the rate of apoptosis/necrosis in these cells was
increased. Additionally, high Ras signaling cells infected with SS1 showed a prominent arrest in the G1 phase of the cell
cycle as compared to cells exposed to parental HSV-1. The results of this study reveal the potential for re-modeling the host-
herpes interaction to specifically interfere with the life of cancer cells with increased Ras signaling. SS1 also serves as a
‘‘prototype’’ for development of a family of signal-smart viruses which can target cancer cells on the basis of their signaling
portfolio.
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Introduction

Ras is a major proto-oncogene involved in 35% of all human

cancers (Adjei, 2001). Ras activation results in stimulation of

different mitogen-activated protein kinases (MAPKs) [1,2,3,4].

MAPKs are involved in diverse cellular functions including cell

proliferation, cell cycle regulation, cell survival, angiogenesis, and

cell migration [1,5,6,7,8,9,10,11,12]. Different extracellular chem-

ical and physical signals can stimulate MAPKs making them an

important part of the machinery needed to transduce signals from

receptor to regulatory molecule inside the cell. Activation of the

Ras/Raf/ERK1/2 pathway results in the serine/threonine kinase

ERK1/2 phosphorylating, among other substrates, the nuclear

transcription factor, ELK [13,14]. ELK is a member of the Ets-

family and is a component of the ternary complex that mediates

gene activity in response to serum and growth factors. Phosphor-

ylated-ELK, in combination with serum response factor (SRF),

binds to an enhancer element in the c-fos promoter referred to as

serum response element (SRE) inducing the transcription of many

genes involved in biological functions such as proliferation and

differentiation [15,16].

We have shown previously that cells with overactivation of Ras

signaling are more permissive to infection by herpes simplex virus-

1 (HSV-1) due to the impaired action of double-stranded RNA-

induced protein kinase (PKR), the main host defense mechanism

against viral infection [17,18]. Here, we expand on these studies

by establishing a direct relationship between Ras signaling in host

cells and HSV-1 replication by developing a mutant HSV-1 which

is responsive at transcriptional level to Ras activation. Our goal

was to engineer the pathogenicity of the virus to only interfere with

host viability on the basis of overactivation of the Ras/ERK/ELK

pathway. This mutant virus is referred to as Signal-Smart 1 (SS1)

virus and was tested in a range of prostate cancer cells. Prostate

cancer has been tested before as a target for gene therapy using an

amplicon herpes system (containing a probasin-derived promoter)

to complement a replication defective mutant herpes[19]. In this

study we show that the SS1 virus preferentially infects prostate

cancer cells with increased ELK/SRE activation inducing changes

in viability, invasiveness, colony formation, cell cycle progression,

apoptosis and necrosis.

Results and Discussion

Construction of the mutant SS1 virus
The SS1 mutant virus contains one copy of the herpetic alpha-4

gene under the control of a synthetic promoter. This gene encodes

PLoS ONE | www.plosone.org 1 August 2009 | Volume 4 | Issue 8 | e6514



the infected cell protein-4 (ICP4), which is a necessary protein for

viral replication. The synthetic promoter is composed of five

tandem repeats of SRE (the DNA binding element for ELK) and a

minimal TATA sequence. The 5xSRE-TATA-ICP4 sequence is

followed by an internal ribosome entry site (IRES) and the

fluorescent protein DsRed-express (Figure 1A). The SS1 virus was

produced by infecting E5 cells (expressing ICP4) with d120, a

mutant HSV-1 with deletions in both copies of the alpha-4 gene,

followed by transfection of d120-infected E5 cells with a plasmid

containing 5xSRE-ICP4-IRES-DsRed-express (pTSIIDT). The

5xSRE-ICP4-IRES-DsRed-express construct is flanked by two

complementary regions homologus to HSV-1 thymidine kinase

(TK). Once both d120 viral genomic DNA and pTSIIDT are

present within the E5 cells, homologus recombination with the TK

gene results in the insertion of 5xSRE-ICP4-IRES-DsRed-express

in the d120 genome and generation of the SS1 virus.

Figure 1B explains the results of PCR experiments on SS1 DNA

preparations. Six independent viral isolates (numbered 1–6) are

investigated with the purpose of confirming the structure of this

mutant virus. The structure of the recombinant promoter was

confirmed by performing PCR using primers which span over the

promoter (5xSRE-TATA) and cover a portion of the ICP4 gene.

In each case, the PCR product was sequenced and compared to

the related sequence in our database. Contamination of genomic

viral DNA preparations by pTSIIDT was ruled out by performing

PCR targeting the backbone areas of this plasmid. Following

Figure 1. Characteristics of Signal-Smart 1(SS1) mutant HSV-1. The SS1 virus contains one copy of ICP4 gene under the control of 5xSRE and
minimal TATA sequence. (A) Viral genomic PCR reactions confirm the structure of the recombinant ICP4 gene. The sequence for each pair of primer,
the relative positions and of the primers as well as their sequence and results are shown. The PCRs were performed on U87 cells (non-transfected),
d120-genomic DNA (labeled as d120) and the plasmid pTSIIDT. Performing PCR on back-bone elements of pTSIIDT is done in order to rule out the
contamination of genomic viral DNA preparations by pTSIIDT. (B) Genomic structure of HSV-1 and SS1 virus and pTSIIDT plasmid DNA. NotI
restriction analysis: The 9.3 Kb NotI fragment contains the plasmid backbone, the 2.8 and 0.7 Kb fragments are the expected digestion pattern from
both SS1 and pTSIIDT, which contains the ICP4 gene (arrowheads). Twenty mg DNA of each sample was digested over night at 37uC and resolved in
1% agarose gel. Lane 1:HSV-1/NotI; Lane 2:d120/NotI; Lane 3:SS1/NotI; Lane4: pTSIIDT/NotI; Lane5:DNA marker (from top to bottom: 23, 9.4, 6.6, 4.4,
2.3, 2.0 and 0.5 Kb).
doi:10.1371/journal.pone.0006514.g001
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analysis of viral structure by these experiments, isolate number 3

was selected for further expansion to be used in the experiments.

Furthermore, the genomic DNA from d120, SS1 and HSV-1 were

analyzed by restriction digestion with NotI (Figure 1C, results

shown for NotI). The segment analysis by these restriction

endonucleases confirmed that the inserted gene sequences in

SS1 were structurally consistent with the plasmid, pTSIIDT and

that overall genomic structure of SS1 remains in harmony with

d120 and wild-type HSV-1. The SS1 virus was then amplified and

titrated with known methods [20].

Prostate cells contain different levels of Ras/ERK/ELK
activation

We next evaluated the level of Ras/ELK signaling in malignant

and non-malignant prostate cells. Phosphorylated ELK and

activation of SRE are both down-stream effectors of the Ras/

ERK/ELK pathway (Figure 2A). Levels of both effectors were

measured in several prostate cancer cell lines (PC3, C4, C4-2,

Du145, LapC4, LnCap, PC3-AR, PC3-Neo), primary prostate

epithelial cells (PrEC), benign prostate hyperplasic cells (BPH-1),

and human tissue samples. A higher level of phospho-ELK (P-

ELK) was seen for the prostate cancer cell lines LapC4 and LnCap

and the non-malignant cell lines BPH-1 and PrEC (Figure 2B,

band intensities are evaluated in comparison to the strongest band

which in this case was the band for PrEC represented as 100%,

ND stands for not detectable). For the rest of this study, we focused

on LapC4 and LnCap as high Ras signaling cancer cells, Du145

and PC3 as low Ras signaling cancer cells, along with PrEC and

BPH-1 cells. We next measured the binding of phospho-ELK to

SRE (as a representation of SRE activation) in these cells using a

Luminex based assay (Figure 2C). LnCap and LapC4 exhibited

higher levels of SRE activation than Du145 and PC3 cells. PrEC

and BPH-1 also showed increased SRE activation. It is important

Figure 2. Ras signaling and activation of ERK/ELK/SRE in prostate cells and tissue. Activation of Ras leads to initiation of a signal via Raf/
MEK/ERK which in turn phosphorylates/activates transcription factor ELK. ELK in combination with SRF drives expression from promoters containing
SRE elements. (A) Activation of ERK and phosphorylation of ELK in a series of prostate cells including prostate cancer cells, PrECs and BPH-1 is
evaluated by in-vitro kinase assay for P-ERK. Band intensities are evaluated in comparison to the strongest band which in this case was the band for
PrEC represented as 100%, ND stands for not detectable. (B) Activation of SRE by binding of P-ELK was evaluated by performing a Luminex-based
assay. Existence of P-ELK and its binding to SRE elements protects these oligomers from digestion by a nuclease and allows generation of light. (C)
Expression of P-ELK (active ELK) in malignant prostate tissue samples (n = 10, average Gleason score 6.0) and non-malignant prostate tissue was
evaluated by performing immunohistochemistry and following image analysis for dark brown nuclear staining representing P-ELK using appropriate
software. Upper panels show a sample of P-ELK staining for tumoral and normal tissues while the lower panels show average of staining intensity for
P-ELK in different samples.
doi:10.1371/journal.pone.0006514.g002
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to note that while Figure 2B evaluates the levels of P-ELK

generated by ERK-pathway, figure 2C provides us with activation

levels of SRE in these cells. Although ERK is the major

contributor to ELK phosphorylation, other pathways might also

induce ELK and therefore, at least partly, contribute to SRE

activation shown in figure 2C. In any case, LnCap, LapC4, BPH-1

and PrEC on both assays exhibit higher levels of activation than

Du145 and PC3.

Given that PrECs showed higher levels of phospho-ELK than

any of the prostate cancer cell lines, we wanted to determine if this

finding was in harmony with phospho-ELK levels in tumoral and

normal prostate tissues. To achieve this, the levels of phospho-

ELK activation in prostate tissues were compared in tumoral

(n = 10, average Gleason score over 6.0) and non-tumoral (n = 10)

samples with immunohistochemistry using an antibody specific for

phospho-ELK. Dark brown staining in nucleus represents

phospho-ELK and was quantified by scanning slides using related

software. Levels of phospho-ELK were significantly lower in

normal tissue samples as compared to malignant samples

(Figure 2D) (p,0.05). Therefore, although PrECs show elevated

levels of ELK activation, normal prostate tissue remains

significantly lower in this regards as compared to tumoral tissue.

These results confirm that a major difference exists between

information obtained from cultured cells in- vitro and analysis of

tumoral tissues.

Prostate cells with elevated levels of ELK/SRE activation
are more permissive to SS1 virus

In order to understand the effect of high and low Ras signaling

on permissiveness, we infected prostate cancer cells and non-

malignant PrECs and BPH-1 cells with SS1 and parental HSV-1

virus at a multiplicity of infection of 1 (MOI,1). A variety of

techniques including titration of viral progeny, immmunoflour-

escent (IF) studies on envelope glycoprotein C (gC, an standard

marker for herpetic infection) and western blotting for herpes

proteins were used to evaluate and compare the permissiveness of

these cells. Morphological studies of SS1-infected cells showed a

more prominent pattern of infection (rounding and clumping) for

LnCap, LapC4, PrEC and BPH-1 as compared with Du145 and

PC3 cells (Figure 3A). Levels of SS1 progeny virus detected upon

infection of LapC4 and LnCap (high Ras cancer cells) were higher

than Du145 and PC3 (low Ras cancer cells) (Figure 3B). PrECs

and BPH-1 also produced elevated levels of viral progeny because

of their elevated ELK activation as mentioned before. In case of

HSV-1, however, progeny virus levels were found to be

comparable in all cells at 48 hours post-infection (Figure 3B lower

panel). Another level of evidence for the enhanced capability of

SS1 to target cells with increased Ras/ELK signaling was obtained

by studying these cells for expression levels of gC. Although HSV-

1 infected LapC4 and Du145 with comparable intensity, LapC4

cells were remarkably more permissive to the SS1 virus in

comparison to Du145 (Figure 3C). Lower panel shows staining of

uninfected LapC4 cells with anti-gC antibody in order to prove its

specificity for infected cells (Texas red is the background stain of

the anti-gC antibody preparation and serves to visualize the cell

monolayer).

Finally, evaluating expression of a series of herpetic proteins in

these cells by western blotting for viral proteins (Figure 3D)

revealed enhanced and comprehensive protein expression in

PrECs, BPH1, LapC4 and LnCap as compared to minimal levels

of viral protein synthesis for Du145 and PC3 cells (all bands show

herpetic proteins). If replication of SS1 is dependent on Ras

signaling, it would be rational to expect that inhibitors of this

pathway would reduce the production of herpetic proteins and

therefore permissiveness to the virus. Indeed, once exposed to the

inhibitors of Ras signaling a reduction in the levels of SS1 protein

synthesis was observed for LnCap cells. The reducing effects of

EGFR inhibitor AG1478 (0.5 mg) was found to be lesser than

effects observed for FTI-276(blocker of Ras farnesylation used at

5 nm), PD98059 (blocker of MEK/ERK pathway used at 20 mM)

and Chromomycin A (a blocker of ELK binding to SRE used at

500 nM). Interestingly, the effects of Chromomycin A [21], was

found to be the strongest providing further evidence for

dependency of SS1 virus on transcriptional activity of ELK. All

of these data show the capability of the SS1 virus to preferentially

target cells with elevated Ras/ELK signaling. To this end, it is

important to note that PrEC cells, although not transformed but

containing enhanced levels of ELK/SRE activation, were not

found to be immune to the effects of the virus. We attribute such a

phenomenon to the altered signaling characteristics of primary

cells once cultured in vitro. This claim is supported by the

significantly lower levels of ELK activation in normal prostate

tissue as compared to tumoral samples (Figure 1D).

Prostate cells with elevated levels of ELK/SRE activation
were less viable and invasive upon exposure to SS1 virus

In next step we studied the biological outcome of exposing

prostate cells to SS1 virus (MOI,1). The proliferation rate of

prostate cells was measured at 24 and 48 hours post-infection and

compared to uninfected controls. As in figure 4A, once exposed to

the SS1 virus, the proliferation rate of cells with elevated Ras/

ELK signaling is more prominently reduced as compared with

cancer cells with lower Ras/ELK signaling (p,0.05).

The effects of SS1 infection on invasiveness of prostate cancer

cells was also studied by testing the capabilities of BPH-1, LapC4

and Du145 in passing through a layer of Matrigel in vitro in

comparison to uninfected controls at 24 hours after infection.

Figure 4B shows that a complete blockade of invasiveness was

observed for SS1 infected BPH-1 and LapC4 (top and middle

panels). The invasiveness of Du145 cells was also reduced;

however, even cells in the control group were not capable of

invading through matrigel with a comparable intensity as the other

tested cells (bottom panel). Therefore, the SS1 virus is capable of

specifically targeting prostate cells with increased Ras signaling

and thereby specifically inducing loss of viability and invasiveness

in these cells. Both of these biological effects on the host cell can

play an important role in the translational potentials of SS1 for

targeting cancer cells.

Infection with SS1 enhances cell death, alters cell cycle
progression and reduces colony formation of prostate
cancer cells

In order to investigate the mechanism of cell death upon

exposure to SS1, we evaluated the occurrence of necrosis and

apoptosis in these cells once exposed to SS1 virus. Figure 4C shows

a significant (p,0.05) increase in both necrosis and apoptosis upon

infection of LnCap and LapC4. Although all other cells showed

apoptosis and necrosis, the increase observed in the case of cancer

cells with elevated Ras signaling (LapC4 and LnCap) was

remarkably greater than other cells. Interestingly, PrECs seem to

mainly undergo apoptosis upon infection with SS1.

In next step we evaluated the outcome of exposure to SS1 virus

on cell cycle progression of high and low Ras signaling cells and

compared these results with the effects of parental HSV-1

infection. Figure 4D shows the results of cell cycle analysis after

24 hours of exposure to MOI,1 of SS1 or HSV-1 virus as well as

data obtained from uninfected controls. In LapC4 cells SS1

SS1 Virus: A Hunter for Ras
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infection seemed to cause an increase in the population of cells in

the G1-phase of the cell cycle (p,0.05). HSV-1, however, did not

induce such effects in these cells. In the case of Du145 cells, a

reverse phenomenon was observed as the fraction of G1 cells was

decreased, while cells in S-phase increased.

Although the functional analysis of these data requires further

evaluation, it is possible to interpret them in a preliminary manner

in light of our understanding of the role of Ras signaling in the

passage of cells from G0 to S-phase and the impact of herpetic

infection on this passage. Ras signaling elevates levels of cyclin-D1,

which is responsible for facilitating advancement through G1-

phase. Ras signaling influences the transcription, translation and

protein stability of cyclin D1. An increase in p21 levels results from

direct effects on transcription and indirect effects through cyclin

D1 on protein stability. Cyclin D1 and p21 then drive the

formation of active cyclin-D1–CDK4 (cyclin-dependent kinase-4)

and cyclin-D1–CDK6 complexes, which promote cell-cycle

progression by phosphorylating retinoblastoma (RB) proteins

[22]. The Ras-Raf-ERK pathway has been shown to be required

for expression of cyclin D1 and its assembly into a complex with

CDK4 or CDK6. On the other hand, HSV-1 infection has been

shown to prevent infected cells from progression from G1 into S-

phase diminishing the normal increase in Cyclin D1 and D3

[23,24]. SS1 virus, with its replication dependency on Ras

Figure 3. SS1 virus preferentially infects cells with increased Ras/ELK signaling. Morphological studies of SS1-infected cells (MOI,1) show
rounding and clumping (signs of herpetic infection) in cancer cells with elevated Ras/ELK signaling (LnCap and LapC4) as well as PrEC and BPH-1 cells
as compared with Du145 and PC3 cells at 24-48 hours post-infection (MOI,1). (A) The titration of viral progeny at 24–48 hours post-infection
(MOI,1) revealed enhanced levels for LnCap and LapC4 as well as PrEC and BPH-1 as compared with Du145 and PC3 cells. In case of PrEC and BPH-1
cells titrations maximize at 24 hours. (B) Immunofluorescent (IF) studies for glycoprotein C (gC, a marker for herpetic infection) revealed enhanced
expression for LapC4 (high Ras) as compared to Du145 (low Ras) cells upon infection with SS1 (second row). Expression of this marker in these two
cell lines was at much closer levels once these cells were infected with parental HSV-1. Top panel represents IF intensity for each panel versus number
of captured events in each field. Third row represents the DAPI staining of related panels. Bottom panel shows staining of uninfected Du145 cells and
the background Texas-red and DAPI staining. (C) The expression of SS1 proteins was investigated by western blotting on lysates from infected and
control cells using an anti-body raised against all HSV-1 antigens. Higher and more comprehensive levels of SS1 protein synthesis was observed for
LnCap, LapC4, PrEC and BPH-1 as compared to Du145 and PC3 cells. Controls (uninfected cells) show no bands proving the specificity of antibody for
viral proteins. Lower panel shows a significant decrease in the expression of SS1 proteins in infected LnCap cells upon exposure to inhibitors of Ras
(FTI-277 at 20 mM), MEK (PD98059 at 25 mM) and ELK (Chromomycin A at 10 mM) but not the vehicle (DMSO). A lower level of inhibition was observed
for inhibitor of EGFR, AG1478 (0.5 mM). Cells were incubated with these inhibitors overnight and then exposed to SS1 while inhibitors existed in the
media.
doi:10.1371/journal.pone.0006514.g003
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signaling, will be more restrictive to G1/S transition since it

produces ICP4 (a protein shown to be required for viral-induced

G1/S blockade) under direct influence from Ras/ERK/ELK

pathway. In the case of such low Ras signaling cells as Du145, the

SS1 virus is less effective in blocking G1/S transition resulting in

an increase in the S fraction. Therefore, the passage through G1/S

Figure 4. The effects of SS1 infection on the phenotype of prostate cells. The proliferation rate of prostate cells is decreased upon exposure
to SS1 virus (MOI,1) with lower levels observed in case of prostate cancer cells with high Ras signaling (LnCap and LapC4) and PrEC and BPH-1 cells
as compared to Du145 and PC3 cells (low Ras cells). (A) Invasiveness of prostate cancer cells LapC4 and Du145 as well as BPH-1 cells were decreased
after 24 hours of exposure to SS1 virus in a significant manner. The decrease in invasiveness was more prominent for cells with elevated Ras signaling
(LapC4 and BPH-1) as compared with Du145. Control Du145 cells were much less invasive than other cells. (B) Increase in necrosis and apoptosis is
observed upon exposure of prostate cells to SS1 virus. The induction in necrosis/apoptosis is remarkably greater in LnCap and LapC4 cells. (C) The
progression of cell cycle is altered upon exposure of prostate cancer cells to SS1 virus. In case of a high Ras cell (LapC4) an increase in G1 and
decrease in S and G2 was observed upon infection with SS1 as compared with parental virus infected and control cells. Du145 (a low Ras cell),
however, showed a passage through G1 but significant enhancement of S1 fraction. Left panels represent captured data plotted as fluorescence
intensity (FL2-H channel) versus cell number for different phases of cell cycle. The right panel portrays these data as percentage of control (non-
infected cells) for SS1 or HSV-1 infected cells. (D) Colony formation capability of LapC4 and Du145 cells was also significantly reduced upon infection
with SS1. Upper panels show formation of colonies for a range of number of inoculated infected cells. The lower panels show average number of
colonies per microscopy field for SS1-infected and control groups. The colony forming capability of Du145 cells were less inhibited as compared to
LapC4 cells. (E) The mechanism of SS1 action is illustrated in this figure. Activation of Ras signaling pathway stimulates a signal through Raf/MEK/ERK
pathway inducing phosphorylation of ELK. Stimulation of SRE elements by a complex including P-ELK results in expression of ICP4 and replication of
SS1 which eventually destroys the cell via infection.
doi:10.1371/journal.pone.0006514.g004
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in Du145 cells is more efficient in SS1-infected cells as compared

to HSV-1-infected cells due to the lesser infectibility of Du145 cells

by the SS1 virus.

Finally, the capabilities of LapC4 and Du145 cells to form

colonies upon infection with SS1 (MOI,0.5) virus was evaluated.

Figure 4E shows complete abrogation of the capabilities of LapC4

cell lines after three weeks of inoculation of cells for this assay. In

case of Du145 cells, a decrease was observed in the number of

colonies upon exposure to SS1 however a complete blockade was

not observed. Reduction in the colony formation capabilities of

prostate cancer cells is another indicator of change in the

malignant phenotype of prostate cancer cells upon exposure to

the SS1 virus.

Concluding Remarks
Figure 4F portrays the overall Ras-dependent mechanism for

SS1 replication. Ras signaling can be activated by a variety of up-

stream events such as binding of growth factors to the receptor

tyrosine kinases (RTKs) or pro-oncogenic activation of Ras or

signaling via down-stream molecules such as Raf or ERK.

Activation of Ras signaling then results in activation of ELK. As

a consequence of elevated levels of Ras signaling, therefore, the

SS1 virus replicates efficiently due to the existence of ELK binding

sites in the promoter region of its recombinant alpha-4 gene.

Correlation between Ras signaling and SS1 replication and

induction of cytotoxic effects such as loss of viability and induction

of necrosis and apoptosis was shown in our work. Additionally,

invasiveness was seen to be blocked as early as 24 hours post-

infection with SS1. While PrECs used in our studies also showed

elevated levels of ELK activation, their signaling may not reflect

the situation in tumor tissues based on the data shown in our work

and others [25,26]. Also, once exposed to SS1, high Ras prostate

cancer cells had an increase in the G1 fraction of cells and lost

their colony formation capabilities. Although the interaction

between two complex biological systems (virus and host) is a

function of multi-factorial events, the linkage of expression of ICP4

to the Ras pathway seems to direct the overall dynamics of this

relationship, which is significantly influenced by Ras signaling.

Further evaluation of the effects of signal-smart viruses on host cell

biology improves our understanding about the mechanism of the

virus-host relationship and opens new horizons in using these

biological agents in detection and targeting cancer cells with

enhanced specificity and efficiency.

Materials and Methods

Cells, media, chemicals and viruses
African green monkey kidney cells (Vero) and E5 (Vero cells

transfected with HSV-1 alpha-4 gene) cells were grown in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with 10% Fetal calf serum. The prostate cancer cell lines were

grown in BPH-1 (RPMI 1640+5%FBS+1%A.B), Du145

(DMEM+10%FBS+1% AB), LapC4 (IMDM+10%FBS+1% AB),

LnCap (RPMI-1640+10%FBS+1% AB) and PC3 (Hams F-

12K+10%FBS+1%AB). HSV-1(F) virus was a gift from Dr.

Bernard Roizman (University of Chicago). HSV-1 mutant d120,

containing a 4.1-kb deletion in both copies of the ICP4 gene, and

the complementary cell line E5 [27,28] were kindly provided by

Robert L. Martuza (Harvard Medical School, Boston, MA). The

stock of mutant d120 virus was prepared in E5 cells. Every stock of

d120 virus was titrated by infecting 106 PFU of viruses from the

stock in Vero monolayer, harvesting the culture medium, and then

determining the existence of any infectious progeny by plaque

assay on Vero cells.

Plasmid construction
Using a sense primer, 59-CTCACAGCTAGCTTGGG-

TAACGCCAGGGTTTTC-39 and antisense primer, 5-9ACTG-

TATAGATCTCGCCCCTCGAATAAACAACGC-39, we am-

plified the ICP4 gene by PCR from DNA template, pGH108.

The PCR product (4.2 KB) was then inserted into the vector,

pCR-Blunt-TOPO (Invitrogen, catalog no:K2800-20). An EcoRI-

ICP4-EcoRI fragment from the TOPO clone was then isolated

and subcloned into the vector, pIRES/DsRed express (Clontech,

catalog no:632463), between CMV and IRES/DsRED genes at

EcoRI single site. The construct was designated as pIID. In next

step, we amplified part of human TK gene from DNA template,

pHSV106, by using primers, 59-ATCGCTAGCTCCAAGACT-

GACACATT-39 and 59-ATGCTAGCACTAGTACCGGTAG-

TACTGCTGAGGTGGGCTTTGGACGTCTT-39. The PCR

product was then cloned into the vector, pCRII-TOPO (Invitro-

gen, Cat. No. K4600-01). A NheI-TK-NheI fragment, TK59,

from the TOPO-clone was then subcloned into the plasmid, pIID,

in front of ICP4 gene. The construct was designated as pTIID.

The 39 segment of the viral TK gene was also amplified from

pHSV106 by primers 59-GGGTTAACATTTAAAT-

CAGGTCGCCGTTGGGGGCCA-39 & 59-GGGTTAA-

CAAATGAGTCTTCGGACCTC-39 and subcloned into the

pCRII-TOPO as mentioned above. The HpaI-TK-HpaI frag-

ment, TK39, was cloned into the plasmid, pTIID, on the 39of the

IRES/DsREd genes at its HpaI single site. This construct was

designated as pTIIDT. As mentioned above, we did TOPO-Clone

for the SRE promoter from the template DNA, pSRE-Luc, by

primers, 59-CCTCAGCTGTCTGGATCCAAGCTAGGA-39

and 59-GACTAGTATGCCAAGCTGGAA TTCGAG-39. A

BbvCI-SRE-SpeI fragment was cloned into the plasmid, pTIIDT,

between TK 59 and ICP4 gene. The construct was designated

pTSIIDT and was eventually used for transfecting E5 cells. All the

fragments from PCR TOPO clones were sequenced.

Generation of SS1
E5 cells were seeded onto 150 mm dish to grow overnight to

80%–90% confluency.

Transfection of pTSIID was performed by using Lipofectami-

neTM2000 (Invitrogen, CA) according to the manufacturer’s

protocol. After transfected E5 cells were incubated at 37uC and

5% CO2 for 72 h, the supernatant was discarded and transfected

cells were infected with d120 virus by adding 10 ml diluted d120

preparation for 1.5 h infection incubation (with gentle rocking).

Fresh medium was then added and incubation continued for three

days. The virus was then harvested by scraping cells off the flask

surface in combination with supernatant followed by three cycles

of freeze-thaw and supplementation with 10% autoclaved non-fat

milk for increased stability. Recombinant viral isolates were

purified by three rounds of plaque purification on Vero cells. Total

and viral genomic DNA was isolated for each recombinant virus

isolate (six independent viral isolates numbered 1–6 are shown in

figure 1B). Using PCR reactions by different primer pairs, the

genomic composition of these recombinant virus isolated were

identified with established methods [20]. Isolate number 3 was

chosen for expansion and completion of experiments in this

manuscript.

Nuclear extraction and SRE activation Luminex assay
Nuclear extract was made by a nuclear extraction kit from

Marligen Bioscience (cat. #11906-100). Briefly, cells were cultured

in a T-175 flask to about 90% confluency and washed twice with

ice-cold PBS, collected with a cell scraper in PBS and transferred

to a 15 ml conical tube. The cells were then centrifuged 5 minutes
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at 3000 rpm at 4uC and pellet was resuspended in 500 ml

complete hypotonic lysis buffer and incubated on ice for 10

minutes. In next step 25 ml of detergent solution was added,

vortexed for 5 seconds and spun for 5 minutes at 3000 rpm at 4uC.

The supernatant was then discarded and pellet was washed twice

with 500 ml complete wash solution. 50 ml of complete Extraction

Buffer1 and 50 ul of complete extraction buffer 2 were then added

and the mixture was then incubated on ice for 30 minutes. The

nuclear extract was clarified by centrifugation and stored at

280uC until use. Three mg nuclear extract was used for SRE

transcription assay by a kit from Marligen Bioscience (catalog #
11944-096 and 11906-100) according to manufacturer’s instruc-

tions. Briefly nuclear extracts were incubated with a mixture of

biotinylated DNA binding probes. During the incubation, the

active transcription factor complexes in the sample were bound to

their specific probes, whereas unbound probes were removed

utilizing Marligen’s patented digestion step. The remaining probes

were incubated with a mixture of different fluorescently dyed

xMAPH beads. Each different xMAPH bead is coupled with a

unique probe that recognizes a specific DNA binding probe so that

the probes hybridize to their specific bead region. Following

hybridization, the samples were incubated with streptavidin-

phycoerythrin (SAPE) and read on the LuminexTM instrument,

which detect the specific transcription factors activated in the

sample by their unique bead region and quantified by the intensity

of the SAPE signal.

SDS-PAGE and Western blot analysis
Different cells were lysed with a single detergent lysis buffer

[50 mM Tris (pH 8.0), 150 mM NaCl, 0.02% sodium azide,

100 mg/ml phenylmethy-sulfonyl fluoride, 1 mg/ml aprotinin, and

1% Triton X-100], normalized for the amount of total protein and

subjected to SDS-PAGE using BioRad mini-cell protein-II system

(using pre-cast 10% discontinuous gels) followed by electroblotting

onto nitrocellulose paper. The membrane was then washed and

incubated with a primary rabbit antibody against all HSV-1

antigens (Dako, CA), followed by the horseradish peroxidase

(HRP)-conjugated secondary antibody. After extensive washing,

the blot was exposed to Lumigel detection solution and subjected

to autoradiography.

Exposure to inhibitors of Ras signaling
Uninfected cells were exposed to Ras and its down-stream

specific inhibitors overnight at the following concentrations:

AG1478 at 0.5 mM, FTI-276 at 5 nM, PD98059 at 20 mM and

Chromomycin A at 500 nM and then exposed to the virus.

Chemicals were obtained from Calbiochem (CA).

Non-radioactive affinity pull-down assay for ERK
activation

Non-radioactive ERK pathway activation assay were performed

in accordance to the manufacturer’s (Cell Signaling, MA)

instructions. Briefly, cells grown in 10 cm tissue culture dishes

were lysed at 75–80% confluency with 300 ul of cell lysis buffer.

Immobilized antibody-against phospho-ERK1/2 bead slurry

capable of binding to the phosphorylated forms of ERK was then

added to 200 mg of total cell protein in 200 ml of cell lysis buffer.

The mixture was incubated with gentle rocking overnight at 4uC
then collected, washed and introduced to an in-vitro kinase reaction

in presence of ATP and ELK, the substrate for phospho-ERK.

The levels of phosphorylated ELK was then assayed by western

blotting using antibodies directed against phosphorylated (active)

form of this transcription factor.

Plaque (viral progeny) titration assay
Plaque titration was performed with the purpose of evaluating

the yield of progeny virus at 24–48 hours post-infection. Briefly,

the supernatant from infected cells were serially diluted from 1/10

to 1/108. A volume of 300 ml from each dilution was added to

duplicate wells (of 6-well plates) containing Vero cells at ,75%

confluency after removal of the existing media and rinsing the cells

with phosphate the buffered saline (PBS). Cells were then

incubated at 37uC until development of cytopathic effects in the

form of plaques which usually occurs within 2–3 days. At this

point, a monolayer was fixed with methanol and stained with

Giemsa solution for 10 minutes. The number of clear plaques was

then determined by calculating the average of number of plaques/

well for each dilution and the volume used to infect each well.

Immunofluorescent analysis of Herpes infection and
analysis of antibody staining

Cells were grown in 8-well slide chambers (Falcon) and infected

with HSV-1 (strain F) or SS1 or mock-infected. At different times

post-infection, cells were fixed in acetone (100%) for 10 min and

then left at room temperature to dry before incubation with a

fluorescin-labeled mouse monoclonal antibody against HSV-1 gC

antigen (labvision) for 30 min at 37uC. The slides were washed

with distilled water, dried, and mounted in 90% glycerol

containing 0.1% phenylenediamine, and viewed with a Zeiss

Axiophot microscope on which a Carl Zeiss camera was mounted.

Pictures were captured by an attached computer and processed

with appropriate software. All images for phospho-ELK expres-

sion were analyzed and quantified by Image J. software (by

National Institute of Health, NIH) which reflects brown nuclei

staining due to the expression of phospho-ELK.

Cell Invasion assay
In order to evaluate cell invasiveness, a commercial kit was used

(BD Biosciences, CA). Briefly, cells (50,000 control or test cells)

were introduced into Matrigel-coated inserts fitting 24 well plates.

As cells invaded through the layer of Matrigel, the fraction of

invaded cells were detected by staining them with crystal violet

and quantifying them by spectroscopy. Invaded cells were fixed

with 5% paraformaldehyde and stained with a 5%-solution of

crystal violet and then photographed to obtain a visual

representation of their density. The cells were then solublized in

a 3%-detergent (NP40) solution, and the absorbance was

measured by spectrophotometry at 590 nm.

Cell proliferation assay
The cell proliferation assay was performed using a kit (Millipore,

CA) according to the manufacturer’s instructions. The assay is

based on the cleavage of the tetrazolium salt WST-1 to formazan

by cellular mitochondrial dehydrogenases. Expansion in the

number of viable cells results in an increase in the overall activity

of the mitochondrial dehydrogenases resulting in an increase in the

amount of formazan dye formed. Briefly, 104 cells/well were

seeded in a 96-well microplate in volume of 100 mL/well. At

different times, 10 mL WST-1/ECS solution was added to each

well. The plates were incubated for 4 hours in standard culture

conditions. The plates were then shaken thoroughly for one

minute and absorbance was measured at 480 nm.

Necrosis and apoptosis assay
Cells were seeded in a 96-well plate (plate-1) at a density of

16104 cells/well. After 24 hours cells were infected with SS-1 at

MOI,0.5 for 48 hr. The Plate-1 was centrifuged at 200 g for
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10 min. Supernatant was introduced into another 96-well plate

(plate-2) and kept it in 4uC. To lyse the cells in plate-1, 200 ml lysis

buffer/well (Roche, Cat. No. 11774425001) was added. After

incubation for 30 min at room temperature (RT), then plate-1 was

centrifuged at 200 g for 10 min. 20 ml of lysates from plate-1 and

20 ml of supernatant from plate-2 each were introduced into the

streptavidin coated microplates in triplicate for each sample. After

80 ml of the immunoreagent was added into each well, the

microplate was covered and incubated on a shaker at 250 rpm for

2 hours at RT. In next step each well was rinsed 3 times with

250 ml incubation buffer and 100 ml ABTS solution was added

and shaked 20 min at 250 rpm for color development. 100 ml

ANTS stop solution was then added to each well and the emission

was measured at 405 nm.

Cell cycle assay
106 cells for each cell line were pelleted and washed twice by

CycleTEST PLUS buffer solution (BECTON DICKINSON, Cat.

No. 340242). The cell pellet was then resuspended in 1 ml of the

same buffer solution. To stain the cells, 250 ml Solution A and

200 ml solution B were added and incubated 10 minutes at RT.

200 ml of cold solution C was added in the last and incubated 10

minutes at 4uC. The cells were filtered through a 35-mm cell

strainer cap into a 12675-mm tube. The samples were kept the

tube in dark and analyzed by FACSort flow cytometer.

Colony formation assay
For colony formation assays, cells were infected with virus

overnight with MOI,1. Following infection, cells were trypsin-

ized, counted and plated in triplicates at different concentration

100,200 –1000cells per well for each cell line in a 6 well plate and

allowed to grow for 10–14 days changing media every 2 days.

After 10–14 days when cells grew into visible colonies, plates were

washed twice with PBS and were stained with crystal violet with

methanol overnight. Next day plates were washed with water few

times till the background was clear and number of colonies in

different microscopic fields were counted.

Statistical Analysis
Results are reported as means6standard deviation (SD).

Student’s t test was used to analyze statistical differences between

groups. Alpha (a. level was set at 0.05).

Acknowledgments

We appreciate the thoughtful comments and analysis by Sameul D. Rabkin

and Robert L. Martuza. We appreciate editorial assistance by Michael J.

Franklin.

Author Contributions

Conceived and designed the experiments: FF. Performed the experiments:

WP VB FF. Analyzed the data: TE FF. Contributed reagents/materials/

analysis tools: FF. Wrote the paper: FF.

References

1. Sundaram MV (2006) RTK/Ras/MAPK signaling. WormBook. pp 1–19.

2. Molina JR, Adjei AA (2006) The Ras/Raf/MAPK pathway. J Thorac Oncol 1:

7–9.

3. Buday L, Downward J (2008) Many faces of Ras activation. Biochim Biophys

Acta.

4. Lawrence MC, Jivan A, Shao C, Duan L, Goad D, et al. (2008) The roles of

MAPKs in disease. Cell Res 18: 436–442.

5. Alvarado Y, Giles FJ (2007) Ras as a therapeutic target in hematologic

malignancies. Expert Opin Emerg Drugs 12: 271–284.

6. Chambard JC, Lefloch R, Pouyssegur J, Lenormand P (2007) ERK implication

in cell cycle regulation. Biochim Biophys Acta 1773: 1299–1310.

7. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, et al.

(2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant

transformation and drug resistance. Biochim Biophys Acta 1773: 1263–1284.

8. Meloche S, Pouyssegur J (2007) The ERK1/2 mitogen-activated protein kinase

pathway as a master regulator of the G1- to S-phase transition. Oncogene 26:

3227–3239.

9. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated

protein kinase cascade for the treatment of cancer. Oncogene 26: 3291–3310.

10. Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right

time. Trends Biochem Sci 31: 268–275.

11. Shelton JG, Steelman LS, Lee JT, Knapp SL, Blalock WL, et al. (2003) Effects of

the RAF/MEK/ERK and PI3K/AKT signal transduction pathways on the

abrogation of cytokine-dependence and prevention of apoptosis in hematopoi-

etic cells. Oncogene 22: 2478–2492.

12. Zebisch A, Czernilofsky AP, Keri G, Smigelskaite J, Sill H, et al. (2007) Signaling

through RAS-RAF-MEK-ERK: from basics to bedside. Curr Med Chem 14:

601–623.

13. Davis RJ (1995) Transcriptional regulation by MAP kinases. Mol ReprodDev

42: 459–467.

14. Kyosseva SV (2004) Mitogen-activated protein kinase signaling. Int Rev

Neurobiol 59: 201–220.

15. Whitmarsh AJ, Shore P, Sharrocks AD, Davis RJ (1995) Integration of MAP

kinase signal transduction pathways at the serum response element. Science 269:

403–407.

16. Cruzalegui FH, Cano E, Treisman R (1999) ERK activation induces
phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry.

Oncogene 18: 7948–7957.

17. Farassati F, Lee PW (2003) Ras signalling pathway: a gateway for HSV-1
infection. ScientificWorldJournal 3: 533–535.

18. Farassati F, Yang AD, Lee PW (2001) Oncogenes in Ras signalling pathway
dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 3:

745–750.

19. Lee CY, Bu LX, Rennie PS, Jia WW (2007) An HSV-1 amplicon system for
prostate-specific expression of ICP4 to complement oncolytic viral replication for

in vitro and in vivo treatment of prostate cancer cells. Cancer Gene Ther 14:
652–660.

20. Moira Brown S, RM A (1998) Herpes Simplex Virus Protocols (Methods in
Molecular Medicine).

21. White CM, Heidenreich O, Nordheim A, Beerman TA (2000) Evaluation of the

effectiveness of DNA-binding drugs to inhibit transcription using the c-fos serum
response element as a target. Biochemistry 39: 12262–12273.

22. Coleman ML, Marshall CJ, Olson MF (2004) RAS and RHO GTPases in G1-
phase cell-cycle regulation. Nat Rev Mol Cell Biol 5: 355–366.

23. Song B, Liu JJ, Yeh KC, Knipe DM (2000) Herpes simplex virus infection blocks

events in the G1 phase of the cell cycle. Virology 267: 326–334.
24. Song B, Yeh KC, Liu J, Knipe DM (2001) Herpes simplex virus gene products

required for viral inhibition of expression of G1-phase functions. Virology 290:
320–328.

25. Ricote M, Garcia-Tunon I, Bethencourt F, Fraile B, Onsurbe P, et al. (2006)
The p38 transduction pathway in prostatic neoplasia. J Pathol 208: 401–407.

26. Gavrilov D, Kenzior O, Evans M, Calaluce R, Folk WR (2001) Expression of

urokinase plasminogen activator and receptor in conjunction with the ets family
and AP-1 complex transcription factors in high grade prostate cancers.

Eur J Cancer 37: 1033–1040.
27. DeLuca NA, McCarthy AM, Schaffer PA (1985) Isolation and characterization

of deletion mutants of herpes simplex virus type 1 in the gene encoding

immediate-early regulatory protein ICP4. J Virol 56: 558–570.
28. Wu N, Watkins SC, Schaffer PA, DeLuca NA (1996) Prolonged gene expression

and cell survival after infection by a herpes simplex virus mutant defective in the
immediate-early genes encoding ICP4, ICP27, and ICP22. J Virol 70:

6358–6369.

SS1 Virus: A Hunter for Ras

PLoS ONE | www.plosone.org 9 August 2009 | Volume 4 | Issue 8 | e6514


